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Abstract

Background: Kinase over-expression and activation as a consequence of gene amplification or gene fusion events
is a well-known mechanism of tumorigenesis. The search for novel rearrangements of kinases or other druggable
genes may contribute to understanding the biology of cancerogenesis, as well as lead to the identification of new
candidate targets for drug discovery. However this requires the ability to query large datasets to identify rare events
occurring in very small fractions (1–3 %) of different tumor subtypes. This task is different from what is normally
done by conventional tools that are able to find genes differentially expressed between two experimental conditions.

Results: We propose a computational method aimed at the automatic identification of genes which are selectively
over-expressed in a very small fraction of samples within a specific tissue. The method does not require a healthy
counterpart or a reference sample for the analysis and can be therefore applied also to transcriptional data generated
from cell lines. In our implementation the tool can use gene-expression data from microarray experiments, as well as
data generated by RNASeq technologies.

Conclusions: The method was implemented as a publicly available, user-friendly tool called KAOS (Kinase Automatic
Outliers Search). The tool enables the automatic execution of iterative searches for the identification of extreme outliers
and for the graphical visualization of the results. Filters can be applied to select the most significant outliers. The
performance of the tool was evaluated using a synthetic dataset and compared to state-of-the-art tools. KAOS
performs particularly well in detecting genes that are overexpressed in few samples or when an extreme outlier stands
out on a high variable expression background.
To validate the method on real case studies, we used publicly available tumor cell line microarray data, and we were
able to identify genes which are known to be overexpressed in specific samples, as well as novel ones.
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Background
Kinases are key enzymes that regulate several critical
cellular processes related to cell proliferation. Their
over-expression and activation, as a consequence of gene
amplification or gene fusion events, is a well-known
mechanism of tumorigenesis and their protein products
represent ideal targets for the development of novel
anti-cancer drugs [1].
With the increasing availability of new potent and

selective kinase inhibitors, the ability to identify fu-
sion proteins in different cancer types has the poten-
tial to influence diagnostic and therapeutic decisions,
allowing the identification of individuals who would
benefit from specific kinase inhibition, according to
the paradigm of personalized medicine for cancer
treatment.
The identification of rare events of kinase over-

expression in tumor subtypes can be used as a hallmark
of underlying genomic rearrangements, leading to the
expression of the target genes in a tissue where they are
normally not significantly expressed. An example is the
expression on NTRK1 in colorectal cancer (CRC).
NTRK1 is normally not expressed in colon but it be-
comes overexpressed once the region encoding its cata-
lytic kinase domain is fused with the 5′portion of TPM3
gene, as the consequence of an intra-chromosomal
inversion, resulting in the TPM3-NTRK1 fusion gene
[2]. Similarly, ALK is normally not expressed in lung,
while it has been found overexpressed and activated in
non small cell lung cancer samples (NSCLC) when fused
to EML4, following a chromosomal translocation [3].
Other examples include rearrangements involving ROS1,
FGFRs, RET, MET or EGFR ([4–9]).
The search for novel rearrangements of kinases or

other druggable genes may therefore contribute to the
understanding of the biology of cancerogenesis, as well
as lead to new candidate targets for drug discovery.
Recently, screening of cancer samples from The Can-

cer Genome Atlas (TCGA) [10] showed that kinase re-
arrangements are rare events that can be detected in
few tumor samples across a specific tumor type [11].
Therefore there is a specific need for new computa-
tional methods that can allow the specific detection of
rare recurring rearrangements events.
Cancer cell lines can be used as a model to identify

new kinase oncogenes and to study their sensitivity to
drugs. However, this requires the ability to query large
datasets to identify rare events occurring in a very small
fraction (1–3 %) of different tumor subtypes. This task is
different from what is normally done using established
computational methods that are able to find differen-
tially expressed genes between two experimental condi-
tions, or through strategies focused on the search for
outlier genes in a specific tumor type.

