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Abstract

Background: A key challenge in the emerging field of single-cell RNA-Seq is to characterize phenotypic diversity
between cells and visualize this information in an informative manner. A common technique when dealing with
high-dimensional data is to project the data to 2 or 3 dimensions for visualization. However, there are a variety of
methods to achieve this result and once projected, it can be difficult to ascribe biological significance to the observed
features. Additionally, when analyzing single-cell data, the relationship between cells can be obscured by technical

confounders such as variable gene capture rates.

Results: To aid in the analysis and interpretation of single-cell RNA-Seq data, we have developed FastProject, a
software tool which analyzes a gene expression matrix and produces a dynamic output report in which
two-dimensional projections of the data can be explored. Annotated gene sets (referred to as gene ‘signatures’) are
incorporated so that features in the projections can be understood in relation to the biological processes they might
represent. FastProject provides a novel method of scoring each cell against a gene signature so as to minimize the
effect of missed transcripts as well as a method to rank signature-projection pairings so that meaningful associations
can be quickly identified. Additionally, FastProject is written with a modular architecture and designed to serve as a
platform for incorporating and comparing new projection methods and gene selection algorithms.

Conclusions: Here we present FastProject, a software package for two-dimensional visualization of single cell data,
which utilizes a plethora of projection methods and provides a way to systematically investigate the biological
relevance of these low dimensional representations by incorporating domain knowledge.

Keywords: Single-Cell, RNA-Seq, Dimensionality reduction

Abbreviations: EM, Expectation maximization; FNC, False-negative curve; HTML, Hypertext markup language; ICA,
Independent component analysis; LPS, Lipopolysaccharide; MAD, Median absolute deviation; MDS, Multidimensional
scaling; MsigDB, Molecular signatures database; PCA, Principal component analysis; RBF, Radial basis function;
scRNA-seq, Single cell RNA-seq; TPM, Transcripts per million; t-SNE, t-Distributed stochastic neighbor embedding

Background

In an analogous manner to the maturation of RNA-Seq
methodologies, single-cell RNA-Seq (scRNA-Seq) is now
in its infancy and requires new computational tools to
realize its full potential for dissecting and understand-
ing the functional meaning of cell-to-cell heterogeneity
[1, 2]. Visualization methods provide an effective strategy
for inspecting and characterizing the phenotypic diversity
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between cells. In a typical scenario, the analysis begins
with a matrix of expression levels of thousands of genes in
hundreds of cells. An appealing way to make sense out of
this immense data is to project it into a two dimensional
scatter-plot, where each cell is represented by a single
point. While such representations provide an easy way to
see obvious stratification of cells into a taxonomy of dis-
crete types, they can also provide more nuanced views of
gradual transitions, reflecting for instance, developmental
processes [3], physical locations [4], or the cell cycle [5].
Indeed, supplementing these two-dimensional views with
additional, phenotypical information (e.g. the expression
level of marker genes) can be used to provide the correct
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context, and make the observed diversity between cells
interpretable [6, 7]).

There are three main challenges in making effective
use of such visualizations for scRNA-Seq data. The first
challenge is selecting an appropriate method for dimen-
sionality reduction (projection) among candidates such
as principal component analysis (PCA) [1, 2], indepen-
dent component analysis (ICA) [3] or various non-linear
methods such as t-distributed stochastic neighbor embed-
ding (t-SNE) [8], each of which may highlight different
aspects of the data. Once a projection is created, a second
challenge is to interpret its biological significance, namely
which cellular phenotypes [7] or processes [9] are most
responsible for the resulting arrangement of cells. Lastly,
scRNA-Seq can be difficult to correctly interpret due to
technical confounders such as differences in gene cap-
ture rates [10, 11]. Performing functional interpretation
on the input data without accounting for this effect may
lead to incorrect interpretation of the biological meaning
of cell-to-cell heterogeneity.

Introducing FastProject

To address these issues, we have developed FastPro-
ject, a software tool for the visualization and interpreta-
tion of scRNA-Seq data. FastProject allows the user to
explore a gene expression matrix using a plethora of two-
dimensional visualization methods. To interpret these
two-dimensional plots, we use the concept of biological
signatures - sets of genes that represent either a collec-
tion of genes with a common associated function (e.g.
Glycolysis) or a dichotomy between two cellular states of
interest (e.g. naive vs. memory CD8 T-cells)[7]. We eval-
uate the extent to which these phenotypic dichotomies
are reflected in the projections (i.e. to what extent do
neighboring cells in the projection have similar values
for the genes included in the signature), and highlight
the significant projection-signature pairs. This analysis
is made possible in single cells by modeling the prob-
ability that a missed transcript was actually expressed
in the cell, and using these probabilities when evaluat-
ing signature scores on samples to minimize the effect
of variable capture rates between cells. As a source for
biological signatures, we use publicly available datasets
that consist of comparative information from hundreds
of studies (e.g. MSigDB [12]), which can be supple-
mented by the user to include any other gene signatures
of interest. Through this automated analysis, FastProject
therefore provides a systematic view of the main axes of
variation in the data, along with their possible biological
meaning.

