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Abstract

Background: Metaheuristics are widely used to solve large combinatorial optimization problems in bioinformatics
because of the huge set of possible solutions. Two representative problems are gene selection for cancer classification
and biclustering of gene expression data. In most cases, these metaheuristics, as well as other non-linear techniques,
apply a fitness function to each possible solution with a size-limited population, and that step involves higher latencies
than other parts of the algorithms, which is the reason why the execution time of the applications will mainly depend
on the execution time of the fitness function. In addition, it is usual to find floating-point arithmetic formulations for the
fitness functions. This way, a careful parallelization of these functions using the reconfigurable hardware technology
will accelerate the computation, specially if they are applied in parallel to several solutions of the population.

Results: A fine-grained parallelization of two floating-point fitness functions of different complexities and features
involved in biclustering of gene expression data and gene selection for cancer classification allowed for obtaining
higher speedups and power-reduced computation with regard to usual microprocessors.

Conclusions: The results show better performances using reconfigurable hardware technology instead of usual
microprocessors, in computing time and power consumption terms, not only because of the parallelization of the
arithmetic operations, but also thanks to the concurrent fitness evaluation for several individuals of the population in
the metaheuristic. This is a good basis for building accelerated and low-energy solutions for intensive computing
scenarios.
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Background

Bioinformatics is an area where we can find many large
combinatorial optimization problems [1]. The high size
of the space of solutions causes these problems can not
be tackled by means of exact searching techniques, which
require an excessive computational effort. In these cases,
the usual way of obtaining optimal solutions is to consider
metaheuristics [2] and particularly Evolutionary Algo-
rithms (EAs) [3]. Nevertheless, even these algorithms can
be slow for complex problems, demanding more hardware
resources based on current general-purpose processors or
Central Processing Units (CPUs). If we identify what part
of the algorithm takes more time to be computed, a hard-
ware coprocessor specifically designed to accelerate this
function is a direct solution to further speed up the per-
formance. In this sense, the fitness function is a simple
but critical operation involved in the metaheuristics. Most
of the computing time of the algorithm that solves the
optimization problem may be spent running the fitness
function, although it could mean a small part of the code.

The core of this work deals with the hardware-level par-
allelization of the fitness functions used in two bioinfor-
matics problems: gene selection for cancer classification
and biclustering of gene expression data. The reason for
designing fitness hardware accelerators is twofold. On the
one hand, every fitness function is applied to each indi-
vidual of a population in many bio-inspired metaheuris-
tics; this fact allows us to parallelize the computation of
the fitness evaluation phase if we place several copies of
the same fitness hardware implementation. On the other
hand, fitness functions are usually formulated by means
of floating-point arithmetic equations that can involve
many operation steps; this way, parallelization of some of
these steps using repeated units of the same floating-point
operator increases the performance of the design.

Both reasons represent two levels of parallelism: in
the bottom, a fine-grained parallelization of the fitness
equation; in the top, a fast computation of the fitness eval-
uation phase applying replicated fitness units in parallel
to several individuals of the population. We focused our
research mainly on the fine-grained parallelization of the
fitness formulation, although on-chip concurrent fitness
evaluation has been explored as well. Figure 1 illustrates
these considerations, comparing usual CPU sequential
programming to custom on-chip parallel systems. We
can accelerate the computation of the fitness phase mak-
ing good use of parallelism: replicated fitness functions
working in parallel at the top-level, and parallel compu-
tation of the fitness equation at the bottom-level. We can
observe that CPU requires sequential steps not only for
the evaluation of the fitness of each individual, but for the
calculation of the fitness equation.

The hardware implementation of fitness equations is
made easier thanks to Hardware Description Languages
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(HDLs) and Field Programmable Gate Array (FPGA)
devices [4]. The FPGA technology favoured the rise of a
computing domain that combines software flexibility with
hardware performance exploiting the parallel paradigm:
Reconfigurable Computing (RC) [5]. This way, a fitness
function carefully designed can surpass the CPU per-
formance in similar experimental conditions, as RC has
demonstrated in many applications [6]. In addition, we
decide on FPGAs instead of other competitive technolo-
gies as Graphical Processing Units (GPUs) since FPGAs
usually provide better performance and lower power con-
sumption than GPUs [7].