Several methods have been reported to detect genes
with an outlier expression profile using different algo-
rithms for cancer outlier profile analysis. COPA (Cancer
Outlier Profile Analysis) [12] searches for pairs of genes
(potential gene fusions) with a large number of outliers
in tumour samples and few or none in normal samples.
The Gene Tissue Index (GTI) algorithm [13] is based on
a statistical method derived from economics, which
determines whether there is a significant increase in the
expression of a specific gene in a sub-group of tumours
compared to the group of normal samples. For each
group, it calculates a statistical index that represents the
proportion between the number of outlier samples and
the total number of samples. The indexes are then
compared to determine the differences between the two
groups. Both methods require transcriptional data from
both tumour and normal tissue counterpart and cannot
therefore be applied in the cases where normal counter-
part is not available or in the profiling of cancer cell
lines.
Other approaches, such as ZODET [14] or the method

proposed by Kothary and colleagues [15], search for
abnormalities in the gene expression profile of an indi-
vidual compared to a reference population. While GTI
and COPA search sub-populations of samples for outlier
expression levels of a gene, in this case sub-groups of
genes (or a single gene) are analyzed in a single sample
and the algorithm searches for the gene(s) showing the
highest expression value both in absolute terms and with
respect to a reference population. In particular, ZODET
is based on Z-score outlier detection and it has been im-
plemented for use on Illumina whole genome microarray
data. Also in this case, a reference control is required.
All the methods described so far use microarray data as
input. On the contrary, Kothary’s method has been
implemented to receive in input RNASeq data. It re-
quires gene expression levels expressed as RPKM, a gene
expression measure that might not be ideal especially
when used for inter-sample analysis [16]. The method
searches for outlier kinases by comparing gene absolute
expression level (RPKM) versus its differential expres-
sion with respect to the median expression value of the
same gene across samples. It quantifies the statistical
significance of each outlier by means of Mahalanobis
distance [17]. One limitation of the method is that it has
not been implemented as a standalone tool, but it
requires R [18] for statistical analysis and an external
tool for visualization (GraphPad Prism) [19].
Other bioinformatics methods have been developed

that do not rely on gene expression data as an indirect
readout of gene rearrangements, but search for unbal-
anced 5′/3′ gene expression or try to locate gene fusions
genomic breakpoints. For example, Cancer Gene Census
[20] compares expression levels of all the proximal
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versus distal exons for each exon-exon junction, in order
to predict the existence of transcriptional breakpoints.
Other methods try to predict fusion genes at the gen-
omic level by checking genes in their transition regions
or analyzing Copy Number Variations (CNVs) [21].
Finally, several tools, such as TopHat, FusionFinder or
FusionMap are based on RNASeq data and detect gene
fusion candidates by considering the discordant read
pairs aligning to two different genes, as reviewed in
Carrara et al. [22]. The main limitation of such tools
resides on the high number of false positives contamin-
ating the results produced [23].
In this paper, we propose a new computational method

for the automatic identification of genes selectively over-
expressed in a small fraction of tumour samples within a
specific tumor tissue type, while taking into account its
expression level also in other tumor subtypes. Indeed,
although certain kinase fusions only rarely occur in a
specific tumour type, they have been shown to recur
when multiple tissue types are considered [11].
The method does not require a healthy counterpart

or a reference sample for the analysis and can therefore
be applied to transcriptional data generated from clin-
ical samples as well as from cell lines. In our implemen-
tation, the tool is independent from the platform used
to generated gene expression data and can be used with
data obtained using microarrays as well as Next Gener-
ation Sequencing (NGS) RNASeq technologies.
The method has been implemented as a publicly avail-

able, user-friendly tool called KAOS (Kinase Automatic
Outliers Search, http://www.nervianoms.com/en/compo-
nent/phocadownload/category/2-kaos.html?download=2:-
kaos). The tool enables the automatic execution of the
iterative search for outliers and visualization of the results
using a graphical interface with filters for the selection of
the most significant outliers. As case study, for validation
purposes, we used publicly available microarrays data
performed on 917 cell lines belonging to 24 different
tumor types form the Cancer Cell Line Encyclopedia
(CCLE [24]) and showed that the tool is able to detect
genes which are known to be overexpressed in certain
tissue samples as well as to identify novel ones.