Compared with currently-available software, FastPro-
ject is unique in the combination of methods it employs.
Visualization software such as VviSNE [6], although
designed for cytometry data, allows for the integrated
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visualization of transcript levels overlaid on a two-
dimensional tSNE projection. However, viSNE does not
incorporate the use of gene sets or provide a method to
systematically search for biological variation within a two-
dimensional projection. Another method, PAGODA [13],
makes use of gene sets, but does so in the context of a
clustered heatmap of expression data, not a 2-dimensional
embedding.

It is important to clarify up-front that FastProject is not
a normalization tool. Indeed, it has been observed by us
and others that without proper normalization scRNA-Seq
data can be heavily confounded by technical factors such
as library depth and complexity [7]. We strongly advo-
cate the use of scRNA-Seq normalization tools (e.g. based
on [5] or [7]) prior to any downstream analysis, and we
assume that the data has been normalized prior to input
to FastProject. Nevertheless, since scRNA-Seq measure-
ments tend to be characterized by strong zero-inflation,
we conduct our biological signature analysis while aiming
to minimize the effect of gene dropout events (i.e. false
negatives, described in [10, 14]).

When running FastProject, processing is done upfront,
producing dozens of projection maps (using different
algorithms and parameterizations) and their functional
annotation, which can be inspected through an interac-
tive HTML report. On a typical data set, consisting of
around 1000 cells, processing time is typically between
10 and 30 min (see Additional file 1 for benchmark-
ing results). Because processing is performed upfront, the
user can quickly switch between different projection maps
in the output report as well as share the results with
colleagues who would not themselves need to install Fast-
Project. Importantly, FastProject has been written to be
easily extensible so that it may serve as a general platform
for deploying and evaluating new gene filtering schemes,
false-negative estimation methods, or projection tech-
niques. Instructions for developers on how to augment
FastProject are detailed in the FastProject wiki hosted at
https://github.com/YosefLab/FastProject/wiki.

Implementation

Overview

The steps involved in the FastProject processing pipeline
are depicted in Fig. 1.

The software starts with an evaluation of false negative
rates, later used to down-weight the effect of drop-outs on
the biological signature analysis. It then selects sufficiently
variable genes for further analysis using increasingly
stringent criteria. With these genes in hand, FastPro-
ject uses 11 different projection methods (summarized
below) to calculate two dimensional coordinate for each
cell. Based on a user-provided database of gene signa-
tures it then computes a score for every cell/signature
pair and uses a randomization test to identify statistically
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Fig. 1 The FastProject pipeline. a Diagram describing the FastProject pipeline. A gene expression matrix is taken as input (feft), and the resulting
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significant projection-signature associations. Importantly,
the confounding effect of missed transcripts is mitigated
by estimating the probability that each undetected gene
was actually expressed in the cell, and down-weighting
the contributions of these measurements in downstream
analysis (similar to [7]). Altogether, FastProject outputs
76 possible projections (a combination of choosing dif-
ferent gene filtering criteria, whether or not the data was
reduced to significant PCs prior to projection, and the
final projection method) along with their functional anno-
tations, which can be interactively inspected through a
user-friendly HTML report (Figs. 1b and 3). The results
are also provided in the form of text files (including sig-
nature scores, projection coordinates etc.), which can be
used for downstream analysis.

False-negative estimates

To account for expressed transcripts that are not detected
(false negatives) due to the limitations in sensitivity
[1, 10, 11, 15], an initial step in the processing pipeline is
to evaluate these detection rates so that the subsequent
analysis can down-weight the contribution of less reli-
ably measured transcripts. More specifically, it has been
observed that the detection probability for a transcript
varies with the transcripts relative abundance measure-
ment as well as the total amount of RNA in the sample

[10, 14]. To characterize this, we calculate a false negative
rate curve which estimates the probability of detection
based on a gene’s abundance. A separate curve is esti-
mated for each cell individually so that varying levels of
library quality and cell integrity can be accounted for.

To perform this estimate, our procedure utilizes a set
of human housekeeping genes [16] under the assump-
tion that these housekeeping genes are constitutively
expressed in all cells and only missed due to technical
errors. Importantly, as the appropriate set of constitu-
tively expressed genes may differ from study to study and
between organisms, FastProject can accept a user-defined
housekeeping list.