Reconfigurable computing has been successfully applied
to many bioinformatics problems, because they have a
high parallelism degree. Knowing how to make the most
of this parallelism, we can obtain speedups and energy
savings needed for intensive computing or real-time appli-
cations. In this area, we can find FPGA implementations
for DNA matching based on the BLAST algorithm [8],
Bowtie short-read mapping [9], epistasis detection [10],
molecular modeling [11], and many other algorithms
involved in sequence comparison, multiple sequence
alignment, RNA and protein secondary structure predic-
tion, gene prediction and phylogenetic tree computation
[12], among many others. Nevertheless, these works are
usually focused on solving specific problems, dealing with
their special characteristics and constraints. Contrary to
these approaches, our work tries to get a wide insight into
important aspects to take into account when designing
accelerators.

This way, our main contribution in this paper is to
demonstrate that the fine-grained parallelization of fitness
functions based on floating-point arithmetic can surpass
the performance given by CPUs, in time and power terms,
when they are massively used by metaheuristics for solv-
ing large combinatorial optimization problems in bioin-
formatics. The conclusions of our work can be applied in
general to similar cases, because of the representativeness
of the fitness functions we have chosen. For this pur-
pose, we have selected two specific fitness functions used
in the above mentioned optimization problems by two
reasons: on the one hand, there is not enough informa-
tion about their implementation in FPGAs in the existing
literature; on the other hand, they provide different com-
putational workloads and parallelization levels because of
their floating-point arithmetic formulations, being repre-
sentative formulations of other similar functions widely
used in bioinformatics.

The hardware implementation of the fitness func-
tion can be used as a coprocessor of an embedded
CPU running the metaheuristic in the same FPGA.
Nevertheless, the need for scalability that large and
real-world applications require, and the metaheuristic
request of handling many individuals of the population
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Fig. 1 Two possible parallel levels for a FPGA implementation of the fitness phase in a general metaheuristic

in parallel, make it necessary to consider comput-
ing systems consisting of several FPGAs in multicore
architectures. This coarse-grained parallelization belongs
to the High-Performance Reconfigurable Computing
(HPRC), a promising paradigm that exploits the possi-
bilities of FPGAs [13, 14], although it requires to design
according to computing models based on specific com-
munication and data-handling techniques [15]. Neverthe-
less, if we want to develop a computing system based
on such large FPGA platforms, the first and mandatory
step is to know if the unit to be massively replicated
(in our case, the fitness function) is able to give enough
speedup with regard to usual CPUs. This is the rea-
son why our research is focused on a worthwhile fine-
grained parallelization of the fitness function, since it is
the basis for a success scalability that is left as future
development.

Summarizing, our proposal presents the performance
from a computational perspective. Other performance
features closer to the specific bioinformatics problems
only can be tackled by the corresponding algorithmic
methods and software packages, which are out of the
scope of this work.

Related work

As we pointed out in the previous section, bio-inspired
and evolutionary optimization algorithms are very appro-
priate to be parallelized, not only by applying repeated
fitness hardware units in parallel on several individuals
of the population, but parallelizing other important parts.
For example, the intrinsic parallelism in popular Genetic
Algorithms (GAs) [16] allows better speedups. In this
line, FPGAs have been successfully applied to parallelize
many metaheuristics and optimization algorithms, like
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Differential Evolution (DE) [17], Particle Swarm Opti-
mization (PSO) [18], Artificial Neural Networks (ANN)
[19], and Ant Colony Optimization (ACO) [20], among
many others.

The high performance cost of the fitness evaluation
phase in relation to the overall computing time of the
metaheuristic is a well-studied fact in the literature. Fit-
ness evaluation can take up to 95 % of the total execution
time in genetic programming [21] or 64 % in GAs with
evolutionary mapping [22]. In general, many works have
demonstrated that the execution time of the applications
will mainly depend on the execution time of the fitness
function [23, 24].

The above considerations move us to implement the fit-
ness functions in hardware to enhance the system perfor-
mance. These functions have been accelerated by means
of FPGA devices in genetic programs for financial markets
[25], spatial image filters [26], filtered image signals [27],
test cases [28], and many other engineering applications.