Methods

The tool implements the following strategy:
i) pre-processing of the dataset to provide tissue of

origin annotation;
ii) identification of statistical outliers for each tissue-

specific distribution;
iii) application of a chain of filtering criteria to isolate

tissue-specific outliers;
iv) ranking of the outliers in order to eliminate

potential false positives;

v) provision of a graphical summary of the most
relevant outliers and related gene expression
distributions.

i) The first step consists in the annotation of the
tumor samples under investigation with information
on the tissue of origin (in the current version of the
tool, this is a manual annotation pre-processing step,
which can be achieved using external annotation
tool or custom software scripts).

ii) Once a group of cell lines or tumoral samples is
grouped according to the tissue they belong to, a
distribution of the gene expression values is
computed and plotted together with a box-and-
whiskers plot. We used the R statistical environ-
ment, which implements the Grubb test for outliers
[25]. The result of the test includes all the values
statistically considered outliers, independently of the
absolute gene expression value. These lead to a high
number of outliers since, in principle, the most
extreme values of any distribution might be
considered outliers (Fig. 1a).

iii)Our objective is to identify samples with an extreme
distribution for the examined gene in the tumoral
tissue under consideration, even when the
background expression level is relatively high.
Therefore, specific filtering criteria are applied in
order to prioritize the more robust outliers. From
the set of computed outliers, the KAOS algorithm
selects the gene expression values fulfilling the
following criteria (see Fig. 1b):
– the expression value is above a minimal

expression threshold
– the gene has a minimum median (med) level of

expression in the tissue-specific distribution
– the value has a minimum distance (d) from

the 75th percentile of the tissue-specific
distribution

iv) The remaining outliers are then ranked using the
“non-dominated sorting” ranking algorithm,
commonly used in multi-objective optimization field
[26], which allows to select the best solution on the
basis of two or more metrics.
The ranking algorithm iteratively checks if each
outlier i dominates over any other outlier j in the
set, such that: if a) all the distances of i are greater
than or equal to the corresponding distances of j,
and b) at least one of distances of i is strictly greater
than the corresponding distance of j, then i is
assigned rank 1. Once all the outliers identified with
rank 1 are discarded from the outliers set, the same
comparison is performed to assign rank 2. The same
iteration is repeated to assign all greater ranks until
the set is empty. Figure 2 shows a bi-dimensional
example on a 2-metrics computation.
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In order to obtain the optimal settings for the
detection of the extreme outliers, we used three
metrics:
– the distances of the gene expression level from

the 75th and the 50th percentile of the tissue-
specific distribution

– the proportion of the number of outliers with
respect to the whole dataset of outlier
occurrences for the given gene (a proportion that
should be kept <5 %).

To allow a user-friendly interaction in parameter
setting and visualizing of the results, as well as to enable
an interactive use of the search strategies, we provided
the method with a graphical interface.
The algorithm is meant to be applied to any gene ex-

pression dataset. We developed and tested it on microar-
rays data, but it can be easily applied to RNA-seq data.
Since we wanted the tool to be independent of the data-
set under investigation, we designed it to interact with a
database schema which should be implemented by the

Fig. 1 Outlier detection. Outlier detection method is reported. a Statistical detection: for each kinase, gene expression level in all the analysed samples
belonging to a specific tumor type is reported as an histogram (left panel) and as boxplot (right panel). “Rare events” (a kinase over-expressed in one or
a few cell lines and low/not expressed in the others) are identified by mean of the Grubb test and reported as a red circle. b Prioritization and filtering:
the most relevant outlier kinases are selected applying specific filter criteria (minimal expression threshold; maximum median level of expression over
the tumor type; minimum distance from the 75th percentile of the tissue-specific distribution; proportion of the number of outliers with respect to the
whole dataset of outlier occurrences). Samples that do not consistently pass the imposed filters are removed (reported in the figure as red crosses)

