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Abstract

Background: Inference of active regulatory cascades under specific molecular and environmental perturbations is a
recurring task in transcriptional data analysis. Commercial tools based on large, manually curated networks of causal
relationships offering such functionality have been used in thousands of articles in the biomedical literature. The
adoption and extension of such methods in the academic community has been hampered by the lack of freely
available, efficient algorithms and an accompanying demonstration of their applicability using current public networks.

Results: In this article, we propose a new statistical method that will infer likely upstream regulators based on
observed patterns of up- and down-regulated transcripts. The method is suitable for use with public interaction
networks with a mix of signed and unsigned causal edges. It subsumes and extends two previously published
approaches and we provide a novel algorithmic method for efficient statistical inference. Notably, we demonstrate
the feasibility of using the approach to generate biological insights given current public networks in the context of
controlled in-vitro overexpression experiments, stem-cell differentiation data and animal disease models. We also
provide an efficient implementation of our method in the R package QuaternaryProd available to download
from Bioconductor.

Conclusions: In this work, we have closed an important gap in utilizing causal networks to analyze differentially
expressed genes. Our proposed Quaternary test statistic incorporates all available evidence on the potential relevance
of an upstream regulator. The new approach broadens the use of these types of statistics for highly curated signed
networks in which ambiguities arise but also enables the use of networks with unsigned edges. We design and
implement a novel computational method that can efficiently estimate p-values for upstream regulators in current
biological settings. We demonstrate the ready applicability of the implemented method to analyze differentially
expressed genes using the publicly available networks.
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Background

The advent of cost-effective high-throughput functional
genomics methods has spurred on the generation of tran-
scriptional datasets in many diverse areas of biology. A
common goal in the analysis of such data is to discover
the regulatory pathways behind biomedical phenomena
and as our understanding of these regulatory mechanisms
increases, commercially and publicly available databases
of regulatory interactions grow steadily. Ideally, a regu-
latory interaction implies a direction of causality, i.e. the
perturbation of an upstream regulator causally leads to a
downstream consequence. We consider two types of inter-
actions in this work: (a) signed interactions that specify
whether an increase in the upstream regulator causally
leads to an increase or a decrease in the downstream entity,
and (b) unsigned interactions that merely state that an
upstream entity causally regulates a downstream entity,
but do not specify the direction of effect. Throughout this
paper, the word upstream is used to refer to regulators
one step previous to a gene in a biological pathway. Com-
mercial products, such as Qiagen’s IPA application (http://
www.ingenuity.com/), are based on manually curated net-
works with a large number of signed causal relationships
extracted from nearly 5 million findings [1]. At the time of
writing, Qiagen’s webpage (www.ingenuity.com/ipa) lists
more than 10,000 citations of biomedical articles making
use of their commercial product on top of such a net-
work. Unfortunately, such highly curated networks are not
freely available to the academic community for further
algorithmic development and generation of biomedical
insights.

Several statistical approaches have been suggested to
infer active upstream regulators from gene expression
data based on a large set of signed causal interactions. The
company Selventa Inc. pioneered the general approach
[2]. Chindelevitch et al. [3] derived the exact null distri-
bution for a plausible scoring scheme to rank putative
upstream regulators. Kramer et al. [1] provide an approx-
imation to this approach based on a normal distribu-
tion, which forms the basis for the popular IPA pathway
analysis tool. Zarringhalam et al. [4] consider Bayesian
approaches that also incorporate biological context into
the inference procedure. Based on these algorithms, net-
works of biological interactions derived from commercial
vendors such as Ingenuity (www.ingenuity.com) and Sel-
venta (www.selventa.com) have been used to study pro-
cesses as diverse as in vitro differentiation [5], modeling of
cellular proliferation [6], and drug-induced liver injury [7].

In this work, we propose a new extended method
to detect upstream regulators geared towards mixed
networks paired with an efficient statistical inference
approach. Importantly, we will demonstrate that the pub-
licly available STRING database [8]' has matured to a
point to reproduce key findings from several previously
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published studies. The STRING10 Human database con-
tains ~200,000 molecular interactions of which ~ 20%
are either undirected (i.e. non-causal) or directed and not
signed. In our method, we make use of both types of
interactions.

The rest of the paper is structured as follows: we first
present the intuition behind our new approach to analyze
mixed networks and contrast it with previously proposed
methods. In the following sections, we outline the ideas
for efficient statistical inference and give a mathematical
derivation to compute p-values based on the proposed
statistics. Importantly, we demonstrate superior execution
times even for the previously proposed approaches and
show that the new statistic is preferable based on simula-
tions. Finally, we demonstrate the biological plausibility of
results based on publicly available networks in the context
of controlled in-vitro overexpression experiments, stem-
cell differentiation data and animal models of neuropathic
pain. We close by summarizing our work and providing
avenues for future extensions.

Methods

Approach

Our method will infer likely upstream regulators given (1)
a set of up- and down-regulated transcripts from a specific
biological experiment and (2) a mixed network of regu-
latory interactions potentially relevant in the current bio-
logical context. We define the network as a directed graph
where the nodes are biological entities and the edges rep-
resent interactions between the entities. A causal signed
edge in the network consists of a source node (typically
proteins, compounds, miRNAs, etc) regulating the tar-
get node (typically transcripts). Signs + or — indicate up-
or down-regulation respectively. An unsigned causal rela-
tion is an edge where the direction of regulation is either
unknown or ambiguous. Ambiguity can arise when one
source of information (e.g. a scientific article) describes
an increasing regulatory relationship between two enti-
ties and another source postulates a decreasing one. This
might be due to different biological contexts or simply
erroneous findings in one of the articles. Figure 1 shows a
schematic representation of a potential upstream regula-
tor in a causal network with corresponding experimental
data. Note that we assume a positive direction of regula-
tion for the putative upstream regulator. All predictions
flip if we have a negative direction of regulation.

In this work, we extend the ideas of [9] to include
unsigned edges and derive the null distributions of the
relevant test statistic for exact statistical inference. In
addition, we provide a novel computational algorithm that
runs significantly faster and has benefits even when using
purely signed networks.

Given an upstream regulator X and the correspond-
ing observed direction of regulation of the down stream
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Fig. 1 Schematic graph of an upstream causal regulator connected to a set of downstream transcripts. For each transcript, the predicted and
observed direction of regulation are displayed. The bottom panel annotates positive and negative evidence for the activity of regulator X as defined
for different scoring schemes discussed in the main text: a Enrichment score, b Quaternary score and ¢ Correctness score

nodes, we can construct a contingency table by tabulating
all potential combinations of prediction and observation
(cf. Table 1).