The first bioinformatics problem in our study is gene
selection for classification of high dimensional Microar-
ray data in cancer disease. This optimization problem
has been studied using mainly GAs and Support Vector
Machines (SVMs), where the GA is used to evolve gene
subsets whose fitness is evaluated by a SVM classifier. In
this line, there are approaches based on single objective
[29] and multi-objective [30] points of view. Nevertheless,
we have not found any FPGA implementation of fitness
functions associated to this problem. Therefore, we offer
novel insight into its hardware parallelization.

The second optimization problem considered in our
research deals with biclustering of gene expression data,
which has been tackled by means of custom evolutionary
algorithms [31, 32]. We have not found any FPGA imple-
mentation of the fitness function as it is formulated in
these works. Nevertheless, FPGAs have been applied in a
related work, in order to accelerate the Geometric Biclus-
tering (GBC) algorithm [33]; in this work, we compared
the FPGA implementation with multi-core CPU and GPU
architectures, and found out that FPGA achieved higher
speedup for large microarrays, as well as lower power
consumption.

Two case studies in bioinformatics

We have tackled the implementation of the two above
mentioned bioinformatics problems following the same
strategy: first, we design a fine-grain parallel circuit that
implements the fitness function; then, we measure the
speed-up with regard to current general-purpose proces-
sors for just one fitness evaluation; finally, we estimate
the performance when several fitness circuits evaluate
individuals in parallel, taking into account the area con-
straints for a single FPGA. This approach allows us to
apply the fitness circuits as coprocessors of an embedded
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processor that drives different optimization algorithms.
This methodology is similar to other studies, as [34, 35],
where a single FPGA contains multiple instances of fitness
circuits to evaluate possible solutions in parallel, together
with the optimization algorithm driven by an embedded
processor.

There are many other bioinformatics problems involv-
ing metaheuristics with fitness functions similar to these
two cases, specifically with regard to the floating-point
arithmetic [36, 37]. This way, analyzing the FPGA imple-
mentation of the two case studies can contribute to expect
good computing speedups in other works.

Gene selection for cancer classification

The analysis of microarray-based gene expression allows
us to compare between the gene expression levels of can-
cerous and normal cells, in order to select the genes
under suspicion [38]. These genes are useful for cancer
classification, but hard to be selected when the number
of genes (M) and samples (N) are very high, shaping a
combinatorial optimization problem.

A common approach to face this challenge consists in
selecting a subset of suspicious genes for cancer classifi-
cation. This is the basis of many metaheuristics where the
individuals of the population are gene subsets. We have
considered a fitness function given by (1), where x is the
subset, A(x) is the leave-one-out-cross-validation accu-
racy provided by a classifier, R(x) is the number of selected
genes in the subset, and w; and wy are weights for the
accuracy level and the number of selected genes, respec-
tively [30]. This fitness function must be maximised by the
metaheuristics in order to find an optimal gene subset.

Fx) = wiAG) + w/% 1)

The top-level circuit to test the fitness function
(Additional file 1: Figure S1) is composed of NF instances
of the fitness circuit, NC instances of a floating-point
comparator, and a controller that drives and parallelizes
the operations involved in F. The value of NF depends on
the FPGA area.

The mission of the controller is to handle the different
steps of the test process, which follows this scheme:

1. The controller simultaneously sends different subsets
to the fitness units, together with a start instruction
and other values involved in the fitness calculation.

2. The fitness units start to compute F in parallel for
each subset. The calculation in each unit is parallel
too.

3. Once all the NF units have calculated the fitness
values, they are sent in parallel by pairs to
NC = NF/2 floating-point comparators.
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4. The comparators determine the highest values of the
fitness pairs. Once all the comparisons have finished,
the best values are compared again by pairs, this time
by means of NC/2 comparators.

5. The comparison process continues up to reach the
last pair of higher values, where the highest one is
given back to the controller.

The fitness circuit implements the arithmetic oper-
ations involved in F, some of them in parallel. The
architecture of the fitness unit (Additional file 1: Figure
S2) is composed of several arithmetic modules and a
fitness controller. The fitness controller drives the arith-
metic operations according to (1), where three oper-
ations are performed in parallel: w1A(x), wo/M and
M — R(x). This architecture needs three floating-point
arithmetic operators (adder, multiplier and divider) and
an integer to float converter. The fitness controller
supplies the operands to the arithmetic modules and
receives the results. Once the calculation of F has been
completed, the fitness controller gives it back to the
controller.

