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Abstract

Background: Single-cell RNA sequencing is fast becoming one the standard method for gene expression
measurement, providing unique insights into cellular processes. A number of methods, based on general
dimensionality reduction techniques, have been suggested to help infer and visualise the underlying structure of cell
populations from single-cell expression levels, yet their models generally lack proper biological grounding and
struggle at identifying complex differentiation paths.

Results: Here we introduce cellTree: an R/Bioconductor package that uses a novel statistical approach, based on
document analysis techniques, to produce tree structures outlining the hierarchical relationship between single-cell
samples, while identifying latent groups of genes that can provide biological insights.

Conclusions: With cellTree, we provide experimentalists with an easy-to-use tool, based on statistically and
biologically-sound algorithms, to efficiently explore and visualise single-cell RNA data. The cellTree package is publicly
available in the online Bionconductor repository at: http://bioconductor.org/packages/cellTree/.
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Background
Single-cell RNA sequencing, one of the most significant
advances in recent genomics [1], is fast becoming the
norm in whole-transcriptome expression profiling, pro-
viding unique insights into the exact state of individual
cells throughout biological processes, such as cell differen-
tiation or tumorigenesis. In opposition to traditional batch
sequencing, single-cell expression measurements are not
affected by cell heterogeneity within the sample and give
an exact snapshot of gene activity at a specific time. The
very low noise level and virtual absence of sample vari-
ance opens the door to more exact statistical modelling of
gene regulatory activity and might be the key to successful
regulatory network inference [2, 3].
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To fulfil these promises, many challenges specific to
single-cell expression data analysis must first be solved
[4], such as the difficulty to infer the true hierarchy (or
chronological order) of individual cells sampled in the
same conditions (temporal or spatial). For instance, due to
the destructive nature of RNA-seq measurements, time-
series analysis is approximated by repeated sampling at
intervals, introducing new confounding factors tied to the
biological specificities of each cell sampled, as well as
the risk of “pollution” by unrelated cell lines and difficul-
ties in identifying multiple sub-differentiation branches.
Analysing the similarities between cells’ expression pro-
files seems the key to inferring the true structure of the
cell population but is made especially complex by the very
high dimensionality of gene expression measurements.
When cell populations can be assumed to belong to a

temporal continuum, the standard approach is to assign
each cell a biological “pseudotime” along which they
can be ordered. In the absence of known subsets of
marker genes [5], the vast majority of existing meth-
ods for pseudotime estimation crucially rely on classical
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dimension-reduction techniques to produce an embed-
ding where pairwise cell distances can be more easily
computed [6]: Independent Component Analysis (ICA)
[7], Principal Component Analysis (PCA) [8, 9] or Multi-
dimensional Scaling (MDS) [10].
Such dimension-reduction methods can be applied with

no knowledge of the underlying structure of the data.
But this versatility comes at the cost of clarity in the
embedding: it is difficult, often impossible, to find a plau-
sible biological representation of the lower-dimensional
components obtained [11]. Furthermore, the aggressive
pre-treatment thresholding commonly required (reducing
the initial input to a few hundred high-variance genes)
runs the risk of over-simplifying the model by discarding
low-variance genes that may play a role in some aspects of
the process studied. In the case of methods like ICA (used
by Monocle), the assumption of statistical independence
between components is highly questionable: due to the
heavy overlap between regulatory pathways, gene expres-
sion levels would presumably show correlation between
different stages of a cell process. While these approaches
can typically give good results on straightforward cell dif-
ferentiation along a single path (where a main component
representing time is sufficient to separate and order the
cells), they show their limits when multiple lineages are
mixed together. Not only can they fail to recognise the
heterogeneity of differentiating subtypes, but they also
cannot easily assign any biological interpretation to the
model used.
By contrast, our proposed method uses a Bayesian

model better adapted to knownmodels of gene regulation,
and can produce an embedding that uses a larger number
of input features without such stringent thresholding step:
When considering a number of single-cell expression

measurements taken over time (e.g during cell differen-
tiation) or space (e.g. across tissues), we expect specific
metabolic pathways, and the genes that compose them, to
be activated according to the current biological state of
the cell sampled. We can therefore hypothesise the exis-
tence of groups of genes, and their respective regulatory
subnetworks, that broadly characterise each of the steps in
the cellular process studied. Because of the nature of reg-
ulatory networks, such groups could potentially involve
hundreds or even thousands of genes (albeit at differ-
ing levels of importance), with a lot of potential overlap
between groups.
To identify and utilise this group structure, our sug-

gested method adapts a new statistical approach, bor-
rowed from natural language processing, known as Latent
Dirichlet Allocation (LDA; [12]). LDA assumes the exis-
tence of a number of underlying “topics” that contribute,
as a mixture, to explain each cell’s transcriptional activ-
ity. By comparing the different per-cell topic histograms,
we can evaluate their similarity and infer complex

hierarchical structures. By looking at the topics them-
selves, we can obtain useful biological insights on the gene
sets characterising the different stages of that hierarchy
(see Implementation).
Much like other methods, an important step in our

approach is the construction of a visual representation
of the cell population based on this lower-dimensional
model. To better help this visualisation, we introduced
“backbone trees”: a new type of tree structure specifically
designed to easily visualise cells along complex differentia-
tion paths (see Implementation). In contrast with existing
methods, however, we are able to analyse the latent groups
of genes, called “topics” in the LDA model, that are used
to model the cell population. An overview of these top-
ics can directly be obtained as a list of genes ranked by
their probability in each per-topic distribution, making it
easy to verify if certain genes are particularly attached to
a stage. For a more in-depth analysis, we use gene ontol-
ogy (GO) terms [13]: statistical testing allows us to select
gene ontology terms that are enriched for a topic. Looking
at these terms, as a list or as a subgraph of the overall GO
graph, gives a quick overview of the cellular components,
biological processes and molecular functions associated
with each topic and provide a helpful narrative for the
results obtained.