In Table 1, g4, g—, q» and go denote the total number
of +, —, unsigned (regulated) and 0 predictions respec-
tively. Similarly, n4, n_, and ny denote the total number
of observed +, — and 0 perturbations according to the
gene expression data. The entries of the table represent
the agreement between the predictions made by the reg-
ulator and the actual observed values and correspond to
several exemplary cases in Fig. 1. For instance, X1, X2 and
X3 are all correct predictions in which the predicted and
observed directions of regulation match exactly. These
correspond to cells n__ and n respectively. In contrast,
X6 and X7 represent incorrect predictions and correspond
to cells ny_ and n_;. X4 and X5 are cases in which
the direction of regulation is unknown or ambiguous and
the experimental data indeed show differential expression
(cells ny4+ and n,_). X8 and X9 are cases in which we
would expect differentially expressed genes but don't find
any in our experiment. X8 corresponds to cell #_¢ and
X9 to cell ny. Differentially expressed transcripts that are
not predicted to be regulated by the upstream regulator

Table 1 Tabulation of predictions vs. observations for a given
regulator and differentially regulated transcripts

Observed + Observed — Observed 0 Total
Predicted 4 Nyt Ny— N+o g+
Predicted — n_4 n__ n—o g—
Predicted r N+ ne_ nro ar
Predicted 0 No+ Nno— Noo o
Total ny n— no N

4 x 3 Contingency table

under consideration are captured in cells g, 19—, and ngy
(zero predictions correspond to nodes with no edge to the
regulator).

Note that the total number of predicted and observed
altered genes are determined a priori according to the
gene expression data and the causal graph. This implies
that the margins of the table for each upstream regula-
tor are fixed and the table is completely determined by
the upper left 3 x 2 corner. The probability of the table
T under the null model that the predictions made by the
regulator (or equivalently the observed gene expression
values) are distributed at random given the constraints on
the margins of the table, can be computed by a general-
ization of the hypergeometric probability mass function.
Essentially the probability is obtained by the ratio of the
total number of permutations (i.e., randomizations) of the
gene expression values that do not change the table, and
the total number of possible permutations while keeping
the margins fixed, i.e., P(T) is given by

(n++,nq_:—_,n+o) (n_+,;?___ ,n_o) (n,+,ri],r_,n,0) (n0+,r?(?_,n00) (1)

(VlJr,}{l\[;,Vlo)

Here N denotes the sum of the row (equivalently col-
umn) margins. The terms in the numerator of the above
fraction are the multinomial coefficients and represent the
total number of identical tables under random permuta-
tions of gene values. We refer to this number as D-value
and denote it by D[ 4, —, r]. The denominator is the total
number of possible permutations (i.e., total number of
tables with the same margins) and is denoted by Dyy;.

Next, we show how to assign various scoring schemes to
the table and compute their statistical significance. Under
the null hypothesis and for any given test statistic S(7T),
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the significance of an observed value Sy of the test statistic
is computed by summing the probability of the tables with
the same or a more extreme values of the test statistic, i.e.,
2_s()=s, P(T).

The scoring schemes are defined based on the avail-
able information on the direction of regulation in the
causal graph. Table 1 shows the most general scenario of
mixed networks and subsumes important special cases.
For example, if sign information is ignored or not avail-
able, the first two rows in table 1 will be equal to zero. Any
differentially expressed transcript that is predicted to be
regulated by X is positive evidence for an active regulator
X. Consequently, the score for the goodness-of-fit of the
predictions to the observed experimental data is given by
the enrichment score (cf. Enrichment in Fig. 1).

ES(T) = nyy + np—. (2)

Under the null hypothesis, this test statistic has the fol-
lowing probability mass function.

( qr ) ( q0 )
Hy+4-,Mr—,1rQ/ \N0+,10—,/100

(VIJF,VJIV,,VI())

P(ES = Sp) = Z‘

ES(T)=So

®3)

Using Vandermonde’s identity, it is not difficult to show
that the above probability mass function is equivalent to

(n,+q+rn,,) (Vlo+?£n07)

oy

P(ES = So) = (4)

This amounts to Fisher’s exact test, a statistic that is rou-
tinely used for gene set enrichment tests [10]. The test
was also proposed by [2] to analyze causal signed net-
works. However, this score does not use any information
on direction of regulation and is unable to predict the
likely direction of regulation of an upstream regulator.
Nevertheless, in networks of unsigned edges it may be the
only available option.

In contrast, Chindelevitch et al. [9] propose the correct-
ness statistic that focuses on signed edges only. It scores an
upstream regulator and its putative direction of regulation
by considering the difference between correct and incor-
rect predictions. As the approach considers three different
states for predictions. i.e. correct, incorrect, and not regu-
lated, it was also called the fernary score. Transcripts are
considered positive evidence for the upregulation of reg-
ulator X if their predicted direction of regulation matches
their actual direction of differential expression. Similarly,
they count as negative evidence if the directions do not
match (cf. Correctness in Fig. 1). As this method ignores
all unsigned edges, the third row of the table is assumed to
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be zero. The goodness-of-fit score of the table in this case
is

CS(T) =nqy +n—— — (n4— +n_3). (5)

The significance of the above statistic (correctness score)
can be computed in a similar fashion as for the enrichment
score, i.e. D cgry=s, P(T)

Finally, we can introduce our new score which is appli-
cable in mixed networks, but retains the ability to assess
directionality for regulators if sign information is avail-
able. As this score considers not only correct, incorrect
and not regulated transcripts as the ternary or correct-
ness score does, but also ambiguously regulated transcript,
we name it the quaternary score. In this case, we com-
bine the evidence metric of the enrichment score for
the unsigned interactions with the metric of the correct-
ness score for the signed interactions. Starting from an
enrichment perspective, the score adds information on
likely directionality by penalizing transcripts with incor-
rectly predicted direction of differential expression. From
a correctness score perspective, we include information
on activity of the regulator by counting evidence from
unsigned interactions (cf. Quaternary in Fig. 1). Hence,
this score can be viewed as an intermediate, matching the
enrichment score when no information on the direction
of regulation is available and transitioning to the correct-
ness score when all the interactions are signed. In most
publicly available networks, it is expected that there will
be a mixture of the both types of interactions (signed and
unsigned). This score is defined to be

QST =nyy +n——_+npy +np— — (g +n4-).
(6)

The significance of the quaternary score can be com-
puted in a similar fashion to the other scores. The degrees
of freedoms in the randomization of the tables are 1,
4 and 6 in the enrichment, correctness and quaternary
cases, respectively. This results in time complexity of
O(n), O(n*) and O(n®) for computing the entire score dis-
tributions. In particular the O(n*) and O(n®) complexities
are impractical for most applications. It is important to
note that in all cases above, the scores contain all entries
of the table corresponding to the degrees of freedom.
Including additional terms in the score will not change the
distribution but merely shifts it.