Our estimation of false negative rates is built on and
extends upon our previous work [7]. For each housekeep-
ing gene, we estimate its mean expression level by taking
the average of non-zero measurements for the gene. We
then use the estimated means to group the genes into
30 quantiles, and denote the mean of genes in quantile
1 < g < 30 as g For each cell j and quantile g, we
then compute Fj; as the proportion of genes from g that
are not detected by j. Based on our assumption of con-
stitutive expression, we treat Fj, as an empirical estimate
to the dropout rates (i.e. probability that a gene is not
detected, given that it is expressed). We use the Fj; values
to fit a sigmoid function IA-"j(~) that describes the observed



DeTomaso BMC Bioinformatics (2016) 17:315

dropout rates as a function the genes’ average expression
when detected (Fig. 1a):

Ei(x) = 1/(1 + exp(a;j - (x — £)) 1)

where the estimated parameters o; and f; minimize the
residual sum of squares (RSS) term:

30 R
> Filug) — Fig)® 2)

q=1

Applying the fitted function globally for all genes, we
estimate the conditional probability for a dropout event
for gene i in cell j as: P(Geneiis not detected in cell j|
Gene i is expressed by cell j) = Igj(u,‘) where u;
is the average of gene /s expression level when
detected. Finally, we estimate the prior probabil-
ities for detection and expression of each gene
in order to evaluate weights for the missed tran-
scripts, P(Geneiis not expressed bycellj | Geneiis
not detected in cell j), as described in the Methods
section. These probability estimates are used further
in the pipeline to reduce the effect of missed tran-
scripts when evaluating signature scores and generating
projections. As a first step in validating the efficacy
of this approach, a set of simulations were performed
(Additional file 2, procedure detailed in the “Methods”
section) in which FastProject’s weighting procedure was
able to distinguish between true negatives (representing
unexpressed genes) and false negatives (representing
technical drop-outs).

The fitted sigmoids IA-",‘(-) can also be used to provide
an overall evaluation of the abundance of false negatives
in each cell j by taking the area under the curve. This in
turn provides a way to identify and exclude poor quality
samples, assuming that such samples have higher dropout
rates. Such quality control filter (on cells) is available in
FastProject and can be enabled when running the pipeline
(it is turned off by default). With this option enabled, sam-
ples that score 1.6 median absolute deviation (MAD) units
worse than the median quality score are removed prior to
calculating signatures and low-dimensional projections.

Generating 2-dimensional projections

Gene filtering

Selecting an informative set of genes is necessary for
obtaining biologically meaningful patterns of variability
between cells. To this end, FastProject applies a strict pre-
filtering step that discards genes detected in less than a
threshold number of cells. The default threshold is 20 %
of the input cells, however this is configurable as an input
option. Subsequently, FastProject produces projections
that derive from all pre-filtered genes as well as subsets
thereof, calculated using either of two filtering schemes.
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The first filter option selects bimodal genes, a characteris-
tic which in the past has been useful in isolating biological
variation (e.g. cytokines related to Th17 differentiation [7]
or antiviral and inflammatory response genes in stimu-
lated dendritic cells [17]). In FastProject bimodal genes are
selected using the Hartigan’s Dip Test (p < 0.05). The sec-
ond filter option selects highly-variable genes, based on
their Fano-factor (62/u where 1 is the average expression
and o the standard deviation across all cells). An increase
in the Fano factor past a value of 1 indicates a departure
from a Poisson statistic, which is the steady state distri-
bution expected of constitutively expressed genes [18].
To select candidates with high Fano-factor, similar to the
procedure in [19], genes are first stratified into 30 quan-
tiles according to u, and within each quantile genes are
retained if their Fano-factor is more than 2 MAD above
the quantile’s median Fano-factor.