Fig. 2 The ranking algorithm. a 2-d plot of the two measured distance: M1 is the distance from the upper wisker; M2 is the distance from the
median. The “best” outliers lie on the top right corner of the graph, that corresponding to a major distance from both upper wisker and median,
and are reported as red dots. b The metrics used for ranking are reported: M1 (red arrow) is the distance from the upper wisker; M2 (orange arrow)
is the distance from the median; M3 (yellow circle) is the number of samples in which the gene has an outlier expression value
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user in a standard RDBMS, as described in the Results
and Discussion section.

Results and discussion
Method implementation
Discovering candidate rearrangement in a panel of
tumour cell lines on the basis of their gene over-
expression could be seen as a multidimensional problem,
thus claiming for a systematic and automated approach.
While a manual visual inspection of the expression pat-
tern of a specific gene in a cell line is rather trivial, it is
more complicated to extend the same analysis on the
genome scale and on a high number of tumoral samples.
This is especially true when searching for a rare event,
such as the detection of the occurrence of an outlier
gene expression only in few samples among a tumoral
tissue type.
Here we present a computational tool, that we called

KAOS (Kinases Automated Outlier Search), for the identi-
fication of rare events of samples with an outlier kinase
expression. The KAOS algorithm was implemented using
the R statistical environment [18]. In particular, we used
the R function “boxplot-with-outlier-label” [27] to calcu-
late the statistics and the boxplots and the function
fastNonDominatedSorting of the “nsga2R” package [28] to
compute the rank of each outlier.

The algorithm has then been embedded in a software
tool with a graphical user interface, developed using the
Java programming language [29] and a data interface to
a MySQL database. The software assumes MySQL, Java
and R installed on the computer. The tool is then
provided as an executable file to automatically create the
database and populate it with an example artificial data-
set (along with the tool, for solely testing purposes) and
a user guide with the instructions on how to run the
application and how to prepare the input files. The tool
has been tested on different platforms and can be used
on Linux, Windows and Mac OS. The tool can be used
on different types of gene expression data, as long as
they are stored in the database using the format pro-
vided in the example schema.
The graphical user interface of the tool is shown in

Fig. 3. On the left-side are reported the filters that can
be customized by the user for the selection of the out-
liers, including specification of the tumour tissue type
and of the gene name of interest. For the outlier selec-
tion, a variety of statistical filter thresholds can be cus-
tomized, such as gene expression level, median value
and upper whisker. The user can also set the maximum
threshold value for the rank and for the total number of
outliers for the gene of interest in all the other tumoral
tissues, allowing the identification of tumor specific, as

Fig. 3 Graphical User Interface. KAOS graphical user interface, developed in Java, is reported. The interface allows to visualize both the information on
the detected outliers (top panel) and graphically represent the results (central panel) at the same time. The interface allows to customize query
parameters and to filter the results (left panel)
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well as general outliers. An additional function allows
selecting the order in which results are sorted (by mean
of gene expression values, rank, tissue or gene name).
On the top left corner of the interface a menu provides
the commands to save and reload the selected search
criteria.
Expression level of the gene of interest in the selected

tissue is shown in the left panel, while the detected out-
liers are shown in the box plot on the right. Command
buttons allow the visualization of the expression profile
of a gene in each single tumoral tissue type one by one
or all together at the same time. Additional information
related to each outlier is reported at the top.