Implementation
Using latent Dirichlet allocation
Latent Dirichlet Allocation (LDA) is a Bayesian mixture
model, initially developed for the analysis of text docu-
ments, that allows sets of observations to be explained by
unobserved groups. In text analysis, the model assumes
that each document is a mixture of topics (represented as
a probability distribution with a Dirichlet prior) and each
word is the result of one of the document’s topic.
In the context of single-cell data analysis, documents

become cells and discretised gene expression levels
replace word frequencies. The fitted LDA model for our
data is therefore composed of a set of topic distributions
for each cell, and per-topic gene distributions. Per-cell
topic histograms can then be used as a low-dimensional
embedding to evaluate cell similarity and infer hierarchi-
cal relationship, while analysis of the topics themselves
can provide useful biological insights on the sets of genes
driving the different stages of the process studied.
GivenM cells, V expressed genes and a choice of K top-

ics, the model is therefore made up of two sets of Dirichlet
distributions:

φk ∼ DirichletV (β), k = 1 . . .K
θd ∼ DirichletK (α), d = 1 . . .M

where α and β are vectors of length K and V representing
the prior weights of per-cell topics and per-topic genes,
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respectively. The use of smaller values of α and β makes
it possible to control the sparsity of the model (i.e. the
number of topics per cell and number of genes per topic).
The parameters to the posterior distributions that make

the LDA model are learnt from the data (a matrix of
gene expression levels for each cell) using approximate
inference techniques [14]. Initially solved with variational
inference [12], this problem is now more efficiently tack-
led using Gibbs Sampling (including the LDA implemen-
tation used by cellTree): a type of Markov Chain Monte
Carlo algorithm that converges iteratively toward a sta-
tionary distribution that satisfyingly approximates the tar-
get joint distribution. In the particular case of LDA, the
implementation of Gibbs Sampling makes use of some of
the features of the model to greatly reduce the size of
the joint distribution that must be evaluated, in a method
called Collapsed Gibbs Sampling.
For an in-depth explanation of the mathematics behind

the general LDA model, we recommend consulting David
Blei’s original paper [12] along with more recent work on
LDA inference methods [15, 16].
Among the many advantages of LDA as a dimen-

sion reduction method, its ability to handle very large-
dimensional data and control model sparsity (through the
priors of the Dirichlet distributions)make it easy to handle
unknown data with relatively little pre-treatment. Gen-
erally, it is sufficient to log-transform expression values
and removes genes with low standard-deviation, without
more advanced method of gene set selection (these pre-
treatments are done automatically by the default cellTree
pipeline).

Choosing number of topics
The main parameter to the LDA fitting procedure is the
desired number of topics: K (best values for other hyper-
parameters, such as α and β are automatically picked by
the different fitting methods). As often with such statis-
tical methods, a large number of topics (and therefore a
more complex statistical model) can lead to overfitting,
and it is therefore preferable to use the smallest possible
number that provides a good explanation of the data. It
must be noted, however, that while very large number of
topics (leading to a very dense statistical model) would
likely adversely affect performances, the population struc-
ture inferred by cellTree is relatively resistant to small
variations in the number of topics used.
Because of the loose significance of the concept of ‘top-

ics’ in the context of gene expression in a cell, it is difficult
to reliably pick an exact number, based on biological
knowledge alone. The standard method is to use cross-
validation and likelihoodmaximisation, however the com-
putation time for such an approach can be prohibitive on
large data sets. A more time-efficient approach was sug-
gested by Matthew Taddy [16], that uses model selection

through joint Maximum-a-Posteriori (MAP) estimation
and iteratively fits models of increasing complexity (using
the previous fit’s residuals as a basis for the next one) to
exhaustively look at a large range of topic numbers in a
relatively small amount of time.
It is nonetheless possible to evaluate the sparsity of a

fitted model associated to a chosen number of topics,
by examining the gene ontology terms enriched for each
topic (see Implementation): a lot of redundancy between
enriched sets is a good indicator that the model could be
made sparser.

Extracting hierarchical structures
Extracting a hierarchical structure of the cell population
from the lower-dimensional model follows the same gen-
eral idea as other methods that rely on PCA or ICA for
dimensionality reduction: by first computing a matrix of
pairwise distance. We use the chi-square distance [17]
to compare the topic histograms assigned to two cells x
and y:

χ(x, y) =
√√√√ ∑

k=1...K

(xk − yk)2
xk + yk

This distance matrix obtained can be used with meth-
ods such as hierarchical clustering, or with various tree-
building algorithms, to identify the underlying tree struc-
ture of the cells.
In the general case, the cell population is measured in

batches of samples obtained in similar conditions (e.g.
at specific time-points) that spread along a continuum
between the different stages. One natural way to visualise
such a structure is using a minimum spanning tree (MST).
Although many efficient algorithms exist to produce a

minimum spanning tree from a distance metric, rooting
such a tree is non-trivial and different choices for the
root node can lead to very different structures. In some
cases, sample labels can be used to identify the group of
cells where the root should logically be (e.g. time 0 in
a timeseries experiment). In that case, cellTree can use
this information to pick the most central cell in the initial
group using one of two main approaches:

• By first identifying the longest shortest path in the
MST (a path whose length is the diameter of the tree)
and picking the correct end, based on knowledge of
the starting group. This approach would be
particularly indicated if the dataset is known to
represent a linear continuum of cells (with no
branching).

• In cases where branching in the cell population is
expected, it may be preferable to pick one of the
starting group cells, based on the structure of the
group, i.e. pick the cell that is most central (in terms
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of average squared chi-square distances) to the rest of
the group.

If no ordering of the groups can be inferred from exper-
imental labelling of the samples, cellTree first attempts to
identify the starting group with the lowest average intra-
group distance, based on the biological assumption that
intra-group variance would increase as the experiment
progresses. Not only is this variance hypothesis confirmed
in labelled datasets such as Trapnell et al.’s [7], but also
in studies of embryonic cells presented here, where cell-
Tree correctly identified initial stages of development with
no further biological input past gene expression and cell
grouping (see Results).
However, theMST approach relies to some extent on the

assumption that cell distances are uniformly distributed,
whereas in fact, we can expect cells inside a batch to have
much lower variance than across batches.
The “ideal” structure of a series of cell observations in

a differentiation experiment would look like a single path
connecting all cells or, in the case of subtype differenti-
ation, a tree with a very small number of branches (one
terminal for each differentiated sub-type). Because the
samples are in fact physically different, rather than the
evolution of a single cell, we must expect small varia-
tions around such a theorised continuum. Our suggested
approach is to identify cells that are most representative
(at the gene expression level) of the biological contin-
uum: a “backbone”, such that all remaining cells in the
experiments are similar enough to a representative in that
backbone. Hence the following definition:
Given a set of vertices V and a pairwise-distance func-

tion d : V ×V → R+, we call backbone tree a tree T, such
that:

• T is a tree with vertices V and edges E.
• Its backbone B is a subtree of T with vertices VB ⊆ V

and edges EB ⊆ E.
• All vertices of T in V \ VB (the ‘vertebrae’) are less

than distance δ to at least one vertex in the backbone
tree B : ∀v ∈ V \ VB, ∃vB ∈ VB such that d(v, vb) ≤ δ.

• All ‘vertebrae’ vertices of T (v ∈ V \ VB) are
connected by a single edge to the closest vertex in the
backbone tree: ∀v ∈ V \ VB,∀v′ ∈ V : (v, v′) ∈
E ⇐⇒ v′ = argminv′∈VBd(v, v′).

The choice of the parameter δ (the backbone tree
“width”) of course greatly affects the resulting backbone
tree optimisation, and may require adjustment depending
on expectations over the structure of the cells (e.g. as a sin-
gle linear path, or a tree with multiple branches). In order
to find a good estimate for δ, we look at the probability
density function of pairwise distances (using a kernel den-
sity estimation), and select the first mode of the distance
distribution if it exists.