Biclustering of gene expression data

This problem deals with numerical matrices that repre-
sent information extracted from microarray data. These
matrices can be built using clustering or biclustering
methods [39]. Clustering methods gather together genes
with a similar behaviour under all the experimental
conditions, using algorithms based on genes similar-
ity, whereas biclustering methods find subsets of genes
with the same behaviour under a subset of experimental
conditions.

A general bicluster is represented by a matrix B of I
rows (number of experimental conditions) and J columns
(number of genes), where the element b;; is the expression
level of the gen j under the experimental condition i.

Since biclustering is more complex than clustering, sev-
eral evolutionary algorithms have been applied in order to
find biclusters. These algorithms consider as fitness func-
tion a measure for assessing the quality of biclusters. One
usual measure is the Mean Squared Residue (MSR), that
provides lower values for better biclusters. The MSR value
is calculated following these steps:

Calculation of the means biJ of each row i (2).
Calculation of the means blj of each column j (3).
Calculation of the mean bIJ of the entire matrix (4).
Calculation of the residue r;; of each matrix element (5).
Calculation of the MSR (6).
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This procedure is highly parallelizable. There are differ-
ent ways to parallelize the calculation of MSR, according
to the experimental constraints: the more resources we
have, the more parallelization we can achieve. Since the
parallelism comes basically from the use of replicated cir-
cuits of the floating-point arithmetic operators, the FPGA
device can host different number of these units depend-
ing on two factors: the specific FPGA device (family and
model) and the size of the bicluster. Due to this reason,
we have considered two different parallelization models to
compute MSR.

We name the first model as MSR partially parallelized.
This is a procedure useful for bigger matrices or FPGA
devices with lower area, where we can only use a limited
number of repeated circuits for the arithmetic operators.
This procedure involves more sequential steps than in the
case where we have as many multipliers as elements b;; in
the matrix. This way, the computation of MSR follows six
sequential steps, each of them composed of parallel tasks,
as Fig. 2 shows an example of a 8x 8 bicluster:

1. The elements b;; of each row and column are added
in parallel, obtaining at the same time the values of
sum_biJ; and sum_hljj.

2. The sum sum_bliJ of all the elements b;; of the matrix
(adding the values of sum_biJ for all the rows) is
obtained in parallel together with the values of biJ;
(obtained dividing sum_biJ; by J) according to (2).

3. The values of blj; are obtained in parallel dividing the

corresponding sum_blj; by I, according to (3).

The value of blJ, according to (4), is calculated

dividing sum_bIJ by I - J.

5. The values of rj;, according to (5), are calculated in
parallel by rows, but sequentially by columns, taking
into account that the number of parallel
floating-point multipliers is limited.

6. Finally, the value of MSR, according to (6), is
obtained parallelizing the calculation of 2.

-
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Fig. 2 Partially-parallel MSR computation for a 8 x 8 bicluster

The MSR fully parallelized model parallelizes the MSR
computation in a higher grade. This procedure can be
applied to large FPGA devices or smaller matrices. In this
case, the MSR calculation follows five sequential steps,
each of them also composed of parallel tasks, as Fig. 3
shows for an example of a 4 x4 bicluster:

. The first step is the same as in the MSR partially
parallelized model: calculation of sum_biJ; and
sum_bljj.

. Now we increase the parallelism with regard to the

first model, calculating in parallel sum_blJ, biJ; and

blj;.

This step corresponds with the fourth step in the first

model: calculation of bIJ.

Now we can calculate ;; in a fully parallel way,

because we have more parallel floating-point

multipliers.

The last step calculates MSR as the previous model

does.

The top-level circuit that measures the MSR perfor-
mance (Additional file 1: Figure S3), just like the fitness

function for the first bionformatics problem, is composed
of NF instances of the fitness circuit, NC instances of a
floating-point comparator, and a controller. The value of
NF and the corresponding NC = NF/2 also depend on
the FPGA area.