Performance evaluation on simulated data
By making use of simulated data, we compared KAOS
performance with published outlier detection methods
such as GTI [13], ZODET [14] and an adapted version
of the method published in [15].
To test the method presented by Kothari et al. in [15],

which was developed to be used on RPKM gene expres-
sion data only, we had to slightly modify it. For this pur-
pose, we computed three metrics: i) the absolute
expression within the sample, ii) the differential expres-
sion (defined as the ratio of the absolute expression and
median expressions of the gene within the compendium)
and iii) the Mahalanobis distance of a point x (defined
using the above absolute and differential expressions) to
the mean μ in each sample. We then performed a con-
sensus analysis by claiming a gene “outlier within a sam-
ple” when it has a value greater than the upper whisker
of the boxplot for all the three metrics. For each gene
we then computed the number of samples in which it is
recognised as outlier and we ranked the genes according
to that value.
In order to perform a comparison with ZODET, we

followed the same approach the authors used to com-
pare their method with GTI. More precisely, for each
gene we counted the number of samples in which it is

marked as outlier and then ranked the genes according
to this value.
Finally, in order to test GTI, we used the R script

provided by the authors and ranked genes accordingly.
Following the simulation proposed in [13] and [14],

we first generated an artificial dataset with 1000 genes
having an equal number of cancer and normal samples
(30 in each class). The expression values of the genes
were drawn from a normal distribution having mean 7
and standard deviation 1. Such values reflect the Affy-
metrix microarrays data analysis standard practice of
considering 6–7 as a minimal expression value, as well
as the typical average found in TCGA [10] and CCLE
[24] datasets. The genes assumed to be differentially
expressed, named True Positive (TP), were generated by
adding a constant m to their expression in the k samples
which have been marked as outliers’ samples. The TP
rate is 5 % (i.e. 50 genes). In order to find the simulated
false positives (FP), in each simulated experiment we
ranked the genes according to their score and consid-
ered as predicted outliers only the top t (t ranging from
10 to 50). Within such a computed list, we then calcu-
lated the correctly predicted TP genes and FP genes, the
number of False Negative (FN) and the number of True
Negative (TN). We could therefore compute the average
Precision, Recall and F-Measure by running 50 simula-
tions. We analysed the performances of KAOS, GTI,
ZODET and the Kothari et al. method varying k from
10 to 1 and t from 10 to 50. Since KAOS does not
need case/control data we tested it on the 30 cancer
cases only.
Table 1 gives the measures obtained for k = 1 in all the

compared tools. The results clearly show that KAOS out-
performs the other tested methods in terms of Precision/
Recall when the top 10 and 20 outliers are considered. In
such a case KAOS seems to be the most robust method.
On the other hand, when a higher threshold is applied,
ZODET outperforms the other methods. Tables 2 and 3
give the measures for k = 5 and k = 10. In these cases GTI
has the best performances in terms of Precision/Recall.

Table 1 Tools comparison on simulated data for k = 1

k = 1, T = 10 k = 1, T = 20 k = 1, T = 50

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

KAOS 0.348 0.348 0.348 0.267 0.267 0.267 0.162 0.162 0.162

Zodet 0.232 0.232 0.232 0.243 0.243 0.243 0.220 0.220 0.220

GTI 0.182 0.182 0.182 0.175 0.175 0.175 0.146 0.146 0.146

Khotary et al. - 0.038 - 0.114 0.032 0.050 0.121 0.012 0.022

The comparison of Kaos performances is based on 50 simulations on a synthetic dataset made of 1000 genes expression values for 30 cases and 30 cancer test
samples. The expression values were drawn from a normal distribuion with mean 7 and standard deviation 1, where k samples which have been marked as outliers’
samples (see Methods section for further details) and T is the top T number of outlier genes found. The table shows average Precision, Recall and F-Measure for k =1
and t ranging from 10 to 50
In bold are reported the values obtained by the best performing tool in the different conditions
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The obtained result confirms the value of KAOS in
detecting the most extreme outliers, since the algorithm
was designed and optimized with the aim of searching
for very rare rearrangements and for extreme outliers in
a high variability expression context. That is indeed what
resembles most likely real cases, when gene rearrange-
ments are expected to affect 1–3 % only of the investi-
gated samples. The simulation for k = 1, indeed,
represents the condition of a rare case, while the simula-
tion of a high variability expression context is simulated
by placing the constant m equal to 2. When the number
of outlier samples increases (ie. k = 5, 10), other tools
show better performance, as they have been designed for
such broader search purposes.