Additionally, it is generally desirable to relax the last
condition of the definition by allowing a proportions of
outliers that are at distance > δ from any vertices in VB.
Using the above definition, we can define an optimal

backbone tree, T∗, as a backbone tree that minimises the
sum of weighted edges in its backbone subtree:

T∗ = argminT
∑
e∈EB

d(e)

Such an optimal backbone tree aims to give a clear
hierarchical representation of the cells relationship: the
objective function puts pressure on finding a (small) group
of prominent cells (the backbone) that are good represen-
tatives of the major stages in the cell’s biological process
(over time or space), while redundant cells that closely
resemble a chosen representative are ignored.
Finding an optimal solution to this problem is unfortu-

nately NP-Complete (shown, for example, by reduction to
the Vertex Cover problem or rectilinear Steiner tree prob-
lem [18]), but we propose a fast heuristic relying on the
MST that produces a close approximation (see Additional
file 1 for algorithm in pseudocode).

Analysing topics with gene ontology terms enrichment
Because of their Bayesianmixture nature, ‘topics’ obtained
through LDA fitting do not always match clear and coher-
ent groupings (biological or otherwise), subject to the
sparsity of the model and complexity of the input data. In
particular, less sparse models (with higher number of top-
ics) may lead to better cell distance computation, but be
harder to interpret.
In most cases, however, enrichment analysis of per-

topic gene distribution can help characterise a given topic
and its role in the cell’s process, and even provide poten-
tial biological insight, by outlining the general processes
most active in specific sections of the cell tree.
Topic analysis is conducted using GeneOntologies: test-

ing for terms that are significantly enriched within a topic.
First, cellTree orders genes for each topic by their per-
topic probability, then applies a Kolmogorov-Smirnov test
to compute a p-value for each of the GO terms associated
with the ordering, using the weight algorithm presented
in [19] to account for graph relationship between terms.
Bonferonni-corrected significant p-values can then be
used a tool for identifying the biological meaning of each
topic.
Because of the statistical nature of LDA models, a fair

amount of overlap exists between the genes assigned to
each topic (in particular for genes at the lower end of the
probability distribution). In order to identify the biological
specificity of each topic, it is therefore helpful to study GO
terms that are either unique to a given topic or appear in a
minority of topics (cellTree presents both exhaustive and
topic-specific lists of GO term for each topic).
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Results
A major obstacle in obtaining quantitative comparison
metrics for single-cell ordering methods, is the difficult
to establish a gold standard for cell ordering annotation:
the large number of misattributed cells in standard time-
series experiments is one of the driving factor behind the
need for such tools in the first place. To address this issue,
we used a set of single-cell measurement taken during the
embryonic development ofMus musculus [20]: the ability
to assess development stages visually in such instance pro-
vides some level of guarantee on chronological labelling.
In order to further evaluate the performance of cellTree

and demonstrate its ability to infer biologically-motivated
dynamic models of cell populations out of gene expression
data, we applied it to a wide range of publicly available
single-cell RNA-seq datasets, showing our results along-
side existing tools when possible.
Although all results are presented here using visual

backbone tree plots, a more detailed tabular format, with
full lists of ordered cells for each branch, is available as
Additional file 2.

Comparison to other methods
For comparison, we selected two of the most promi-
nent tools currently publicly available to treat high-
dimensional single-cell data, each representative of a dif-
ferent dimension-reduction approach:Monocle [7], which
uses ICA, and TSCAN [21], which relies on PCA.
Other single-cell data analysis tools which focus exclu-

sively on low-dimensional mass cytometry data (such as
Wanderlust [22]) fell outside the scope of our method
and were not considered. The Sincell package [6], which
presents a general framework to treat single-cell data, but
mainly relies on ICA or PCA for dimension reduction, was
also excluded from this comparison.
To provide a baseline comparison, we ran a naive

approach using a Travelling Salesman Problem (TSP)
algorithm to compute a cell ordering that approximatively
minimises the total euclidean distances between each vec-
tor of gene expressions. Once a tour has been found, the
starting group, provided as a parameter, is used to shift the
tour as needed, and the ordering is reversed if necessary,
much in the same way that Monocle and TSCAN function
(cellTree does not require such manual input and tries to
infer them from the data itself ).
Results were measured in terms of accuracy over all

pairwise combination of cells between the candidate
ordering and perfect ordering and are shown in Table 1.
From a data set of 90 cells with 20,214 gene levels each,
all methods start with a coarse thresholding (remov-
ing genes with low levels of expression), resulting in a
smaller effective number of genes for use by the statistical
model (“Input size after thresholding”). For the TSP-based
approach, results were averaged over 100 iterations.

Table 1 Comparison of single-cell gene expression ordering
tools, using mouse embryo data

Tool Naive Monocle TSCAN cellTree

Method TSP ICA PCA LDA

Input size after thresholding 20,214 10,452 225 12,903

Accuracy in % 90.6 94.8 95.3 96.5

CPU time in seconds 0.015 5308.6 0.08 18.5

As can be seen, not only does cellTree outperform all
other methods on this task, but it is many orders of mag-
nitude faster than Monocle, which requires upward of an
hour to proceed with its dimension-reduction step: this
step could be greatly sped-up by providing a set of known
marker genes, but it is assumed here that an experimen-
talist might not have such knowledge about the data. It
is also worth noticing that, while TSCAN performs data-
reductionmuch faster, it starts with amuch-reduced input
of 225 genes (obtained by thresholding the initial set),
before proceeding with PCA. This drastic thresholding
may result in a loss of information, especially in genes that
are only active in a small subset of the cells.
Although matters of visualisation techniques are essen-

tially subjective and difficult to evaluate quantatively, we
surmise that our suggested visualisation as a backbone
tree provides the clearest overview of the cell hierarchy.
Importantly, as illustrated in the next sections, cell-

Tree’s superior accuracy is not obtained at the expense
of model legibility: unlike other methods, cellTree’s mod-
els can be readily analysed to produce useful biological
insights about the process studied.