The controller and the fitness circuits have different
implementations according to the parallelization model
and the bicluster size. The implementation version is
identified by one letter (f for the partially parallelized
model, and 4 for the fully parallelized one) followed by the
matrix size. In addition, the number of fitness and com-
parator units is specified for the controller. For example,
controller-f16x8-NF6-NC3 denotes the circuit implemen-
tation for a bicluster of 16 experimental conditions and
8 genes driven by the partially parallelized model using
6 parallel fitness units; in this case, the fitness circuit
associated with this controller is identified as msr-f16x8.

The architecture of the fitness circuit (Additional file 1:
Figure S4) may contain different number of adders,
multipliers, dividers and integer-to-floating point con-
verters, according to the implementation version. Each
implementation version takes into account specific par-
allelization and resource use. For example, the design
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controller-f8x8-NF4-NC2 hosts 2 comparators and 4 fit-
ness units of type msr-f8x8, each of them containing 8
adders, 8 multipliers, 8 dividers and 8 converters, whereas
a controller-a4x4-NF4-NC2 circuit counts the same num-
ber of comparators and fitness units of type msr-a4x4,
each of them containing 16 adders, 16 multipliers, 16
dividers and 16 converters. Obviously, the designs follow-
ing the fully-parallelized model need much more hard-
ware resources than the partially-parallelized model, even
for smaller biclusters.

Results

This section summarizes the tools, hardware resources,
and implementation keys from which the results were
obtained.

Design tools
We have designed the fitness units, controllers and assis-
tant circuits using programming languages and tools
specifically used for designing with reconfigurable hard-
ware. The main cores were programmed using VHDL
hardware description language [40]. This is a is very
efficient and known language, specially when we are
programming at the register-transfer level, allowing to
program algorithms abstracting away the hardware as far
as it is possible.

On the other hand, we have used Xilinx ISE 14
software suite [41] for the simulation, synthesis and

implementation of the top-level circuits. This suite con-
tains two important tools: on the one hand, CORE Gen-
erator System tool was used for generating the circuits for
the floating-point arithmetic operators; on the other hand,
ISim simulator was used for testing the top level circuit
and measuring the time responses, very useful to calculate
the speedups of the FPGAs with regard to CPUs.

The design methodology follows some steps, starting
from the programming of the circuits using VHDL and
CORE Generator tool. In this step is mandatory to do
the maximum parallelization effort in order to design an
efficient architecture. Once built the codes, the synthesis
and implementation step allows obtaining the minimum
clock frequency for a determined FPGA device. Using
this information, a VHDL testbench customized with
the corresponding clock period can simulate the top
level design using ISim, obtaining the time response of
the circuit, which will be used to calculate the FPGA
speedup.

Hardware resources
Table 1 shows the hardware used for the experiments:
FPGA devices for implementing the fitness circuits and
general-purpose CPUs for comparing the performance
results.

The selected Xilinx FPGA devices offer a representa-
tive range of features, including the low-cost Spartan6
(xc6slx150), the high-performance Virtex6 (xc6vIx550t)
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Table 1 Hardware resources

Devices Features

FPGAs: Technology Logic cells  DSP slices  RAM blocks
xc5vIx330-1ff1760  65nm 331,776 192 10,368 kB
Xc6vIx550t-2ff1759  40nm 549,888 864 22,752 kB
xc6sIx150-3fgg676  45nm 147,443 180 4,824 kB

CPUs: Technology GHz
Core2-E6750 65nm 2.6
i7-950 45nm 3.07
i5-2430 32nm 24
i7-2600 32nm 34

and the balanced Virtex5 (xc5vIx330). These devices may
be characterized by four important features that describe
the process technology (Complementary Metal-Oxide-
Semiconductor -CMOS- depth in nanometers), the num-
ber of logic cells (as indicator of the area available to host
the circuits), the number of internal Digital Signal Proces-
sor (DSP) slices (related to the speed of the floating-point
arithmetic operators) and the number of memory blocks
(useful to handle the circuit data).

We measured the performance of our three FPGA
devices with the post-placement and routing simulation
tool provided by the implementation environment. The
validation of the results consisted in comparing the sim-
ulation times of the Virtex5 device with those measured
with custom circuits on a prototyping board that hosted
the xc5v1x330 device: Xilinx University Program Virtex5
Development Kit. Since both times were almost equal, we
can approve the simulation results corresponding to the
other FPGA devices.