In [3], the authors presented an algorithm for approx-
imating the significance of the correctness score. Essen-
tially, their algorithm approximates the sum by identifying
classes of tables with low probabilities and discarding
them from the computations. Due to the nature of their
algorithm, the entire distribution of the scores must be
approximated before the significance of the observed
score can be computed. Since we are primarily interested
in computing the p-values, approximation of the entire
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distribution is unnecessary and we only need to approx-
imate the probability of the scores that are as or more
extreme than the observed score. In the next section we
show how we can exploit the structure of the probability
distribution of the scores to achieve a more efficient algo-
rithms for enrichment, correctness, and quaternary scores
alike.

Model

In this section, we outline the theoretical foundation of
our algorithm. The probability of scores of tables with
given fixed margins follows a specific pattern that can be
exploited to approximate the p-value of an observed score
s in an efficient manner. For the ease of presentation, we
describe the method in the 3 x 3 setting (i.e., Correctness
statistic). The method is naturally generalized to the 4 x 3
case (Quaternary statistic). If the margins of the table are
fixed, the table will be completely determined by 4 cells
in the table, i.e., there are a total of 4 degrees of freedom.
For example, the table can be parametrized by the upper
left 2 x 2 corner of the table, i.e, ny i, n__,n_y,ny_. We
may replace one of these parameters (for example n_)
with the score of the table. For a set of fixed margins, we
can enumerate all tables in a specific order. For instance
we can impose the following dictionary ordering on the
entries of the table:

Myy, N_, N_4, Ny_, N1Q, N—0, Ho4, MO—, 100 (7)

We emphasize again that the tables are determined once
4 parameters are known. Figure 2 shows probabilities of
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tables ordered by S, 44, n__ and n_4 on the x-axis. As
can be seen, there is a repeated pattern of probabilities for
classes of tables defined by these parameters. For example,
in the class of tables with a fixed score S, n+ and n__, we
see that the distribution is unimodal (See Fig. 2d). Indeed,
we will show later that any set of tables with fixed S ,n
and n__ are at most bimodal with the two modes being
directly next to each other when ordered in the dictionary
ordering of (7).

We now give an informal description of the algorithm
that will help in motivating the theoretical arguments. Let
M[S], M[S,ny+] and M[S,ny4,n__] denote the cate-
gories of tables with fixed parameter values as indicated
by the argument. More precisely, M[ S] is the set of tables
for a given fixed S, M[S,n44] is the set of tables for a
given fixed S and n44 , and M[S, ni4,n__] is the set of
tables for a given fixed S, ny and n__. There are several
tables in each of these categories of various probabilities,
ranging from a unimodal graph in M[S,n44,n__] class
to a graph consisting of several peaks in M[S,n44] and
M| S] classes. Note that for a fixed S, the class M[S] con-
tains the tables in M[S,ny4] and M[S, n44,n—__] classes
(See Fig. 2—-b—d). Our algorithm essentially identifies the
peaks of the M[S] class for each possible value of S. By
adding the probabilities of tables in a local neighborhood
of each peak in the M[S] class, the probability of S is
approximated, from which the p-value can be approx-
imated within any user-defined tolerance. In order to
achieve this, all the peaks in M[S] (which contains the
subclasses M[S,nyy] and M[S,n44+,n__]) as well as the

Probabilitiy

i

(a) Tables in Dictionary Ordering

(b) Tables for
fixed score S.

/’l 7\
/ \
/ \
7 \
v \4 (c) Tables for
ﬁXQd N4y.
7\
/ \
/7 \
/ \
v N, (d) Tables for
fixed ny4 and
n__.

Fig. 2 a Probabilities of matrices in the dictionary ordering S, n44, n——, n—+, n+—, N0, N—o, No+, No—, Noo along the x-axis where all margins equal
are equal to 15. Figure b, c and d show the graph at increasingly higher resolutions
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tables in a local neighborhood around the peaks need to
be identified. We achieve this task through a series of
adjustments to the entries of tables that can efficiently
transition between the tables in each category. The start-
ing point of the algorithm is the table with the minimum
possible score S,;,. There exists only one such table and
hence must also be the table of maximum probability
within the M[ S,,;,] class. The algorithm proceeds to find
the table with the maximum probability in the next class
(i.e, next possible score) by adjusting the entries of the cur-
rent maximum probability table in a way that a) moves
the table to the next desired class and b) the adjustments
perturb the table as minimally as possible. The intuition
behind this is that the tables with maximum probabil-
ity in each class correspond roughly to the tables where
the entries are most evenly distributed given the mar-
gin and class constraints. The reason for this is that the
probability of a table is maximized when the numera-
tor in Eq. (1) is maximized which happens approximately
when the entries of the table are as close to each other
as possible. Hence starting from M[S,,;,], we need to
adjust the table minimally to move to the table with max-
imum probability in the next class M[S,ey]. Once the
table with maximum probability in M[ S,.x:] is identified,
we identify other peaks in subclasses M| Syext, n++] and
M Spext, ny+,n__] through similar adjustments (Moves
between and within the different classes will be discussed
in detail later in the section - see Definition 3).

The process of adjusting the tables can be viewed as a
permutation process where the symbols +, — and 0 are
re-distributed into three buckets of sizes g4, g— and go
(right margin of the table, corresponding to the +, — and
0 predictions made by the regulator). The total number
of symbols are given by ny, n_ and ny respectively (bot-
tom margin of the table, corresponding to +, — and 0
genes under the regulation of the regulator). Each such
distribution is essentially moving the symbols from one
bucket to another which results in a table of the same mar-
gins but with possibly different entries. We refer to such
permutations as Moves. The simplest moves are those
which interchange 2 different elements from two differ-
ent buckets. For example, we can remove a + from the
q+ bucket and place it into the g_ bucket; remove a —
from the g_ bucket and place it into g4 bucket. Note that
we may need to combine several such moves to obtain
a table within the desired class. Also, note that the table
of the maximum probability in the M[S] class automati-
cally defines M[S,ny1] and M[S, ni4,n__] classes, i.e.,
classes in which the table resides. Once the algorithm is at
this table, all the tables within M[S, nyy,n__] class with
probability higher than a pre-specified threshold are enu-
merated via valid moves and their probabilities are added
to the probability of the score. As we will see later, there is
only one move that generates all tables in M[ S, n44,n__]
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class. For thresholding we use the maximum D-value of
all tables (independent of the parameters) times some €
(e.g., le-16),i.e., any table in the M[ S, ny 4, n__] class with
probability below this threshold value is discarded. This is
the same thresholding scheme which was proposed in [3].
Next, the algorithm moves to the table of maximum prob-
abilityin M[ S, nyy,n__+1]aswellasM[ S, ny4,n__—1]
classes and the same process is repeated until all the n__
values are exhausted, at which point the algorithm moves
to the next M[S,nyy + 1] and M[S,n4+ — 1] classes
and repeats the process once more. Once the M[ S, ny]
is exhausted the algorithm moves to the next score class
toward the tail of the distribution to which the observed
score is closer. At each stage of the algorithm, if the table
of maximum probability in the M[ S] or M[ S, n4 ] classes
has probability below the threshold, the entire classes are
discarded, which results in significant speed up of the
algorithm. If no thresholding is applied the algorithm will
be of complexity O(kn®) where k is the number of con-
sidered scores as opposed to the O(n*) complexity of the
brute force algorithm. However, in practice the approxi-
mation scheme will result in complexity much lower than
O(kn3). We now formalize the definition of moves and
prove a few results that are essential for the description of
the algorithm.