Myoblast differentiation
Skeletal myoblasts are known to undergo a
well-established sequence of morphological and tran-
scriptional changes during differentiation. In their
introductory paper for ICA-based single-cell analysis tool
Monocle, Trapnell et al. [7] studied the trajectory of 271
single-cell RNA-seq measurements of human myoblasts
taken 0, 24, 48 and 72 hours into the differentiating
process.
We ran cellTree on the provided dataset, with no further

pre-treatment, other than log-normalising the expression
values and removing genes with a standard deviation
below 0.5 (selecting about 13,500 expression values per
cell out of the initial 47,192) and using the 5 topic-model
automatically selected by the LDA inference method
(see Implementation for a discussion of model selection
techniques).
The backbone tree generated from the results shows a

clear two-phase trajectory (see Fig. 1), with a small branch
of non-differentiating cells. The ordering of cells along the
tree also follows the expected chronological order from
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Fig. 1Myoblast Backbone Tree. Backbone tree obtained from the dataset of differentiating myoblasts with cellTree. Larger nodes indicate backbone
cells (selected representatives), whereas smaller nodes represent cells that only show slight variations from the backbone cell they are attached to.
Cell nodes have been coloured according to a their sampling time (in hours from the start of the differentiation process) and b their distribution
over topics

time 0 to 72, although we can observe the expanding
variance at later stages, previously noted by the authors of
the Sincell package in their own analysis of this data [6].
The results obtained are qualitatively similar to that of

Monocle (see comparison in Fig. 2), although it could be
argued that the visualisation as backbone tree used by cell-
Tree is easier to interpret than the type of MST used by
Monocle. In stark contrast to other methods, however, not
only does cellTree not require any pre-existing knowledge
about the cell population (such as the number of expected
branches or the position of the tree root), it can in fact
attach biological information to the different parts of the
cell tree through analysis of the gene expression data.

As can be observed on the version of the tree annotated
with topic distributions, undifferentiated cells are domi-
nated by topic 1. A look at GO terms uniquely enriched
for that topic (see Tables 2 and 3), reveals a large number
of terms indicative of highly mitotic conditions, such
as cell division (BP:GO:0051301), mitotic nuclear divi-
sion (BP:GO:0007067), transcription-coupled excision
repair (BP:GO:0006283) and GTPase mediated signal
transduction (BP:GO:0007264). Within the first 24 h
(topic 2), there is a shift of the myocyte differentiation
to more transcriptional processes (CC:GO:005665).
At 48 h (topic 4), the myocytes undergo intracellu-
lar protein transport (BP:GO:006886). At the 72 h

a b c

Fig. 2Myoblast MST. Comparison of minimum spanning trees obtained from the dataset of differentiating myoblasts by cellTree (a) and Monocle
(b). Cell nodes have been coloured according to their sampling time (in hours). c shows the final tree structure obtained directly by Monocle
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Table 2 List of biological process go terms significantly enriched
and uniquely appearing in each topic for myoblast differentiation

GO.ID Term p-Value

Topic 1

GO:0051301 cell division 4.7e-12

GO:0007067 mitotic nuclear division 1.4e-10

GO:0019083 viral transcription 1.7e-10

GO:0006283 transcription-coupled
nucleotide-excision repair

5.7e-10

GO:0007264 small GTPase mediated signal
transduction

1.7e-09

GO:0007077 mitotic nuclear envelop
disassembly

7.8e-09

GO:0008380 RNA splicing 1.0e-08

GO:0016925 protein SUMOylation 1.1e-08

G O:0000086 G2/M transition of mitotic
cell cycle

2.7e-08

GO:0007059 chromosome segregation 4.5e-08

GO:0010827 regulation of glucose transport 4.6e-08

GO:0000082 G1/S transition of mitotic cell
cycle

6.0e-08

GO:0006369 termination of RNA polymerase
II transcription

1.1e-07

GO:0042769 DNA damage response,
detection of DNA damage

1.3e-07

GO:1900034 regulation of cellular response
to heat

1.4e-07

GO:0006271 DNA strand elongation
involved in DNA replication

1.6e-06

GO:0006626 protein targeting to
mitochondrion

1.7e-06

Topic 2

GO:0006367 transcription initiation from
RNA polymerase II promoter

9.9e-08

GO:0006376 mRNA splice site selection 1.1e-06

Topic 3

GO:0030049 muscle filament sliding 2.5e-08

GO:0017148 negative regulation of
translation

1.1e-06

GO:0000186 activation of MAPKK activity 1.8e-06

Topic 4

GO:0006886 intracellular protein transport 9.6e-07

Topic 5

GO:0050434 positive regulation of viral
transcription

3.0e-07

GO:0006370 7-methylguanosine mRNA
capping

4.3e-07

GO:0044267 cellular protein metabolic
process

4.7e-07

GO:0006457 protein folding 1.6e-06

Table 3 List of cellular components go terms significantly
enriched and uniquely appearing in each topic for myoblast
differentiation

GO.ID Term p-Value

Topic 1

GO:0000777 condensed chromosome kinetochore 1.1e-10

GO:0005813 centrosome 1.4e-06

GO:0000922 spindle pole 2.2e-06

GO:0005876 spindle microtubule 3.4e-06

GO:0005689 U12-type spliceosomal complex 4.8e-06

GO:0005688 U6 snRNP 5.7e-06

GO:0000940 condensed chromosome outer kinetochore 9.5e-06

GO:0005759 mitochondrial matrix 1.1e-05

GO:0000784 nuclear chromosome, telomeric region 1.2e-05

GO:0046540 U4/U6 x U5 tri-snRNP complex 1.3e-05

Topic 2

GO:0005665 DNA-directed RNA polymerase II, core
complex

5.1e-06

Topic 3

GO:0001725 stress fiber 1.7e-07

GO:0030018 Z disc 3.1e-07

GO:0098800 inner mitochondrial membrane protein
complex

1.3e-06

GO:0000932 cytoplasmic mRNA processing body 2.9e-06

Topic 4

GO:0005604 basement membrane 1.0e-05

Topic 5

GO:0005789 endoplasmic reticulum membrane 2.4e-06

GO:0005885 Arp2/3 protein complex 1.3e-05

time-point (topic 3) the myocytes undergo protein
translational processes, while developing structural com-
ponent of Z-disks (CC:GO:0030018) and stress fibers
(CC:GO:001725) allowing filament sliding (BP:GO:
0030049) and MAPKK activity (BP:GO:0000186) for cel-
lular fusion in high-mitogenic conditions. Furthermore,
although not unique to one topic (see extended table
of significantly enriched GO terms in Additional files 3
and 4), Wnt signalling pathway (BP:GO:0090263), which
regulates crucial aspects of cell fate determination [23],
appears significantly enriched for topic 3 (p = 5.8e-10)
and 5 (p = 2.5e-11).
The branch of non-differentiating cells is dominated

by topic 5, which shows strong enrichment for cellu-
lar protein metabolic process (BP:GO:0044267) and 7-me
mRNA capping (BP:GO:0006370), but also viral transcrip-
tional regulation (BP:GO:0050434), which may suggest
a virus coevolution in the myocytes [24, 25]. This non-
differentiated set shows expression of the actin-related



duVerle et al. BMC Bioinformatics  (2016) 17:363 Page 8 of 17

Arp2/3 protein complex (CC:GO:0005885), suggesting
the potential to further mature to either skeletal or car-
diac myocyte. It also regulates the endoplasmic reticulum
and plasma membrane junction with proteins such as
STIM [EMBL:ENSMUSG00000027498], to control sig-
nalling and metabolic processes for the proper regulation
of calcium within the striated muscle [25].
Significantly enriched GO terms for all topics can be

conveniently visualised as a subgraph of the directed
acyclic graph (DAG) for Cellular Component GO terms
(see Fig. 3).