Projection methods

The variety of methods available for the task of dimen-
sionality reduction each come with strengths and weak-
nesses. For instance, projections of scRNA-Seq data based
on PCA [7], provide an appealing guarantee about the
preservation of variation, and makes the contribution of
individual genes readily interpretable [6]. However, the
underlying assumptions of PCA may not necessarily be
supported by single cell data. In particular, PCA is a lin-
ear transformation, which may not be able to accurately
capture non-linear relationships in the data (i.e. if the
data is embedded within a non-linear low-dimensional
manifold). Additionally, PCA posits that the projection
axes should be uncorrelated, which again may not neces-
sarily result in the most informative representation. The
same criticisms apply for other linear methods such as
ICA [3]. A complementary, and commonly used approach
(t-SNE [8]) uses a non-linear projection that aims to pre-
serve the structure in the data locally. However, while
this method aims to ensure that points that are close
in the high dimensional space will be close (with high
probability) in the low dimensionality embedding, more
global relations are not directly interpretable from the
results. To avoid the issue of choosing up-front between
these different options, FastProject uses these methods
plus additional non-linear projection methods, including:
ISOMAP [20] (using four nearest neighbors when defin-
ing the adjacency graph), PCA with a radial basis function
(RBF) kernel (with kernel coefficient of Wafgenes)’
Multi-Dimensional Scaling (MDS), and Spectral Embed-
ding [21] (with Graph laplacian formed using k-nearest
neighbors with k = %&’fce“s). For the linear PCA we
consider three combinations of principal components (1st
and 2nd, 1st and 3rd, 2nd and 3rd); and for tSNE we use
two perplexity values (10 and 30), totaling in 11 projec-
tion methods overall. All methods are run as implemented
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in the Scikit-Learn package for Python [22]. After each
projection, the resulting sets of 2-dimensional coordinates
are mean-centered and scaled such that the average r> =
[x coordinate]? +[ y coordinate])? equals 1. This standard-
ization is performed so that signature-projection scores
(defined below) are more comparable between projec-
tions.

Incorporating false-negative estimates into projections
Non-linear methods such as t-SNE have been shown to
effectively combine with PCA. In this approach, PCA is
performed first to reduce high-dimensional data to an
intermediate number of dimensions, and this intermedi-
ate representation is further reduced to 2 or 3 dimensions
by the non-linear method. The procedure is effective,
assuming that the initial PCA operation preserves the
main structure of the data while discarding unnecessary
components.

FastProject makes use of this procedure to allow for a
general method of incorporating weights (derived from
false-negative estimates) into nonlinear projections. Prior
to a non-linear projection, a weighted-PCA is performed
by using a weighted covariance matrix (similar to [7]).
Entries in the weighted covariance matrix are calculated
as:

Zj(Xaj - 71/1)(ij - Xh)wajwbj
2 WajWej

where Xj; is the log-transformed expression of gene i in
cell j and w represents the matrix of weights of equivalent
size, defined as:

cov(X,, Xp) = (3)

Wi — P(i not expressed in j | i not detected in j) X;; =0
v 1 Xij #0
(4)

To select the number of components to retain, follow-
ing weighted-PCA, the software employs a randomization
scheme, as described in [23], to select the top princi-
pal components with statistically significant (p < 0.05)
contribution to the overall variance (retaining at least 5
components when less than 5 are significant). All the
subsequent non-linear projections are evaluated on this
reduced-dimension matrix. To provide a way for evalu-
ating the effects of this reduction, FastProject also runs
each non-linear projection method on the original, non-
reduced matrix, allowing the user to switch between these
representations in the output report.

Signature-based analysis

To interpret the biological meaning of the organization
of cells in the resulting two dimensional maps, FastPro-
ject incorporates domain knowledge through the input of
gene “signatures” [7]. The signatures can reflect a com-
parative analysis between two conditions of interest and
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consist of a set of genes, each of which is labeled as either
“up-regulated” or “down-regulated” in that comparison.
Signatures, such as these, are based off of annotations of
cell states obtained from public databases (e.g. the Immsig
collection [12]), or provided by the user. For each signa-
ture, a score is computed against each cell by aggregating
over the weighted expression level of its genes. Specifi-
cally, for signature S and cell j, the respective signature
score R,(j) is calculated as:

R(i) = signg(i) - Xy - wi/ Y wy (5)
ieS ieS

Where lej is the standardized (Z-normalized across all
cells) log expression level of gene i in cell j, w; is the
estimated False-Negative weight (defined above), and
signg(i) = —1 for genes in the "down-regulated" set and
+1 otherwise. Notably, signatures can also be undirected,
in which case the sign value is set to +1 for all member
genes.

Projections vs. signatures

A signature-projection consistency score is calculated to
evaluate how well each projection reflects the phenotypic
variation that is captured by each signature. To this end,
for each pair of signature, s, and projection, p, we compute
a signature consistency score representing the extent to
which neighboring points in the projection have similar
signature scores. This is done by calculating for each cell j,
an estimated signature rank 7, (j) based on its location in
the two dimensional plot:

2 2
Yt (ke

A2 Ja?
ik
Zk;&j e’

where Aj is the Euclidean distance between cells j and &
in the projection, o defines an effective neighborhood size
(set to 0.33 by default), and r5(j) is the rank of the signature
score for cell j (i.e. a rank transformation of the quantita-
tive signature scores Rs). The signature-projection consis-
tency is then determined by the respective goodness of fit:

;"sp (/) = (6)

median(|7s, — 15) @)
Total Cell Count

In this way, each signature/projection pairing is scored
based on how similar signature scores are for samples
located nearby in the projection space. To identify sig-
nificantly consistent signature/projection pairs, we use
signatures of randomly selected genes to create empirical
background distributions of signature scores. We compare
the consistency scores computed for the original signa-
tures with those of the random ones (for example, see
Fig. 2a), obtaining P-values using a Z-test and correct-
ing for multiple hypothesis testing using the Benjamini
Hochberg procedure. We observed that the distribution

Consistency(s,p) = 1 —
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Fig. 2 Behavior of Signature Scores. Behavior of signature scores calculated on the human glioblastoma scRNA-seq data from Patel et al., 2014 [2].

a Distribution of Signature/Projection consistency scores across four different types of signatures, Signed (signed immunological signatures from
MSigDB), Unsigned (various unsigned hallmark and pathway signatures from MSigDB), Random Signed (signed signatures with randomly selected
genes), and Random Unsigned (unsigned signatures with randomly selected genes). Lower panel shows distributions from the same signatures, run
on data in which gene expression levels have been shuffled within each cell. Comparing these, it can be seen that biological signatures tend to
have higher consistency scores than random signatures and this distinction disappears using shuffled data. b Distribution of the Pearson’s
correlation coefficient between signature scores and a confounding variable - the proportion of undetected genes in a sample. Upper plot shows
correlations when signature are calculated by simply taking the unweighted average of log expression level for genes in the signature. Lower panel

shows the effect of using the weighted method presented here

parameters of scores generated by random signatures var-
ied with the number of genes in the signature. To account
for this, separate distributions are generated for different
signature sizes (10, 20, 50, 100, and 200 genes) and when
assessing the significance of a signature score, the score
is compared against the background distribution with the
most similar number of genes. In the output, we report all
the signatures that had a significant match (FDR < 0.05)
with at least one projection.

Results

Software

FastProject has been implemented as a command line
Python package. As an input the software receives: (1)
an expression matrix in a tab-delimited format (genes
in rows, cells in columns). (2) a set of gene signa-
tures, using the standard GMT format. Such sets of
directed signatures are publicly available from various
databases, such as MsigDB [12] (e.g. including signaling
effects of genetic and chemical perturbations, cell cycle
signatures, and comparison of cell types) and NetPath [24]

(transcriptional effects of signaling cascades). Un-directed
gene sets are naturally more abundant, and can be drawn
from resources such as Gene Ontology [25], KEGG
[26, 27], and MSigDB [12] (note that the latter includes
much of the information in the former two). Impor-
tantly, the user can also upload his/her own signatures
that reflect a phenotype of interest. For instance, in
the example below, we study glioblastoma cells, and use
signatures derived from microarray experiments, which
define different tumor sub-types. FastProject also accepts
pre-computed signatures, namely, an association of cells
with pre-computed values. These can be categorical (e.g.
annotations of clusters, computed by a different tool);
or numerical (e.g. additional meta data associated with
cells; e.g. levels of a handful of proteins, or technical
factors such as library complexity; see Methods section
for description of how pre-computed signatures are
analyzed).

FastProject will calculate projections, signature scores,
and their associations, covering all the options above
(totaling in 76 different projections; Fig. 1b). To examine
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the extent to which the projections are affected by zero
values, FastProject treats the sample quality score (defined
above), and the percentage of genes with zero expression
as pre-computed signatures and evaluates their associa-
tion with each projection method. The output is provided
asan HTML file (Fig. 3), where projections, signatures and
their associations can be inspected interactively. Addi-
tionally, a data export feature embedded in the HTML
report allows the generation of tab-delimited text files
that depict the output projection coordinates, signature
scores, and other relevant information. The source code,
running, examples and user manual are bundled with this
manuscript submission and also hosted at https://github.
com/YosefLab/FastProject.

Extending FastProject

FastProject has been designed using a modular architec-
ture so that new projection methods or criteria to filter
genes can easily be added to the pipeline. Since dimen-
sionality reduction is still an active research area, this
allows new methods to easily be compared against more
traditional approaches. For example, the recently pro-
posed ZIFA algorithm [28] can be added by appending the
following lines to Projections.py:
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from ZIFA import block ZIFA, ZIFA

def apply ZIFA(proj_data, proj_weights=None) :
Z, model params = ZIFA.fitModel (proj_data.T, 2);
return Z;

_proj_methods[’ZIFA’] = apply ZIFA;

This is documented in the software wiki, hosted with
the project repository at https://github.com/YosefLab/
FastProject/wiki.