In order to establish a valid FPGA vs CPU compari-
son, and properly analyze the performances, we should
consider the use of contemporary devices with similar
technologies. This reason led us to use several processors
of different CMOS technologies and clock frequencies, as
we can see in Table 1.

Implementation keys

We designed custom circuits to test the performance of
the fitness function instead of using embedded processors
because these ones take up an area that, otherwise, would
be useful for hosting more parallel fitness circuits.

Each synthesis was repeated several times following
different strategies in order to obtain the highest clock
frequency. On the one hand, we considered three opti-
mization synthesis profiles: default, timing performance
with physical synthesis, and timing performance without
input/output blocks packing; other synthesis profiles were
discarded because of their worse results. On the other
hand, we have tested two possibilities when it comes to
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synthesizing the floating-point arithmetic operators by
CORE Generator: using internal DSPs or logic blocks in
the architecture optimization. If we consider DSPs, the
performance can be better, but the limited number of
DSPs forces us to consider digital logic if we want to have
more parallel units, involving more area consumption;
this tradeoff between number and performance of parallel
operators must be evaluated in each case.

This way, each design was synthesized up to 6 times
(according to the 3 synthesis profiles and the 2 possibilities
of using DSPs in the operator circuits), recording the best
result among the obtained ones. For example, for the fit-
ness function in the gene selection for cancer classification
problem, we tested 6 cases (8, 16, 32, 64, 128 and 256 par-
allel fitness units); therefore, 6 cases x 3 synthesis profiles
x 2 operator optimizations = 36 synthesis experiments
were performed. Depending on the NF value considered,
the synthesis took from 1 hour to 2 days, also accord-
ing to the processor used among those listed in Table 1.
This means many days running synthesis processes. For
the fitness function in the biclustering of gene expression
data problem, 8 cases corresponding to different matrix
sizes and parallelizing strategies were tested (f4x4, f8x8,
f16x8, f16x16, £30x50, f32x64, adx4, a5x5), totalizing 48
syntheses.

Each synthesis reports interesting data with regard to
the scalability and performance of the fitness circuits:

1. Area occupation. Several indicators (slice registers,
slice Look-Up-Tables and occupied slices) allow us to
calculate the number of circuits that we can replicate
in the same FPGA device in order to work in parallel.
Depending on the values returned by these indicators
and the FPGA family and model, a different number
of such circuits can be considered.

2. Timing performance. The value of the maximum
frequency (MHz) (that corresponds to the minimum
clock period in nanoseconds) allows us to determine
the time to process the fitness function; if we consider
NF parallel units of the fitness circuit, the time to
process the different solutions is equal to that time.

3. Power consumption. Nowadays, it is very important
to design energy-aware circuits in order to minimize
operation costs when solving problems that involve
massive computations along the time. The synthesis
process tells us the power (watts) consumed by the
fitness circuits.

Discussion

Among the many data returned by the synthesis pro-
cesses, we analyze mainly the timing reports, since they
provide the speedup of FPGA versus CPU (of course,
we have checked the numerical results are the same in
both FPGA and CPU implementations). We understand
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by timing performance the reciprocal of the computing
time T [42]. To compare the performance of FPGAs and
processors, we say that the speedup of FPGA versus CPU
is Tcpu/Trrca- Hence, a speedup greater than one means
that FPGA is faster than CPU; otherwise the processor
wins. It is important to realize that both values, Tcp;r and
Tepga, measure the same number of fitness evaluations;
in the first case, using a loop of sequential computations,
whereas the second case considers a parallel computation
of NF fitness circuits.

According to this speedup definition, and taking into
account the maximum number of parallel fitness circuits
that can operate in parallel in the same FPGA, Fig. 4
shows that FPGAs are much faster than CPUs comput-
ing the fitness phase in the gene selection for the cancer
classification problem, according to the different FPGA
devices, two processors, and a wide range of values for
NF. The FPGAs provide better speedups than CPUs (up
to x9), even for the highest performance processor. We
can observe that, the more parallel fitness units we con-
sider, the better speedup we obtain, although this increase
is not linear, because of the more dense top level cir-
cuits that slow down the clock frequency. In addition,
Virtex5 provides better performance than Virtex6 because
of the memory constraints to handle the synthesis of large
designs (this constraint impedes to consider 256 fitness
circuits for the Virtex6 device). Finally, since the Spartan6
device is a low-cost FPGA, it provides much lesser area
than the other devices, making it impossible to host more
than 32 parallel fitness units.