Without the need for further manual analysis or expert
input, cellTree was able to infer and label major stages
of the myoblast differentiation process, along with the
biological specificities of the set of undifferentiated cells,
in line with existing biological knowledge on myoblast
differentiation [7].

Study of embryonic development
In order to highlight the robustness of our approach on
highly heterogeneous cell population, we analysed two
data sets following embryonic cells at different stages

Fig. 3 Cellular Component GO Terms for Myoblasts. Subgraph of the Cellular Component GO terms DAG showing terms significantly enriched for
each topic. Darker colours indicated lower p-values and terms shared between topics use a combination of the topics colours (terms that are
enriched in more than half the topics have been removed)
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of differentiation: a study profiling lncRNAs of human-
induced embryonic stem cells (hESC) [5] and a study of
autosomal monoallelic genes from oocyte to blastocytes
in Mus musculus [20]. We show that cellTree facilitates
the identification of physiologically meaningful subpopu-
lations that clearly define the continuum along the process
of differentiation.
Both datasets were analysed with four topics, privileg-

ing a sparse model with clearly delineated topics, over a
more complex model with more topics, which may better
explain the cells relationship but present more functional
overlap between topics (note that because the two mod-
els were fitted and analysed independently, there is no
correspondence between topic numbers in either model).
In both cases, we observe that the differentiation contin-

uum was overall consistent with general biological knowl-
edge and published analysis of the data: the trees (see
Fig. 4) show a sequential ordering of cellular stages by
their progress through embryonic cell development in a
linear fashion (a full tabular list of the cells ordered by
cellTree can be found in Additional file 5).
For the hESC data [5], the authors noted that stage-

specific lncRNA expression patterns emphasise the criti-
cal role it plays in development. In other words, maternal-
inherited lncRNA dominates early stages, before decreas-
ing as the embryo develops, which suggests the critical
role hESC-specific lncRNAs play in pluripotency mainte-
nance till the morulae stage [26]. In agreement with this
analysis [5], our model shows oocytes and zygotes clus-
tered together in the same development stage (dominated
by topic 3), while X2, X4, and X8 cells are clustered under
topic 4.
By looking at the GO analysis for the different top-

ics using terms for Biological Processes (BP, see Tables 4
and 5 and Additional file 6 for extended table), Cellu-
lar Components (CC, see Table 6 and Additional file 7)
and Molecular Function (MF, see Tables 7 and 8) and
Additional file 8), we can identify with very good accuracy
the successive stages of differentiation at a whole-genome
scale:
Oocytes progress into stages of differentiated cell types

in a process that requires cellular components to regu-
late gene expression patterns appropriately [27]. GO terms
for topic 3, indeed show mitosis (BP:GO:0000281) as its
dominating biological process.
Looking directly at the top genes in the distribu-

tion for topic 3 (see Additional file 9) also high-
lights oocytes’ unique ability to remodel the chromatin
to closely coordinate the cellular and chromosomal
events of oogenesis: ACTB [EMBL:ENSG00000075624],
PTMA [EMBL:ENSG00000187514], RPS8 [EMBL:ENSG
00000142937], RPL19 [EMBL:ENSG00000108298], RPS7
[EMBL:ENSG00000171863], SPL41 [EMBL:ENST00000
552314] and RPL23 [EMBL:ENSG00000125691] are all

involved in several transcription regulatory factors that
are regulators of ribosome biogenesis and protein
synthesis.
As development progresses to the morulae stage

(topic 4), we see a strong enrichment for nuclear
ribonucleoproteins (CC:GO:0005732) such as the MLL1
complex (CC:GO:0071339) which activate spliceosomes
(CC:GO:0005689) [28].
In agreement with the published analysis, cellTree prop-

erly segregates the blastocyst 1 trophectoderm layer (TE,
in the late blastocyst branch) from the inner cell mass
(ICM, in the hESC passage branch), emphasising the crit-
ical differentiation stage of the morulae 1 embryo.
Looking at the topic distributions around the point of

separation between TE and ICM, we see the contribu-
tion of topic 1: initiating self-renewal and pluripotency
in blastocysts 1 by developing the endogenous extra-
cellular matrix [29]. Due to the intensive restructuring,
the critical demand that drives mitochondrial activ-
ity is met by ATP synthases (GO:0045263). FBXO5
[EMBL:ENSG00000112029], DIDO1 [EMBL:ENSG00000
101191], PSRC1 [EMBL:ENSG00000134222], PPP2R3C
[EMBL:ENSG00000092020] are responsible for the
nucleosome structure of the chromosomal spindles
(GO:0005819) to remodel the nucleosome. STAU1
transports and localizes mRNA to different subcellular
compartments [30, 31], while RPL28 [EMBL:ENSMODG
00000000275] is required for the regulation of transcrip-
tion within the cell body (CC:GO:0044297) to regulate
stem cell pluripotency and neoplastic progression
[32].
In agreement with the published analysis, passage 0

hESC cells are closest to the blastocysts, emphasising the
gene expression landscape of hESC derivation, defined by
the different stages of blastocyte 3 epiblasts (EPI) within
the outgrowth of hESCs [33], highlighting the continuum
of hESC development in contrast to simple hierarchical
clustering. Although passage 0 and 10 of hESC outgrowth
are in the same branch of the tree, as could be expected
since only 4.6% (861/18383) of the genes show differential
expression between the two outgrowth passages, cell-
Tree correctly identifies the two groups where the initial
publication was unable to obtain that level of clustering
[34].
The initial publication’s authors report the possibility

of misclassification within the inner mass portion (ICM)
of the blastocysts, which can result in some late blasto-
cyte stage cells labeled as TE cells, which accounts for
the lack of uniformity within these groups in the struc-
ture inferred by cellTree. The similarity between the ICM
lineages of PE and EPI, as indicated by blastocytes 2 and
3 respectively, can be observed within the tree struc-
ture. Throughout the development process, MTRNR2L2,
GAPDH, MTRNR2L9, and PTMA are all neuroprotective
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Fig. 4 Embryonic cell differentiation. Backbone trees obtained by cellTree for hESC (a and b) and mouse embryo cell differentiation (c and d). Both
trees are shown annotated with cell type (a and c) and topic distributions (b and d)
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Table 4 List of biological process GO terms significantly enriched
and uniquely appearing in each topic for hESC differentiation