Definition 1 A transposition is a move in which an ele-
ment x is moved from a bucket q; to a bucket q;, i # j, and
an element y is moved from the bucket q; to the bucket q;.
We denote this transposition by (qi, %, 4;)(qj, ¥, i)

Transpositions are essentially the minimal permutations
of the symbols {+, —, 0} in the buckets ¢, g_ and gg that
result in tables with the same margins. Note that transpo-
sitions change a given table only if x # y. An equivalent
way of describing the transpositions is as follows. Each
transposition corresponds to a 3 x 3 matrix as follows.
Starting from a zero 3 x 3 matrix whose columns corre-
spond to symbols +, — and 0 and whose rows correspond
to buckets g, g— and go, we place a —1 entry where the
element is being removed from the corresponding bucket
and a +1 where the element is being added to the other
bucket. Other elements of the matrix remain 0. For exam-
ple T = (q+,+,9-)(q—,0,g+) corresponds to the matrix
-10 1

1 0-1
000
tion 7 to a given 3 x 3 table T is equivalent to adding
the matrix representation of t to 7, ie., t(T) = M + T.
Moreover, for appropriately chosen positive integers k, the
operation kM + T (i.e 7%(T)) will result in a table with
equal margins as in T. Here, appropriate means that the
entries of the resulting table must remain non-negative.
The operation kM + T is a permutation (move) that may

M = . Note that applying the transposi-
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not necessarily correspond to a transposition. There are
a total of 18 possible transpositions, each corresponding
to a transposition matrix My, My, ..., M1g. It can be shown
that for any tables T'and T’ with the equal margins, there
exist a linear combination of the transposition matrices
such that

18
T'=) kMi+T, ®)
i=1

where k; > 0 [11]. In particular, this implies that any
arbitrary permutation (move) o can be written as a linear
combination of transposition matrices i.e 0 = Z}ﬁl kiM;.
In other words, o can be decomposed as a product of
transpositions which keeps the matrix margins fixed and
all the entries of the table non-negative. Moreover, since
matrix addition is commutative, the order in which the
transpositions are applied is irrelevant. This is not to say
that two moves are commutative as elements of the per-
mutation group, but for a given move, the overall order
in which one applies the transpositions to a table is of no
importance and the resulting table will always be the same.
Next, we need to define the notion of evenness in the dis-
tribution of the entries of a given table with fixed margins.
Evenness is used as a proxy for the table of maximum
probability in each category. Define the auxiliary function
dx,y,2) = (x — )% + (x — 22 + (y — 2)%. Minimizing
this function will aid in obtaining the most evenly divided
table. For example, if we were to distribute the 4, —
and 0 symbols in the g4 bucket as evenly as possible, we
would need to minimize d(n4,n4_, nyo) i.e the number
of +, — and 0 has to be as close to each other as possi-
ble. Similar reasoning holds for distributing the symbols
to other buckets. In general, the measure of evenness can
be computed as follows. Let T be a 3 x 3 table and let

d(T) =dnyy,ny_,nio) +dm_y,n__,n_o)
+d(noy, no—, noo) +d(nyy,n_1,noy)
+dny_,n__,ng_) + d(nyo, n_o, noo).

Then the most evenly divided table of given fixed mar-
gins is the one with minimum d value.

Let M’ be the most evenly divided table of given fixed
margins and let t be a transposition and o be an arbi-
trary move that includes t as a factor in its decompo-
sition. If ¢ is not a transposition different from t then
we have d(M') < d(z(M')) < d(o(M')). The first part
of the inequality follows from the fact that M is the
most evenly divided table, hence any move applied to
the table will deviate it from evenness. The second part
of the inequality holds since the decomposition of ¢ is
not a transposition different from 7 and (as a product
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of transpositions) o contains t therefore adjustments
applied by o are at least as large as adjustments applied
by 7.

As stated before, the algorithm proceeds from the table
with minimum score and identifies tables of maximum
probability in subsequent categories. In order to make
such transitions, we need to define the notion of principal
moves that transition from the table at the current stage
of the algorithm to the most probable table in the next
desired category. First, we need the definition of a minimal
move.

Definition 2 Minimal moves are the moves generated
by considering all possible combinations of transpositions
without replacement.

For example, consider the move 737 = (-—1,0,0,1,
0,0,1,—1,0) applied according to the dictionary order-
ing (7), i.e., 7 adjust the entries by the indicated
amounts in the same dictionary ordering. In matrix

-1 10
form 71 = 0 0 O |. Moreover, the move 11
1 -10
can be decomposed into a product of transpositions as
71 = (90, — 4q+)(q+>+,q0). Since each transposition is

repeated once, 7] is @ minimal move. On the other hand,
consider 7o = (-1,0,-2,1,0,2,3,—1,—2). In matrix

-1 1 0
form, , = -2 0 2 and can be decomposed
3 -1 -2

as = (q-,+ 40)°(q0,0,4-)*(q0, = 4+)(@+, + o) =
(G-, +>90)*(q0,0,9-)11. Note that 7, is not a minimal
move since some of the transpositions are repeated more
than once.

Both of these moves keep the margins of the table
fixed as can be readily seen from their matrix repre-
sentations. Since 12 is a product of more transposi-
tions (specifically transpositions that don’t cancel each
other out) than 71, then 7; will adjust the table less. It
should be noted that any arbitrary move o can always
be decomposed as ¢ = 0,0, where o, is a mini-
mal move and o, is a product of transpositions that is
not necessarily minimal. This is because o = [[;o; 7
is a product of transpositions and since the order of
applying the transpositions does not matter, we can rear-
range the transpositions to attain ¢ = 0,,0,. From this,
it follows that the minimal moves are precisely those
where 0 = 0,0, with 0, = 1. Here 1 represents the
identity transposition, corresponding to the zero 3 x 3
matrix.