Proof of concept
We applied FastProject to a recently published data sets
of tumor cells from five glioblastoma patients [2]. The
analyzed data, consisting of 430 single cells with mRNA
abundance in units of transcripts per million (TPM) and
normalized as described in [2], was downloaded from the
Gene Expression Omnibus, accession number GSE57872.
We applied FastProject on this data, using a large col-
lection of both “signed” (i.e. up- and down- regulated
genes) and “unsigned” signatures from MSig DB (the C2
(curated), H (Hallmark), and C7 (Immune signatures)
collections) and NetPath [24].

As a first check, we explored the distributions of sig-
nature consistency scores obtained for the original vs.
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random signatures, and compared the results to an appli-
cation of FastProject on randomized datasets, where the
entries in each column (Cell) were shuffled (i.e. main-
taining the percentage of zeroes in every cell; Fig. 2a).
As expected, we see pronounced differences between
the original input signatures and the randomized ones
when FastProject is applied on the non-shuffled data, and
these differences disappear when we apply FastProject
on the randomized data. As a second test, we evaluated
the extent by which the signature consistency scores are
biased by the abundance of zero-values in the analyzed
cells. As expected, when we do not down-weigh the poten-
tial false negative entries, the signature consistency scores
highly correlate with the amount of zeroes in each cell;
namely the analysis primarily reflect what might be a
result of technical dropouts. Conversely, down-weighing
the false negatives reduces this bias (Fig. 2b). We repeated
this procedure using a second dataset of scRNA-Seq data
from mouse dendritic cells responding to antigen stim-
ulation [1], obtaining similar results (Additional files 3
and 4).

Examining the output report of FastProject (Fig. 3a),
we first observe that the various projection methods
correctly stratify the cells according to their respective
donors (Fig. 3b). More importantly, FastProject automat-
ically picks up on several of the most important features
in this data, providing a proof of concept for its utility
as an unbiased analysis tool. Specifically, the two dimen-
sional position of the cells is highly consistent with their
scoring according to an epithelial to mesenchymal tran-
sition signature, which is a strong marker of poor prog-
nosis [29, 30]. The two dimensional positions are also
associated with signatures of other key pathways altered
in cancer, including immune and hypoxic responses as
detailed below. While these observations were made using
a general database of signatures (MSigDB), we supple-
mented our analysis with case-specific signatures - in
this case gene signatures from TCGA that are predic-
tive of Glioblastoma subtypes [30] to provide further
support. As expected we see high level of concordance
between the TCGA-derived scores of the Mesenchymal
tumor sub-type and the epithelial to mesenchymal tran-
sition signatures from MSigDB. We also see the mirror
image of the cell ranking when we consider the TCGA-
derived signature of the Proneural tumor subtype of
glioblastoma.

In addition to the HTML report, FastProject outputs all
the cell-signature scores in textual format. Taking advan-
tage of this feature, we were able to more closely inspect
the relationship between the different pathways that were
highly correlated with the two dimensional positions and
reveal new associations in the data. Considering the top
ranked signatures (p < 1071° for at least one projection
method), and filtering overlapping signatures (Jaccard
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coefficient > 30 %; 63 signatures remaining), we observe
a clear pattern of signature clusters (Fig. 4). Interestingly,
the mesenchymal signature is positively correlated with
the expression of coagulation/complement genes (whose
expression in the glioblastoma cells studied here was
already verified by [2]). Both signatures are also corre-
lated with the TNF« signaling, which supports previous
findings concerning the role of this pathway in mesenchy-
mal emergence [31]. On the other hand, the mesenchymal
signature is negatively correlated with a hypoxia signa-
ture. While hypoxic regions are characteristic in solid
tumors [32], this inverse correlation is surprising and pos-
sibly aligned with the up-regulation of angiogenetic mark-
ers in mesenchymal glioblastoma tumors [29]. Finally,
we see a strong negative correlation with a signature of
response to the PPARy agonist rosiglitazone, which aligns
with previous observations of beneficial effects PPARy
agonists have in glioblastoma [33-35]. In addition to
the inter-donor variation, FastProject’s visualization also
highlights potentially important variation within a tumor.
Indeed, the cells from patient MGH31 (Fig. 3b, purple) are
clearly divided in accordance to the two programs men-
tioned above - with cells with low mesenchymal and high
hypoxic score on one side and the mirror image on the
other.

The glioblastoma case study underscores the utility of
FastPtroject as a tool for scRNA-Seq data exploration.
Starting from a normalized input matrix of gene expres-
sion in single cells, and a generic set of signatures, it
clearly highlighted some of the main sources for pheno-
typic variation between cells, and the relation between
these sources. Such insights provide an important first
step in working with data sets an immense and as complex
as the one presented here.