GO.ID Term p-Value

Topic 1

GO:0042769 DNA damage response, detection of DNA 3.5e-08
damage

GO:0090263 positive regulation of canonical Wnt 3.0e-07
signaling pathway

GO:0045814 negative regulation of gene expression, 4.1e-07
epigenetic

GO:0051084 de novo posttranslational protein folding 1.3e-06

Topic 2

GO:1900034 regulation of cellular response to heat 7.0e-08

GO:0051301 cell division 1.3e-07

GO:0044743 intracellular protein transmembrane import 2.1e-07

GO:0007077 mitotic nuclear envelope disassembly 7.2e-07

GO:1990542 mitochondrial transmembrane transport 9.7e-07

Topic 3

GO:0000281 mitotic cytokinesis 1.3e-07

Topic 4

GO:0010501 RNA secondary structure unwinding 1.5e-09

GO:0045596 negative regulation of cell differentiation 9.5e-09

GO:0048387 negative regulation of retinoic acid receptor 1.9e-08
signaling pathway

GO:0043066 negative regulation of apoptotic process 1.4e-07

GO:0006368 transcription elongation from RNA 2.0e-07
polymerase II promoter

proteins that stabilise the cell during its reconstructive
development.
The trees obtained for mouse embryonic cell develop-

ment [20] present very similar topic enrichment:
The maternal-zygotic transition dominates at the

2-cell stage (topic 3), indicated by the initiation of
the mitotic processes (BP:GO:0006355) that leads to
the gradual of maternal DNA. Cell cycle processes
(BP:GO:0007049) include ubiquitinone-specific pro-
teases (MF:GO:0004843) and the mediator complex
(CC:GO:0016592) and inhibit apoptotic processes [26]
for the maternal-zygotic transition.
In the mid and late 2-cell stage (topic 2), the decline

of high-mitogen conditions is coupled with an increase
in ribosome biogenesis (BP:GO:0042254) which mitigates
snoRNA assembly (MF:GO:0030515), and transcriptional
regulation of spliceosomes (CC:GO:0005689) and proteo-
somes (CC:GO:0005838).
Finally, topic 1 is mainly associated with the transla-

tion processes (BP:GO:0006412) and transport processes
(BP:GO:0015986) of the blastocytes, while the maturity of
fibroblast and liver cell controls (BXC) is clearly visible in
topic 4’s association to metabolic and catabolic processes,

Table 5 List of cellular components GO terms significantly
enriched and uniquely appearing in each topic for embryonic
mouse cell differentiation

GO.ID Term p-Value

Topic 1

GO:0033178 proton-transporting two-sector ATPase
complex, catalytic domain

7.8e-07

GO:0031597 cytosolic proteasome complex 2.0e-06

GO:0005680 anaphase-promoting complex 2.5e-06

GO:0008540 proteasome regulatory particle, base
subcomplex

3.7e-06

Topic 2

GO:0005736 DNA-directed RNA polymerase I complex 4.8e-07

GO:0005665 DNA-directed RNA polymerase II, core
complex

5.0e-07

GO:0005844 polysome 1.2e-06

GO:0005689 U12-type spliceosomal complex 1.8e-06

GO:0005838 proteasome regulatory particle 3.1e-06

GO:0008023 transcription elongation factor complex 8.1e-06

GO:0000346 transcription export complex 9.5e-06

GO:0015030 Cajal body 1.5e-05

Topic 3

GO:0005813 centrosome 4.1e-08

GO:0000932 cytoplasmic mRNA processing body 3.1e-06

GO:0016592 mediator complex 6.2e-06

Topic 4

GO:0072562 blood microparticle 7.4e-29

GO:0005783 endoplasmic reticulum 9.3e-27

GO:0005615 extracellular space 2.5e-25

GO:0005743 mitochondrial inner membrane 3.7e-22

GO:0005829 cytosol 2.2e-17

GO:0005759 mitochondrial matrix 2.0e-11

GO:0016021 integral component of membrane 3.2e-10

GO:0034364 high-density lipoprotein particle 3.7e-09

GO:0031012 extracellular matrix 4.1e-09

GO:0030176 integral component of endoplasmic
reticulum membrane

4.2e-09

GO:0005777 peroxisome 3.3e-08

GO:0005789 endoplasmic reticulum membrane 5.4e-08

GO:0005788 endoplasmic reticulum lumen 6.5e-08

GO:0034361 very-low-density lipoprotein particle 1.3e-07

GO:0005764 lysosome 1.4e-07

GO:0005791 rough endoplasmic reticulum 3.6e-07

GO:0005778 peroxisomal membrane 1.2e-06

GO:0005793 endoplasmic reticulum-Golgi intermediate
compartment

1.3e-06

GO:0070069 cytochrome complex 3.8e-06

GO:0009986 cell surface 5.1e-06

GO:0030867 rough endoplasmic reticulum membrane 8.9e-06

GO:0005782 peroxisomal matrix 9.8e-06

GO:0009897 external side of plasma membrane 1.0e-05

GO:0005790 smooth endoplasmic reticulum 1.1e-05

GO:0005765 lysosomal membrane 1.1e-05
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Table 6 List of cellular components GO terms significantly
enriched and uniquely appearing in each topic for hESC
differentiation

GO.ID Term p-Value

Topic 1

GO:0044297 cell body 2.7e-06

GO:0045263 proton-transporting ATP synthase complex,
coupling factor F(o)

4.2e-06

GO:0005819 spindle 1.3e-05

Topic 2

GO:0005789 endoplasmic reticulum membrane 7.6e-08

GO:0098796 membrane protein complex 3.6e-07

GO:0005746 mitochondrial respiratory chain 5.6e-07

GO:0000785 chromatin 5.5e-06

GO:0042645 mitochondrial nucleoid 1.2e-05

Topic 3

GO:0005813 centrosome 2.8e-06

Topic 4

GO:0005634 nucleus 3.9e-15

GO:0071339 MLL1 complex 4.5e-06

GO:0005689 U12-type spliceosomal complex 9.1e-06

GO:0005732 small nucleolar ribonucleoprotein complex 1.1e-05

such as xenobiotic metabolic process (BP:GO:0006805)
and glutathione metabolic process (BP:GO:0006749),
DNAmethylation patterns (MF:GO:000839) and receptor
ligand binding (MF:GO:0020037).
As we can see from this GO analysis of the gene mod-

els used, the sequential developmental process of the
cells is perfectly aligned with the topics found by cell-
Tree, and regions that are susceptible to perturbation
during embryo differentiation are highlighted by the topic
distributions.
Although focussing on terms uniquely enriched for each

topic is generally sufficient to link each of the model’s

Table 7 List of molecular function GO terms significantly
enriched and uniquely appearing in each topic for hESC
differentiation