Method application on experimental data
The aim of the tool is not to perform comparisons
across different data sets or platforms but rather to
support users with the analysis of their dataset, that can
be normalized according to the technology used and to
user preferences.
To validate the tool on a real dataset, we tested the

algorithm on about 500 kinase genes from Cancer Cell
Line Encyclopedia (CCLE) gene expression dataset [24].
In this dataset 917 cell lines, belonging to 24 different
tumor types, were profiled by microarrays and probe set
intensities were calculated using the Robust Multi-array
Average (RMA) and normalized by the quantiles method
[30]. In this way, per each gene, outlier identification was
performed within the same dataset and the same platform.

The method was able to correctly identify several
kinases known to be overexpressed in specific cell lines
among a tumour tissue type. Indeed, NTRK1 was cor-
rectly identified as highly expressed in KM12 colorectal
cancer cell line (Fig. 4a). NTRK1 is a tyrosine kinase
typically not expressed in colorectal cancer tissue, how-
ever it become expressed and activated as consequence
of a genomic rearrangement involving the C-terminal
kinase catalytic domain of NTRK1 that is fused with the
oligomerization N-terminal domain of TPM3, an ubiqui-
tously expressed protein. We had previously reported
the identification and characterized of the TMP3-
NTRK1 rearrangement in KM12 colorectal cancer cell
line and demonstrated that over-expression of NTRK1
in this setting is the driver event of tumorigenesis and
renders tumors sensitive to NTRK1 kinase inhibitors in
preclinical models [3]. Similarly, we could detect an
overexpression of the ROS1 tyrosine kinase in HCC-78
lung cancer cell line only, within lung tumor cancer cells
(Fig. 4b). ROS1 is indeed overexpressed as a conse-
quence of a genomic translocation that leads to the
expression of a chimeric FIG-ROS gene [31]. Also, the
system allowed the identification of a significant overex-
pression of RET in the TT cell line, among thyroid papil-
lary tumour cell lines (Fig. 4c). In this case RET
overexpression and activation is not the result of a re-
arrangement, but it is a consequence of a mutation event
that leads to the expression and activation of the kinase
[32]. Moreover, FGFR4 overexpression was observed in
MDA-MB-453 breast cancer cell line, among breast can-
cer cells. Also in this case the anomalous activation of

Table 3 Tools comparison (k = 10)

k = 10, T = 10 k = 10, T = 20 k = 10, T = 50

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

KAOS 0.268 0.268 0.268 0.188 0.188 0.188 0.109 0.109 0.109

Zodet 0.986 0.986 0.986 0.948 0.948 0.948 0.765 0.765 0.765

GTI 0.998 0.998 0.998 0.984 0.984 0.984 0.802 0.802 0.802

Khotary et al. 0.837 0.776 0.805 0.754 0.389 0.513 0.767 0.151 0.252

The table shows the same simulation results as Table 1 when k = 10
In bold are reported the values obtained by the best performing tool in the different conditions

Table 2 Tools comparison on silmulated data for k = 5

k = 5, T = 10 k = 5, T = 20 k = 5, T = 50

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

KAOS 0.526 0.526 0.526 0.374 0.374 0.374 0.244 0.244 0.244

Zodet 0.828 0.828 0.828 0.699 0.699 0.699 0.516 0.516 0.516

GTI 0.862 0.862 0.862 0.773 0.773 0.773 0.548 0.548 0.548

Khotary et al. 0.454 0.246 0.319 0.450 0.124 0.194 - 0.041 -

The table shows the same simulation results as Table 1 when k = 5
In bold are reported the values obtained by the best performing tool in the different conditions