Conclusions

FastProject is a flexible, comprehensive, and automated
pipeline that combines multiple techniques for the anal-
ysis of scRNA-Seq. It provides a first glance on the main
axes of variation in the data (captured by projections of
interest) and their biological meaning (the biological sig-
natures that may explain the organization of cells within
the projections). The tool was designed with a flexible API
in mind, with the aim of establishing a general platform
that will be used by the scRNA-Seq research commu-
nity for deployment and evaluation of future methods,
such as normalization, batch correction, removal of unde-
sired effects (cell cycle, drop-outs), gene/cell filtering, and
dimensionality reduction.

Methods

False-negative estimates

Let P(Ej; | Not D;j) denote the probability that a gene i is
expressed in cell j conditioned that it is not detected (i.e.
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probability for a false negative). To estimate this probabil-
ity we first estimate the priors for the detection, P(Dy),
and expression, P(Ej), events:

For P(D;j) we use the percentage of cells that detect gene
i (expression > 0), which we denote as D;. For P(Ej), one
approach would be to use:

P(E;j and Dy)
P(Dy | Ey)

_ P(Dy)

~ P(Dy | Ey)

L)

1— Fju)

P(Ey) =

(8)

D;
T 11/ 4 exp; - (i — B)

where w; is the average of gene /s log expression
when detected and IA-",-(ui) (defined in Eq. 1) represents
P(Not Dj | Ej) for each cell. However, in order to
get a more robust estimation, we use the population
mean of the conditional probability, taking: P(E;) =
D;
¥ Xil1 POIE)
dataset. Combining these terms, the full expression is:

where N is the number of cells in the

This

P(Eij | Not Dij) =

value is

then
P(Not E;j|Not D) (the true negative probability), which is
used to weight missed transcripts. Notably, on occasions
where the detection rate in a cell is higher than the prior
estimate, this formulation results in a negative value.
We therefore restrict the estimate to the range [0, 1] by
applying a clipping operation.

P(Not Di]' | Eij)P(Ei]')

P(Not Dy)
P(Not Dy | Ej) ——x-2——
( o ij | l/) % 22;1 P(DRlEx) (9)
1-D;
() AN 1B
1-D;
complemented to obtain

Simulating false-negatives

To evaluate our approach, we first applied it on simu-
lated data. Count values for each gene were either set
to zero (with probability P;) or drawn from a negative
binomial distribution parameterized by the mean, u;, and
the dispersion, y; = (al.2 — w)/ ,uiz. P; was set to 1.0 for
the first 500 genes (considered to be housekeeping genes,
and therefore constitutively active) and varied uniformly
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from O to 1 for the remaining genes. u; was generated
from an exponential distribution with mean = 75 and y
was generated using a uniform distribution from 0 to 4
(reasonable distributions and ranges for p and y found
by measuring these parameters using non-zero values
from the Shalek et al. [1] single-cell data). The generated
counts were transformed using log(x + 1). In this way,
an expression matrix of 3000 genes across 2000 cells was
simulated.

After generating ‘true’ expression data, sigmoidal drop-
out curves (as defined in Eq. 1) were generated for
each cell by drawing « and B from uniform distribu-
tions (o €[2,6]; B €[1, 3]). Using these curves, ‘measured’
expression data was generated by dropping-out non-
zero measurements using each cell’s drop-out character-
istic and each gene’s non-zero mean. Using FastProject’s
weight-estimation procedure, weights were estimated
using the ‘measured’ data matrix. For comparison pur-
poses, weights were also generated using the likelihood,
P(Detection | Expression), as described in Gaublomme
et al. [7]. The results, detailed in Additional file 2, demon-
strate that FastProject’s weighting system produces differ-
ent weight distributions for true negatives (un-expressed
genes) as opposed to false negatives (dropped-out genes),
assigning higher weights to the true negatives, as would be
expected in an effective weighting procedure.

Clustering

For each of the projections, the FastProject HTML report
includes a simple clustering analysis using the cells’ posi-
tioning in the respective two dimensional map. Specifi-
cally, samples are clustered based on Euclidean distance
in the two-dimensional space using k-means with dif-
ferent k values. These clusters are used when rendering
a heat-map below the projection showing the (per clus-
ter) average z-score of expression for each gene in the
signature.