GO.ID Term p-Value

Topic 1

GO:0004129 cytochrome-c oxidase activity 7.5e-06

Topic 2

GO:0008536 Ran GTPase binding 3.2e-06

Topic 4

GO:0003677 DNA binding 4.4e-09

GO:0030515 snoRNA binding 1.5e-07

GO:0004004 ATP-dependent RNA helicase activity 3.0e-07

GO:0042974 retinoic acid receptor binding 1.1e-06

GO:0004402 histone acetyltransferase activity 6.6e-06

GO:0043022 ribosome binding 6.9e-06

Table 8 List of biological process GO terms significantly enriched
and uniquely appearing in each topic for embryonic mouse cell
differentiation

GO.ID Term p-Value

Topic 1

GO:0032543 mitochondrial translation 2.2e-07

GO:0015031 protein transport 2.7e-07

GO:0015986 ATP synthesis coupled proton transport 1.8e-06

Topic 2

GO:0042254 ribosome biogenesis 7.1e-10

GO:0000462 maturation of SSU-rRNA from tricistronic
rRNA transcript (SSU-rRNA, 5.8S rRNA,
LSU-rRNA)

7.2e-10

GO:0042273 ribosomal large subunit biogenesis 4.1e-08

Topic 3

GO:0007049 cell cycle 1.6e-09

GO:0045893 positive regulation of transcription,
DNA-templated

1.5e-08

GO:0006355 regulation of transcription, DNA-templated 1.2e-07

GO:0000122 negative regulation of transcription from
RNA polymerase II promoter

3.2e-07

GO:0043161 proteasome-mediated ubiquitin-dependent
protein catabolic process

5.5e-07

GO:0000281 mitotic cytokinesis 1.5e-06

Topic 4

GO:0055114 oxidation-reduction process < 1e-30

GO:0006805 xenobiotic metabolic process 3.5e-13

GO:0042738 exogenous drug catabolic process 1.9e-12

GO:0006749 glutathione metabolic process 4.3e-12

GO:1901606 alpha-amino acid catabolic process 6.9e-10

GO:0046700 heterocycle catabolic process 9.8e-10

GO:0008203 cholesterol metabolic process 1.0e-09

GO:0019373 epoxygenase P450 pathway 7.6e-09

GO:0044270 cellular nitrogen compound catabolic
process

1.0e-08

GO:0006958 complement activation, classical pathway 1.2e-08

GO:0006641 triglyceride metabolic process 4.2e-08

GO:0045454 cell redox homeostasis 4.4e-08

GO:0019439 aromatic compound catabolic process 6.0e-08

GO:1901361 organic cyclic compound catabolic process 7.3e-08

GO:0030433 ER-associated ubiquitin-dependent protein
catabolic process

1.2e-07

GO:0006953 acute-phase response 1.4e-07

GO:0010951 negative regulation of endopeptidase
activity

2.7e-07

GO:0042493 response to drug 5.4e-07

GO:0006103 2-oxoglutarate metabolic process 5.8e-07

GO:0042537 benzene-containing compound metabolic
process

6.2e-07

GO:0010466 negative regulation of peptidase activity 9.0e-07

GO:0019748 secondary metabolic process 9.8e-07

GO:0006120 mitochondrial electron transport, NADH to
ubiquinone

1.0e-06

GO:0042744 hydrogen peroxide catabolic process 1.0e-06

GO:0009813 flavonoid biosynthetic process 1.4e-06

GO:0052696 flavonoid glucuronidation 1.4e-06

GO:0046688 response to copper ion 1.5e-06
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topic to a clearly delineated type of cellular or molecu-
lar activity, especially when the general subtype of cell
is already known, it is also possible to look at a more
comprehensive list of enriched terms that allow overlap
between topics to gain new biological insights (see table
of rare, but non-unique, significantly enriched GO terms
for hESC in Additional files 6, 7 and 8). There too, a good
overview of each topic’s role in the differentiation can be
obtained by looking at GO subgraphs (see Fig. 5).

Cortical cells
Although cellTree is typically best suited to handle cell
differentiation data over time, we also show that it can
reveal interesting insights about latent subtypes in hetero-
geneous cell populations.
Deciphering the cellular taxonomy of brain cells is still

a work in progress [35]. Neuronal diversity is supported
by functional complexity, as overlapping characteristics
of interneuron subtypes would otherwise be difficult to
explain, such as is the case with interneuron diversity
within the rostrocaudal axis inMus musculus [36].
We applied cellTree to single-cell RNA-seq measure-

ments of mouse cortical cells [37] to see if it could
help deciphering cells subtypes based on genomic profiles
alone.
The resulting backbone tree (see Fig. 6 and Additional

files 10 and 11 for full ranking of cells) overall shows a
structure in line with known subtype labels in the dataset
and enriched GO terms (see Tables 9, 10 and 11) deliver
biologically-coherent explanations for each topic.

The combined effect of topic 2’s decrease and topic
3’s increase matches the biological activity expected
in a progression from interneurons to pyramidal cells:
as interneurons differentiate into pyramidal neurons,
they move away from synaptic vesicle exocytosis
(BP:GO:0016079) to a more calcium-based and electrical
signalling through ATP hydrolysis (BP:GO:0015991) and
calmodulin regulation of neurites’ tips by syntaxin-1
(MF:GO:0017075), which binds to the plasma mem-
branes. This is aligned with studies showing that
interneurons and pyramidal cells are both derived from
progenitor neocortical cells [38, 39].
The increasing importance of topic 1 in the left

branch corresponds to the appearance of more prominent
structural features in myelinated neuronal cell types,
turning protuberances from the triangular shaped soma
of the pyramidal neurons [40] into the branching pro-
trusions of the oligodendrocytes [41, 42]: the excessive
myelin glycoprotein present in oligodendrocytes mem-
branes is reflected by the significant protein folding
(BP:GO:0006457) activity.
The other branch comprised mostly of non-myelinated

glial cells, such as microglia and astrocytes, is domi-
nated by topic 4. Defining functional features of topic 4,
such as oxidation reduction processes (BP:GO:0055114)
and transport (BP:GO:0006810) in the blood vasculature
appropriately outline the structural closeness of epider-
mal mural cells and microglia [29,30], along with more
specific roles such as the participation in metal ion
homeostasis (BP:GO:0046916) of endothelial mural cells

Fig. 5 Enriched GO terms subgraph for hESC. Subgraph of the GO DAG showing terms significantly enriched for each topic in hESC differentiation: a
using BP GO terms. b using CC GO terms
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Fig. 6Mouse cortical cell subtypes. Backbone trees obtained by cellTree for mouse cortical cell subtypes annotated with cell subtype (a) and topic
distributions (b)

and negative regulation of angiogenesis (BP:GO:0016525)
usually observed in epithelial mural cells [43].
Astrocytes are clustered by cellTree at the end of the

differentiation spectrum in the non-myelinated branch,
in line with the similarities in vasculature linkage func-
tionality between these neuronal subtypes. Topic 6 accu-
rately marks the stimulated proliferation at the astro-
cyte stage [44] with the poly(A) RNA binding process
(BP:GO:0044822).
Through gene expression values alone, cellTree not only

automatically identified myelination as one of the major
differentiating characteristic within glial cells: splitting
oligodendrocytes and non-myelinated glial cells into two
separate branches, it also identified many of the major
structural and functional features linking different cortical
cell subtypes.