The algorithm relies on the fact that we can move to the
table of highest probability in each class (In fact, it is pos-
sible to move between any two tables T and T’ through
a series of moves (8)). For example, if we want to move
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from the table of highest probability in M[ S, n4 ], to the
table of highest probability in the next class in the dictio-
nary ordering, we can generate a set of moves to make this
jump directly. We refer to these moves as principal moves.
If there are multiple moves that can achieve this task, we
select one at random. The principal moves for decreasing
n4 4 are generated using the algorithm in Fig. 3. Note that
the algorithm in Fig. 3 uses the function Constraints(o)
which returns the set of indices at which the move o is
negative, where indices range from 1 to 9 in the dictionary
ordering (7).

Let My,,4[ S, ny+] be the table of maximum probabil-
ity in M[S,n+4] and let Myq.[ S, nyy — 1] (I > 1) be
a table of maximum probability of class M[S,ny+ — {]
where nyy — [ is the next possible value of n  in the
dictionary ordering of (7). The algorithm in Fig. 3 gener-
ates the list of moves 0” € X" s.t for some o” we have
0" (Mpax[ S, n4+]1) = Mypaxl S, nyy — I]. That is to say if
there is indeed a valid matrix My, S, ny+ — [] then there
must be some o” that can take us to M,,.[S, ni 4 — [].
We note again that minimal moves contain the set of
all possible combinations of constraints that can arise in
any arbitrary move. For instance, in the previous exam-
ple, if 7o is applicable then 7; is also applicable since
Constraints(t;) C Constraints(tz). We should also note
that the principal moves change #n__ by at most 1, there-
fore / = 1. However, we did use the notation / to stress the
fact that for some degrees of freedom, the next value in
the dictionary ordering may be greater than 1 (e.g #,4 in
the 4 x 3 case). We can also generate the principal moves
which increase n with a slight modification to the algo-
rithm in Fig. 3. In a similar fashion, the principal moves
which find the next possible value of the next degree of
freedom #__ can be calculated. The algorithm in Fig. 4
will generate the moves which decrease n__ and keep S
and n fixed.
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The only principal move in M[S,nyy,n__]is 01 =
(0,0,—1,1,—1,1,1,—1,0). This move decreases n_
and keeps S, nyy and n__ fixed. Similarly o b=
(0,0,1,—1,1,—1,—1, 1, 0) reverses the effect of o;. More-
over, it can be shown that the only principal S increas-
ing moves that exist, increase the score by 1, 2 and 4.
Hence the scores in the domain of the Correctness statis-
tic are differenced by 1, 2 and 4. The algorithm in
Fig. 5 is a slight modification of Algorithms 1 and 2 that
generates the principal moves which increase the score
by 1.

Principal moves which increase the score by 2 and 4
are generated in a similar way. Next we present a few
facts about tables with maximum and minimum possi-
ble scores that we need in our algorithm. These will be
the tables on the tails of the distribution. In order to get
the table with maximum score, we have to put the maxi-
mum number of + symbols in the g4 bucket, maximum
number of — symbols in the g_ bucket and the remain-
ing + and — symbols in the go bucket. The rest of the
entries are determined by the margins of the table. There-
fore, we have to set the entries as n44 = min{qy,n4},
n__ = min{g_,n_}, no+ = min{qgo,ny — ny4} and
no— = min{go — no+,n— — n__}. In particular this shows
that there is only one table with maximum score. Sim-
ilarly there is only one table with minimum score and
the entries of the table are given by n,_ = min{g,n_},
n_4 = min{q_, ny}, no+ = min{go, ny —n_4}and ng_ =
min{qo — 1o+, n— — ny_} and there is only one table with
minimum score.

Theorem 1 In the M[S,ny,n__] class, there exists at
most two matrices with maximum probability.

Proof We know that there exists at least one table
T € M[Sniqy,n__] with highest probability. Let

wn e

in each o’.
S0

is_principal<— True

4.
5:
6: for o/ in X':
7
8 for ¢’ in X/

Select a list of minimal moves X which keep S fixed.
Select moves 3/ C X which decrease n4 4.
Order moves ¢’ € X/ according to the number of transpositions

Add first element of 3/ to X/’.

o: if Constraints(o’’) C Constraints(o”):
10: is_principal < False

11: break

12: if is_principal

13: Add ¢’ to X

Fig. 3 Algorithm for computing principal moves which decrease n4 4 and fix S
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W

in each o’.
X0

is_principal<— True

4:
5:
6: for o/ in X':
7
8 for ¢’ in X:

. Select a list of minimal moves ¥ which keep S, n4 fixed.
Select moves X/ C ¥ which decrease n__.
Order moves o/ € ¥/ according to the number of transpositions

Add first element of ¥/ to X7/

o: if Constraints(c’’) C Constraints(o”):
10: is_principal < False

11: break

12: if is_principal

13: Add o’ to 3"/

Fig. 4 Algorithm for computing principal moves which decrease n__ and fix S, ny 4

T € M[S,nyy,n__]besuchthat 7" = ol_l(T). Consider
the ratio of the probabilities of 7" and T

D[ ny4,N—_,n_4 + 1,I’l+, - 1]

Dlnyp,n——,n_i,ny_]
N4 —n—0no+

= 9
(n—+ + D(nyo + D(no- + 1) ©)
_ (e tn——S—n4)g-—n— —n4)
(I’l_+ + 1)(q+ —2n44 —n__ + S+ n—y + 1)
(ny —n—y —nyy) (10)

X
nm-—2n_—_—ny4+ +S+n_4+1)

We see from Eq. (10) that as we increase n_, the
probability becomes smaller than or equal to Prob(T).
Moreover, since n_y +ny_ = (n— +1) + (ny—- — 1),
nyg+n_g = (nyo+ 1) + (n—o — 1) and no4 + no— =
(no+ — 1) + (mo— + 1), we see that Eq. (9) can equal 1 only
ifny =ny_ —1,ny_ =n_y+1,ny9 =no9-—1,
n_o = nyo + 1, noy = no— + 1, no— = no+ + 1. Hence
we see that there can be at most two tables with maximum
probability and the proof is complete. O

Similarly, it is not difficult to see that for M[ S, nyy,n__]
there exist at most two tables which are most evenly dev-
ided. We can now state the algorithm which computes the
probability of a score formally.