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):340 Page 83 of 212



Fig. 4 (See legend on next page.)
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the kinase is a consequence of the presence of a Y367C
oncogenic mutation [33].
The analysis also allowed highlighting unexpected

kinases over-expression. This is the case of ZAP-70, a
tyrosine kinase expressed in T lymphocytes, in which it
plays a role in initiation and amplification of T-cell
receptor signalling. ZAP-70 is selectively expressed in
tissues of lymphoid origin and is not typically observed
in solid tumours [34]. Indeed, in Fig. 4e the expected
homogeneous expression distribution of ZAP-70 in
lymphoid tissue can be observed but, correctly, no out-
liers are detected by KAOS in the hematopoietic and
lymphoid tissues, as no extreme outlier value stands out
over the high variability context. On the other hand,
using KAOS, we could detect an anomalous expression
of the gene in a single breast cancer cell line, the
DU4475 (Fig. 4e), as an extreme outlier out of 56 breast
cancer analysed samples. ZAP-70 expression was further
investigated in the DU4475 cell line by western blot, using
a specific antibody (sc-1526) against the C-terminal do-
main of the protein, confirming the high level of ZAP-70
expression also at protein level (see Additional file 1). No
expression of ZAP-70 could be appreciated in MCF7
breast cancer cell line, used as control.
The functional relevance of ZAP-70 overexpression

in DU4475 breast cancer cell line is currently under
investigation.

Conclusions
Discovering candidate rearrangements in a panel of cancer
cell lines on the basis of their anomalous gene expression
in few samples only could be seen as a multidimensional
problem, thus claiming for a systematic and automated
approach. While a manual visual inspection of the expres-
sion pattern of a specific gene in a single sample is rather
trivial, it is more complicated to extend the same ana-
lysis on the genome scale and on a high number of
samples. This is especially true when searching for a
rare event, like the detection of the occurrence of the
expression of a gene in few samples (outliers) only.
To this aim we developed KAOS, a user-friendly tool

for the rapid and efficient detection of rare events of

kinase overexpression in specific tissues. The tool uses
gene expression data either from microarrays or RNA-
Seq technologies.
The performance of the tool was evaluated with a

synthetic dataset and compared to the state-of-the-art
tools. KAOS performed particularly well in detecting
extreme outliers that stands out on a high variable
expression background.
We provided an example of application using gene ex-

pression data for the detection of kinase over-expression,
but the analysis could be easily extended to other gene
families.
The tool represents a concrete example of how the

increasing overwhelming availability of genomic know-
ledge bases, which are still growing over time, can be
exploited for new target discovery.

Additional file

Additional file 1: Protein expression of ZAP70 in DU4475 breast cancer cell
line. Characterization by Western Blot analysis of ZAP-70 protein. Total cell
lysated were subjected to Western Blot analysis using anti-ZAP70 (sc-1526)
goat polyclonal antibody raised against a peptide mapping at the C-terminus
of ZAP-70. 1) DU4475 (20 ng); 2) MCF7 (20 ng); 3) HisGST-ZAP70 recombinant
protein (15 ng), positive control. (PNG 68 kb)
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in hematopoietic and lymphoid and autonomic ganglia. No expression is observed in large intestine (colon), apart in KM12 colorectal cancer cell
line, highlited as outlier in this tissue; b RET tyrosine kinase is generally expressed in tissues such as autonomic ganglia, haematopoietic tissues,
but no expression is observed in thyroid tumors. In this tissue a dramatic expression of RET can be detected in TT papillary tumor cell line only,
assigned as outlier by the tool; c ROS1 tyrosine kinase is typically poorly expressed apart in colon where HCC-78 lung cancer cell line stands out
as a clear outlier; d FGFR4 is highly expressed in few breast cancer cell lines, among those MDA-MB-453 breast cancer cell line appear as highly
overexpressed. e ZAP-70 tyrosine kinase can be observed in haematopoietic and lymphoid tissues only. No expression in breast cancer cell lines
can be appreciated, with the exception of a significant overexpression of the gene in DU4475 breast cancer cell line
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