Evaluating the consistency of projections and categorical
pre-computed signatures

A different method is used to evaluate the significance
of signature/projection pairings when operating on pre-
computed signatures. For numerical pre-computed signa-
tures, the assigned values are shuffled among cells and for
each iteration of this procedure, the signature/projection
consistency score is evaluated. P-values are then assessed
by comparing the unshuffled score against this distribu-
tion using a Z-test as above. For factor signatures, it is
necessary to calculated the consistency score in a differ-
ent manner. To this end, for each pair of signature s and
projection p we compute a signature consistency score
representing the extent to which neighboring points in
the projection are assigned to the same category. First, we
evaluate a neighborhood-consistency score for every cell:
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L) = #—Ai (10)
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Yize
where
, 1 samples k and j have the same label
850, k) = { 0 ’ ot}herwise (11

In this way, zsp(i) is closer to 1 if most of sample s
neighbors have the same label. The signature-projection
consistency is then determined by a measure of the overall
consistency:

Counsistency(s, p) = median(ﬁsp(]’)) (12)

These consistency scores are compared against a dis-
tribution of scores calculated from shuffled label assign-
ments to assess significance using a Z-test as above.

Availability and requirements

Project Name: FastProject.

Software Repository:
https://github.com/yoseflab/fastproject.

Software Manual:
https://github.com/YosefLab/FastProject/wiki.

Archived Versions:
https://pypi.python.org/pypi/FastProject.

Operating Systems: Platform-Independent.
Programming language: Python.

License: Free for Educational, Research, and Not-For-
Profit purposes.

Results from the analysis in this article can by found at
https://github.com/YosefLab/FastProject/wiki/Example-
Output-Reports.

Additional files

Additional file 1: Benchmarking FastProject. Memory and run-time are
measured as the number of genes and cells vary. When varying the
number of genes, 200 cells were used, and when varying the number of
cells, an input matrix of 2000 genes was used. “Lean” mode is an option
that may be selected at run-time which disables some projection methods
that were found to scale poorly with the number of samples (MDS, Spectral
Embedding) as well as removing extra filter steps (HDT, Fano Factor). Trials
run using a compute cluster with 40 Intel Xeon E5-2690 processors at 3
GHz, but intentionally limited to either 4 or 20 threads during the run-time
tests. (PNG 188 kb)

Additional file 2: Simulation of False-Negative Weight Estimation
Procedure. A) A simulation to test FastProject’s ability to distinguish genes
that are biologically inactive (True Negatives) from genes dropped out due
to technical artifacts (False Negatives). B) The Kolmogorov-Smirnov (KS)
statistic is used to distinguish between distributions of true and false
negatives. Here it can be seen that the true negatives tend to be assigned
higher weights. This is contrasted with the weighting scheme used in a
previous study (Gaublomme et al. 2015 [7]) in which the true and false
negatives are not as differentiated. C-E) The KS statistic’s for either scheme,
as in (B), as simulation parameters are varied. C) Tests varying the parameter
which controls the mean of the exponential distribution from which w is
drawn. D) False-negative curves are estimated using a mixture of
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housekeeping genes and non-housekeeping genes. It can be seen that the
choice of good housekeeping genes is beneficial, but not critical. E) The
steepness of the generated false-negative curves, «, is varied. (PNG 258 kb)

Additional file 3: Behavior of Signature Scores: Alternate Data Set.
Behavior of signature scores calculated from the LPS-stimulated dendritic
cells of Shalek et al. 2014 [1]. A) Distribution of Signature/Projection
consistency scores across four different types of signatures, Signed (signed
immunological signatures from MSigDB), Unsigned (various unsigned
hallmark and pathway signatures from MSigDB), Random Signed (signed
signatures with randomly selected genes), and Random Unsigned
(unsigned signatures with randomly selected genes). Lower panel shows
distributions from the same signatures, run on data in which gene
expression levels have been shuffled within each cell. B) Distribution of the
Pearson’s correlation coefficient between signature scores and a
confounding variable - the proportion of undetected genes in a sample.
Upper plot shows correlations when signature are calculated by simply
taking the unweighted average of log expression level for genes in the
signature. Lower panel shows the effect of using the weighted method
presented here. (PNG 152 kb)

Additional file 4: Signature-Projection Pairings. An example of
signature/projection pairings from FastProject run on a subset of cells from
Shalek et al. 2014 [1]. Analysis was run on bone marrow dendritic cells,
stimulated with LPS and sequenced after 1-6 h. For comparison purposes,
the same projection (ISOMAP on genes selected by the Fano Factor filter) is
used for each plot. A) The arrangement of cells in the ISOMAP projection
can be seen to largely agree with the time of sequencing, post stimulation.
B) Cells at later times score higher on the HALLMARK_INFLAMMATORY
signature from the MSIGDB collection. C-E) Temporal signatures generated
from Amit et al. 2009 [36]. Signatures generated by taking the top 200 up
and down-regulated genes, between adjacent time points, and removing
genes with less than a 2-fold difference. Changes in these signature scores
can be seen to largely correspond with the temporal labels in (A). All
signature/projection pairings, A-E, were found to be significant by
FastProject (p < 0.05). (PNG 339 kb)
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