The algorithm in Fig. 6 shows that for computing the
probability of a score S, we have to iterate through all
the possible values of n,, and n__. We apply the prin-
ciple moves to find out if it is possible to increase or
decrease the values of n4; and n__. The starting val-
ues of n4 4 and n__ are those of the matrix with highest
probability M,,,x[ S] for a given score S. To get My,ux[ S],
we have to start at the matrix of minimum score, then
apply principal moves to get the matrix with highest prob-
ability of the next score. The procedure is repeated until
we reach our target score. When increasing or decreas-
ing the values of #n__, we choose the principal move o
which maximizes the probability and leaves n; fixed.
This method can naturally be generalized to the 4 x 3
case. The only difference is that the 4 x 3 case can
have more than one table of minimum score. When this
happens, the tables of minimum score have 1 degree of

1: Select a list of minimal moves ¥ which increase S by 1.
Order moves o/ € X/ according to the number of transpositions

2:
in each o’.
32+ 0
4: Add first element of ¥/ to X/,
5: for o/ in X/:
6: is_principal<— True
7 for o’ in X/':
8: if Constraints(o’’) C Constraints(o”):
9: is_principal <— False
10: break
11: if is_principal
12: Add ¢’ to X

Fig. 5 Algorithm for computing principal moves which increase S by 1
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1: Start at Mma2[S], the table with max probability of Score S.

2: M + Mpaaz[S]

3: incongy < True

4: inccn—_ < True

5: while True:

6: M+ M

7: while True:

8: if inc.n_ _:

9: Apply principal moves to M’ to increase n_ _
10: Pick applicable move o with maximum probability
11: if no applicable o found
12: incn__ <« False
13: M +— M
14: else:

15: M’ + o(M")
16: else:
17: Apply principal moves to M’ to decrease n_ _
18: Pick applicable move o with maximum probability
19: if no applicable o found:
20: incn__ < True
21: break
22: else:
23: M’ « o(M")
24: Add probabilities of tables in M[S,nqy,n__]
25: if incong 4
26: Apply principal moves to M to increase n4 4+
27: Pick applicable move o with maximum probability
28: if no applicable o found
29: incn__ < False
30: M <+ Mmaz[S]
31: Apply principal moves to M to decrease n 4
32: Pick applicable move o with maximum probability
33: if no applicable o found:
34: break
35: else:
36: M « o(M)
37: else:
38: M + o(M)
39: else:
40: Apply principal moves to M to decrease ny 4
41: Pick applicable move o with maximum probability
42: if no applicable o found:
43: break
44 else:
45: M + o(M)
Fig. 6 Algorithm for computing the probability of a score S

freedom, so the table of highest probability can be found
by computing the mode of the hypergeometric distribu-
tion. In practice, the algorithm in Fig. 6 as implemented
in the R package is modified to allow discarding matri-
ces below a certain threshold, and thus approximate the
probability or p-value of a score similar to [3]. When
increasing/decreasing the values of ni; and n__, we
can discard the classes M[S,ny4] and M[S,nq4,n__]

which have a maximum probability less than a cer-
tain threshold. Similarly, since the probabilities in
M[S,ni4,n__] are at most bimodal with the two modes
being directly next to each other, we can stop increas-
ing/decreasing n_ when the probability falls below a
certain threshold. Thresholding significantly speeds up
the algorithm since there are many tables of negligible
probabilities.
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Data processing

All gene expression data were normalized and differen-
tially expressed genes were computed using the R 1imma
package. Unless otherwise stated, in all analyses we used
a minimum 1.3 fold change and < 0.05 FDR corrected
p-value to detect differential expression. Differentially
expressed genes were assigned to 41 (up-regulated) or —1
(down-regulated) according to the sign of the fold change.

Results and discussion

All results are based on the R package QuaternaryProd
which implements the above outlined strategy to com-
pute Enrichment, Correctness, and Quaternary p-values
given differentially expressed genes and a mixed input net-
work. The package is written in Rcpp [12] (C++ for R)
and is available to download from Bioconductor. We will
first demonstrate the quality and speed of the approxima-
tion approach. We will then show that the Quarternary
statistic compares favorably with previous statistics in a
simulation setting. Finally, we demonstrate the ability of
our algorithm to recover plausible biological hypothesis
using the publicly available STRING10 [8] network in
the context of controlled in-vitro overexpression experi-
ments, stem-cell differentiation data and animal models of
neuropathic pain.

Benchmarking and quality of approximation
We benchmarked our algorithm against previous imple-
mentation of the Correctness score [3]. To assess the
speed of the algorithms, we generated 1000 tables with
values ranging from 0 to 200 for the g4, g, n4, n_ mar-
gins and values ranging from 1000 to 5000 for go. The g, is
set to 0 in Correctness score calculations. The range of the
values were selected to reflect typical gene expression and
network connectivity values. For each table the p-values
of the score and the elapsed time were calculated for both
algorithms. The threshold value was set to le-16 in both
algorithms. On average our algorithm runs 45x faster
than that of [3] with a maximum speed up to a 1000x
depending on where the observed score falls in the distri-
bution. Additionally we tested the speed of the algorithm
in computing the significance of the Enrichment score
as compared with the Fisher’s exact test implemented in
the R fisher.test function. The time taken in both
algorithms are very comparable and typically < 0.05 sec.
Next we assessed the speed and accuracy of the algo-
rithm in computing the significance of the Quaternary
score. Both speed and the accuracy depends on the
selected value of the threshold. For example, setting the
threshold value to O will result in a brute force com-
putation of the p-value (maximum accuracy), but slow
runtime (O(#°) complexity). On the other extreme, setting
the threshold to 1 will run the fastest, but with very low
accuracy.
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Results on simulated data

In order to illustrate the performance of the three scoring
statistics (QS, CS, ES) in networks with various degrees of
ambiguity, we consider a hypothetical network consisting
of 20,000 transcripts and 5,000 potential upstream regula-
tors. We assume an active upregulated regulator R1 with
100 downstream transcripts. We also consider an inactive
regulator R2 which shares the same set of 100 downstream
transcripts. R1 and R2 differ in the direction of regula-
tion for 50 of their 100 downstream transcripts, i.e. they
share a certain degree of their downstream response, but
also differ substantially. All other regulators will not be
considered here and will, in general, overlap only to a
small degree with R1’s and R2’s downstream transcripts.
We reflect their presence by choosing a multiple testing
corrected significance threshold of 0.05/5000 = 107°.
We then simulate 1000 expression data sets based on R1’s
active state by randomly assigning expression changes to
15 % of R1’s down stream transcripts correctly and 5 %
incorrectly. In addition, we randomly add 200 downreg-
ulated transcripts and 300 upregulated transcripts that
reflect other ongoing changes in the system, potentially
related to other regulators in the network.

Each expression data set is generated based on the true
underlying network structure. To reflect our incomplete
knowledge of direction of regulation we subsequently set
a larger and larger fraction of edges to an unsigned state
and compute p-values for all three scoring statistics. Note
that we do not consider deletion or insertion of random
edges here. Such analysis has been conducted in [3]. Our
focus is on the presence of ambiguous edges in the net-
work. Simulation results are depicted in Fig. 7. Thin lines
represent individual simulations and thick lines represent
the averages across the 1000 simulations.