Conclusions
With cellTree, we introduced an entirely novel approach
to single-cell gene expression analysis that not only can
infer complex underlying hierarchical structures in cell
populations from expression data alone, but also provide
biological backing for the model it creates. The represen-
tation of cells as statistical mixture of topics allows for
the capture of subtle evolving characteristics between cells
along a continuum, and deals well with heterogeneous
populations.
Although rooted in a strong Bayesian statistical

framework, the package is designed to be useable by
experimentalists with only minimal bioinformatics skills
and absolutely no knowledge in machine learning. Using
data meta-analysis, the package can provide reasonable
default values for most of the parameters used by the
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Table 9 List of molecular function GO terms significantly
enriched and uniquely appearing in each topic for embryonic
mouse cell differentiation

GO.ID Term p-Value

Topic 2

GO:0001054 RNA polymerase I activity 2.5e-07

GO:0043022 ribosome binding 4.8e-06

GO:0030515 snoRNA binding 5.0e-06

GO:0005524 ATP binding 6.1e-06

Topic 3

GO:0003713 transcription coactivator activity 7.6e-07

GO:0003730 mRNA 3’-UTR binding 4.6e-06

GO:0004843 ubiquitin-specific protease activity 7.7e-06

Topic 4

GO:0020037 heme binding 2.2e-19

O:0008395 steroid hydroxylase activity 5.9e-18

O:0019825 oxygen binding 6.5e-14

O:0005506 iron ion binding 9.2e-13

O:0004364 glutathione transferase activity 1.5e-12

O:0008392 arachidonic acid epoxygenase activity 1.9e-12

O:0005102 receptor binding 4.2e-11

GO:0004867 serine-type endopeptidase inhibitor activity 1.1e-10

GO:0009055 electron carrier activity 1.3e-10

GO:0070330 aromatase activity 2.6e-10

GO:0042803 protein homodimerization activity 7.4e-10

GO:0008201 heparin binding 1.5e-09

GO:0002020 protease binding 2.5e-08

GO:0051087 chaperone binding 6.0e-07

GO:0003988 acetyl-CoA C-acyltransferase activity 8.4e-07

GO:0016836 hydro-lyase activity 1.0e-06

GO:0004602 glutathione peroxidase activity 1.0e-06

GO:0004601 peroxidase activity 1.3e-06

GO:0030170 pyridoxal phosphate binding 1.6e-06

GO:0004029 aldehyde dehydrogenase (NAD) activity 2.4e-06

GO:0001848 complement binding 3.1e-06

GO:0016616 oxidoreductase activity, acting on the CH-OH
group of donors, NAD or NADP as acceptor

3.2e-06

GO:0050660 flavin adenine dinucleotide binding 3.8e-06

GO:0005507 copper ion binding 4.1e-06

GO:0016709 oxidoreductase activity, acting on paired
donors, with incorporation or reduction of
molecular oxygen, NAD(P)H as one donor,
and incorporation of one atom of oxygen

5.3e-06

GO:0032403 protein complex binding 5.7e-06

GO:0051537 2 iron, 2 sulfur cluster binding 7.8e-06

Table 10 List of molecular function GO terms significantly
enriched and uniquely appearing in each topic for mouse cortical
cell subtypes

GO.ID Term p-Value

Topic 2

GO:0005524 ATP binding 4.7e-12

GO:0005516 calmodulin binding 4.6e-09

GO:0019901 protein kinase binding 2.0e-08

GO:0044325 ion channel binding 3.3e-08

GO:0005515 protein binding 2.7e-07

GO:0005509 calcium ion binding 3.6e-07

GO:0017075 syntaxin-1 binding 1.0e-05

Topic 3

GO:0003677 DNA binding 1.1e-07

GO:0032403 protein complex binding 3.7e-06

GO:0019843 rRNA binding 6.1e-06

Topic 4

GO:0003924 GTPase activity 2.7e-07

model inference, visualisation and analysis algorithms,
making it possible for an unfamiliar user of the software
to quickly evaluate a new dataset in a few simple lines
of R code. Finally, in addition to letting users manipulate
the results as standard R objects, all graph visualisation,
ranking tables and result summaries can be rendered to
file in PDF or LATEXformat, for easy reuse in scientific
communication.
As with most machine learning models, model com-

plexity is a crucial aspect of the LDA techniques used by
cellTree: while denser models (using more topics and a
“flater” per-topic distribution over the genes) may yield a
better distance matrix between cells (and lead to a more

Table 11 List of biological process GO terms significantly
enriched and uniquely appearing in each topic for mouse cortical
cell subtypes

GO.ID Term p-Value

Topic 1

GO:0006457 protein folding 1.1e-06

Topic 2

GO:0007165 signal transduction 1.8e-06

GO:0016079 synaptic vesicle exocytosis 2.9e-06

Topic 3

GO:0015991 ATP hydrolysis coupled proton transport 3.0e-07

Topic 4

GO:0046916 cellular transition metal ion homeostasis 1.4e-06

GO:0016525 negative regulation of angiogenesis 2.7e-06

Topic 5

GO:0006633 fatty acid biosynthetic process 1.2e-05
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accurate hierarchical structure inference), they are also
harder to interpret and subject to the risk of overfitting.
A balance must therefore be found with models that pro-
duce biologically-useful results, yet remain sparse enough
to avoid overfitting and maximise clarity.
In addition to the likelihood-based model selection

method [16] currently used by cellTree, we are hoping to
offer improved approches for automatic model selection,
based on recent advances in topic modelling [45–47] in
our next release. Similarly, we are planning to take advan-
tage of recent improvements to the field, to offer a more
comprehensive semantic analysis of topics [48, 49].
We also plan to refine the GO enrichment method used

by cellTree by taking advantage of techniques for better
multiple-hypotheses testing correction [50] and replacing
the current rank-based test on the per-topic gene list by
statistical testing of the probability distribution itself.
The next step in our development roadmap is the

addition of a number of standard methods for both
dimensionality-reduction (such as PCA and ICA) and
population structure inference, in addition to the topic-
based methods already implemented, in order to offer
experimentalists an integrated interface to quickly run
and compare different analysis pipelines on their single-
cell gene expression dataset.

Availability and requirements
The cellTree R/Bioconductor package is available for free
under an open-source licence and can be easily obtained
and installed by following the instructions at: http://
bioconductor.org/packages/cellTree/ It is designed to run
on any recent personal computer (minimumCPU require-
ments depend on the size of the input data) and any
Operating System, as long as the necessary R language
software has been installed.
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