Firstly, note that the quaternary p-value reduces to the
correctness p-value in the case of no ambiguity and to the
enrichment p-value for complete ambiguity. Furthermore,
the enrichment p-value is always constant as only the
direction of regulation changes in our simulation. In our
example, the enrichment p-value would always correctly
flag R1 and incorrectly flag R2 as active. The correct-
ness p-value correctly identifies R1 as active and R2 as
inactive when full information on direction of edges is
available. However, the performance deteriorates quickly
when more and more ambiguous edges are present and
no regulators are detected as active. Our new quaternary
statistic is able to optimally make use of the available infor-
mation. It is able to predict the correct activity status
for the regulators even with significant ambiguity. Specif-
ically, it retains the ability to detect R2’s inactive state
even with little information of directionality of regulation
and will, therefore, lead to more precise hypotheses for
follow-up, if the direction of regulation information in the
network is trustworthy. In contrast, if our knowledge of



Fakhry et al. BVIC Bioinformatics (2016) 17:318 Page 12 of 15

Significance for active Regulator 1 Significance for inactive Regulator 2
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Fig. 7 This figure shows simulations results in recovering upstream regulators using the quaternary (blue), correctness (red) and ES (green) scoring
statistics. Thin lines represent individual simulations and thick lines represent the averages across the 1000 simulations. The x-axis represents the
percentage of ambiguous edges in the network and the y-axis represents the p-value on a log scale. Figure on the left depicts an active regulator R1
simulated to be up-regulated. Figure on the right depicts an inactive regulator R2 that shares downstream transcripts with R1 but has a different

direction of regulation for 50 % of its edges. The dotted black line marks a significance level of 1e-5. Further details in the main text

direction of regulation is faulty, enrichment scores might
give superior results in some cases. Similarly, if unsigned
edges are not trustworthy, the correctness score would be
preferable to the quaternary score. In general, we assume
a network topology as well as specified direction of regu-
lation to reflect a (potentially noisy) version of the under-
lying true network. In that setting, the quaternary score
should be the statistic of choice. Detailed characteristics
of the simulation depend on the chosen patterns values,
but the outlined patterns remain valid for a wide range of
parameter choices.

Recovering known stimuli in an in-vitro setting

To demonstrate the performance of our method in con-
junction with the publicly available STRING10 network,
we use the same validation set as suggested by [3]. This
dataset was derived from [13] in which they used recombi-
nant adenoviruses to infect non-cancerous human mam-
mary epithelial cells with a construct to overexpress
specific oncogenes. This provides an excellent test dataset
as there are clear single perturbations to recover. As in
[3], we focus on the c-Myc, H-Ras, and E2F3 expres-
sion signatures. Differential gene expression analysis of
these data sets resulted in 118, 202, and 241 differentially
expressed genes respectively. Table 2 shows the top 5 reg-
ulators predicted by the algorithm along with the FDR
corrected p-values of the scoring schemes. Note that the
p-values differ from the original publication due to the
applied multiple testing correction and the use of a dif-
ferent network. In the c-Myc experiment, the algorithm
recovers the up-regulation of Max as the top hypothesis.
It has been demonstrated that oncogenic activity of c-Myc
requires dimerization with Max [14]. Myc is the second
top hypothesis. In this case the CS p-value is more sig-
nificant than the QS p-value. There are a total number

of 318 genes downstream of c-Myc in the network. Of
these 105 are ambiguous, only one of which is connected
to a differentially expressed gene. For the E2F3 experi-
ment, E2F1 is returned as the top hypothesis. E2F1 and
E2F3 are close family members and have a very simi-
lar role as transcription factors that function to control
the cell cycle and are similarly implicated in cancer [15].
Note that in contrast to QS, the CS algorithm is unable
to recover this hypothesis at a significant FDR corrected
p-value. The fraction of unsigned edges implicating E2F1
is relatively high at 58 % and this result demonstrates
the advantages of the QS algorithm in such cases. In the
H-Ras experiment, EGR1 is the top hypothesis returned
by the algorithm with a very significant quaternary
p-value. EGR1 is a key regulator of oncogenic processes
and is downstream of, and positively regulated by, HRAS
[16], fitting the direction of regulation observed in our
results. In summary, we are able to recover either the
known perturbation, a paralogous gene, or a downstream
mediator of the perturbed gene’s activity. In all cases
the biology behind the expression signature is sufficiently
explained, and we would expect the accuracy of our pre-
dictions to improve as coverage of the interaction network
expands.

Factors for stem cell directed differentiation

Directed differentiation of stem cells to specific cell types
is an important challenge in regenerative medicine. Using
a time course of stem cell differentiation to a pancreatic
endocrine fate we previously showed that the CS statistic
was able to identify Interleukin 6 (IL6) as a novel secreted
factor involved in this process [5]. However this result was
only obtained with the CS statistic in conjunction with
a proprietary network. Repeating the analysis with the
STRING10 network we are only able to obtain significant
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Table 2 Top 5 regulators predicted by the algorithm in over expression experiments [13]

c-Myc H-Ras E2F3
Name Regulation QS (&) ES Name  Regulation QS cs ES Name Regulation QS cs ES
MAX up 2e-3 le-2 1e3 EGR1 up 7e-6 2e-2  8e-5 E2F1 up 3e-6  2e-1  4e5
MYC up 8e-2 4e-3 6e-1 JUN up le-3 9e-4  9e-5 ADORA2B  up 3e-2  le-l le2
DNAJC3  down Te-1 de-1  4e-1 GAST up 2e-3 2e-4 2e-3 RBX1 down 3e-2  2e-1 22
E2F2 up Te-1 6e-1  3e-1 CXCR2 up 6e-3 6e-3  Tle-2 CDKNTA down 7e-2  9e-1 le4
E2F3 up Te-1 7e-1 3e-1 CSF2 up 7e-3 8e-3 le-2 SKP2 down Te-1 2e-1  Te-l

FDR corrected p-values of the 3 scoring schemes are listed: Quaternary score (QS), Correctness score (CS) and Enrichment score (ES)

results (FDR < 0.01) with the QS statistic. Table 3 shows
the top 5 regulators.

Aurora Kinase B (AURKB), Gastrin (GAST), IL6, FGF2
and NEUROGS are all predicted to be up-regulated dur-
ing endocrine specification. Of these IL6, NEUROG3 and
Gastrin have known roles in pancreatic endocrine forma-
tion. We consider this good evidence that the QS statistic
provides significant additional power to identify upstream
regulators of stem cell differentiation compared to CS and
that this allows the method to be successfully used in
conjunction with freely available causal networks. Next
we turned to a model of early forebrain and eye field
development (Surmacz et al., 2012). Neural progenitor
cells were replated from a fibronectin matrix to Cell-
Start and treated with the secreted factor Activin A for 4
days in order to generate retinal precursors. Microarrays
were used to profile the transcriptome of the cells before
and after treatment [ArrayExpress: E-MTAB-4259]. There
were a total of 1730 differentially expressed genes which
were used as input to the QS statistic in conjunction
with the STRING10 network. The top 5 most significant
hypotheses are shown in Table 4.

Of these TGFB1 (transforming growth factor beta) is
the primary ligand of the canonical transforming growth
factor beta signaling pathway that is also activated by
Activin A [17]. We consider therefore that while the
method is unable to recover the precise treatment applied
to the cells it has successfully identified the correct acti-
vated pathway. The activation of PTK2 (also known as
focal adhesion kinase) is also expected and consistent

Table 3 Top regulators predicted by the algorithm. FDR
corrected p-values of the 3 scoring schemes are listed

with the replating of the cells onto a new extracellular
matrix as PTK2 is directly downstream of signals initiated
by cell-ECM interactions [18]. The activation of VEGFA
(vascular endothelial growth factor A) and BMP4 (bone
morphogenic protein 4) signaling is unexpected as neither
of these factors are present in the exogenously provided
media after replating. Returning to the original transcrip-
tion data revealed that both genes encoding these factors
were expressed by the cells at least 2 fold higher post-
treatment (FDR < 0.0001) suggesting that these pathways
are activated endogenously within the culture in response
to the replating and Activin A treatment. BMP4 in par-
ticular is known to play a key role in eye development
consistent with the overall hypothesis that the cells are
being driven to an ocular fate [19]. ATF2 activation is also
novel in this system. There is no concomitant change in
expression of the ATF2 gene as we observe for VEGFA and
BMP4, but there is evidence in other models that activa-
tion of ATF2 via phosphorylation by p38 kinase can occur
in response to Activin A treatment [20], suggesting that
this transcription factor may play an important role in
mediating the downstream effects of Activin A.

An animal model of neuropathic pain

Characterisation of animal disease models is an impor-
tant class of biomedical experiment and we wished to test
whether our method could provide insight into regula-
tory pathways using data from such a model. Neuropathic
pain is a significant chronic pain state caused by injury or
other damage, e.g. inflammatory, to the nervous system.

Table 4 Top regulators predicted by the algorithm. FDR
corrected p-values of the 3 scoring schemes are listed

Name Regulation Qs cs ES Name Regulation Qs cs ES

AURKB Up 94e-4 22e-2 42e-3  VEGFA Up 24e-5 23e-5 9.0e-7
GAST Up 24e-3 2.2e-2 2.1e-4 PTK2 Up 24e-5 7.7e-5 2.5e-4
IL6 Up 6.8e-3 7.5e-2 6.1e-3 TGFB1 Up 24e-5 24e-4 43e-6
FGF2 Up 8.1e-3 5.7e-2 1.1e-4 BMP4 Up 3.0e-5 13e-2 1.2e-5
NEUROG3 Up 8.9e-3 4.1e-2 13e-2 ATF2 Up 4.7e-5 1.4e-4 2.4e-4

Pancreatic endocrine maturation

Early forebrain and eye field development
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20 % of the European population is thought to suffer from
chronic pain, with 5 % exhibiting chronic neuropathic
pain [21]. We previously reported a gene expression signa-
ture from a model of neuropathic pain [22] [ArrayExpress:
E-MTAB-2260] and here we apply causal reasoning to
identify the underlying molecular basis for the establish-
ment of a chronic neuropathic pain state.

Of the top hypotheses, the majority are immunologi-
cal (See Table 5). The most significant causal hypothesis
is IL1B, a key cytokine involved in the development of
neuropathic pain and which has been shown to directly
enhance excitatory currents within neurons of the DRG
[23, 24]. The third causal hypothesis, IL6, has also been
shown to directly modulate neuronal activity, reducing
inhibitory currents [25]. Both hypotheses fit with the
known underlying pathology of neuropathic pain whereby
a large pro-inflammatory response occurs in response to
injury, leading to long term maladaptive plasticity that
maintains a chronic neuropathic pain state [26].

Conclusions

In this work, we have closed an important gap in uti-
lizing causal networks to analyze differentially expressed
genes. Our proposed Quaternary test statistic incorpo-
rates all available evidence on the potential relevance of
an upstream regulator as exemplified in Fig. 1 and can
be seen as a generalization of the well-known Enrich-
ment score used in gene set enrichment approaches [10]
and the Correctness statistic suggested in [3]. This new
approach broadens the use of these types of statistics
for highly curated signed networks in which ambiguities
arise but also enables the use of networks with unsigned
edges, i.e. mixed networks, which are prevalent in the
academic sector. A direct estimation of the null distribu-
tion of the proposed statistic would lead to a prohibitively
slow O(n®) algorithm. In this work, we design and imple-
ment a novel computational method that can efficiently
estimate p-values for commonly occurring tables in cur-
rent biological settings. Most importantly, we demon-
strate the ready applicability of the implemented method
to analyze differentially expressed genes using the pub-
licly available STRING10 network. While the precision

Table 5 Top regulators predicted by the algorithm. FDR
corrected p-values of the 3 scoring schemes are listed

Name Regulation QS cs ES

IL1B Up 7.0e-5 1.9e-2 9.9e-6
JUN Up 4.2e-4 4.1e-3 7.5e-4
IL6 Up 4.5e-4 1.9e-2 3.0e-4
FOSL1 Up 2.0e-3 1.7e-2 3.9e-3
FGF2 Up 3.6e-3 1.8e-2 6.8e-3

Animal models of neuropathic pain
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of inference is not as high as with commercially avail-
able networks at this point, the derived putative upstream
regulators describe relevant biology and can readily be
used for follow-up hypothesis testing. We see future work
for the inference of upstream regulators given mixed net-
works primarily in the area of plausible and efficient
incorporation of biological context and the construc-
tion of higher level models. While Zarringhalam et al.
[4] provided an initial proposal for Bayesian inference
incorporating context on signed networks and Kramer
et al. [1] extend upstream regulator discovery beyond
the first layer, many questions around efficient inference,
publicly available data and best practices remain to be
solved.

With this work we hope to broaden the appeal of
prior causal network methods in the academic commu-
nity by demonstrating that biologically plausible infer-
ence is possible with currently available networks and
the R package QuaternaryProd we provide with this
paper. We believe this will generate biologically testable
hypotheses in specific use cases, but also spur method
development to tackle outstanding questions in this
field.

Endnote
In this paper, we consider STRING10 as available
under a Creative Commons Attribution 3.0 License.
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