A similar analysis can be done seeing Fig. 5, that shows
the speedups in the biclustering of gene expression data
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problem for experiments that use different matrix sizes
and parallelizing strategies. Here, we have considered the
high and medium-performance FPGA devices and other
two different CPUs. Now, we obtain higher speedups than
in the former bioinformatics problem (up to x14), and for
all the cases, because of the higher parallelization degree
in both, the fitness equations and the matrix operations. In
addition, we can extract two interesting conclusions. On
the one hand, the MSR fully parallelized model provides
better performance than the MSR partially parallelized
model for equal bicluster sizes, as the first one involves
more parallel operations. Nevertheless, the highest num-
ber of replicated floating-point arithmetic operators runs
out first the FPGA area available: this is the reason why
we can not consider large matrix sizes in the fully paral-
lelized model. On the other hand, when using the MSR
partially parallelized model, since it parallelizes mainly by
rows, we should compare matrix sizes with the same num-
ber of rows, for example f16x8 with f16x16. In this case,
we find that the performance is better with fewer columns,
as the lower number of floating-point arithmetic opera-
tors allows more area to host more fitness units working in
parallel, which has more weight in the performance than
the bicluster size.

The speedups for the second bioinformatics problem
(biclustering) are good in all the cases and higher than
for the first problem (gene selection). We find the rea-
son mainly in the parallelism degree of the fitness cir-
cuit design, rather than in the number of such circuits
working in parallel. The bottom level of the fine-grained
parallelization is the fitness circuit, which is composed
of some basic floating point operators: adders, dividers,

2 T speedup FPGA vs CPU
8 Virtex5 vsi7-9503GHz
ya g ™ Virtex6 vsi7-9503GHz

Spartan6 vsi7-9503GHz / 2
5 1 Virtex5 vsi5-2430 2.4GHz
5 do Virtex6 vsi5-2430 2.4GHz

Spartan6 vsi5-2430 2.4GHz g
4
3
2
1 r
0

8 16 32 64 128 256 NF

Fig. 4 Speedup FPGA vs CPU for the fitness function in the gene selection for cancer classification problem
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Fig. 5 Speedup FPGA vs CPU for the fitness function in the biclustering of gene expression data problem

multipliers and integer to float converters. This way, the
more floating point operators running in parallel, the
better performance we expect. We find 4 operators in
the fitness circuit for gene selection, whereas the fit-
ness implementations for the different bicluster sizes and
architectures go from 8 to 32 operators. The number
of floating-point operators running in parallel has great
influence on the final performance, even more than the
number of replicated fitness circuits. In fact, the number
of parallel units is higher in the first problem: the perfor-
mance speedup for the gene selection test with 256 fitness
units is x9, whereas 20 units in a f8x8 bicluster gives x14.
The reason is simple: a greater number of parallel fitness
units in the same FPGA device implies more circuit den-
sity in the top level architecture (more communication
buses, interconnection blocks, logic cells, etc.), which pro-
duces smaller clock frequencies with the corresponding
time response decrease.

The ratio of the area occupied by just one fitness cir-
cuit to the maximum number of such circuits that the
FPGA can host can be seen in Fig. 6, for the second
bioinformatics problem: we can have more fitness units in
larger FPGAs or considering designs that use lower slice
resources. Summarizing, there is a strong relationship
between the area required to implement a single fitness
function and the bicluster size. Furthermore, increasing
the area required for the fitness function decreases the
total number of parallel units that can be implemented on
FPGA. Therefore, it is needed to establish a tradeoff for
each experimental framework.

Finally, it is interesting to know the power consump-
tion of the fitness circuits, since they have an important

impact in the metaheuristics as we saw in the related
work section. This impact involves high energy when the
optimization problems demand intensive computations
along the time.

The power consumption in the FPGA is calculated by
the XPower Analyzer tool inside the Place&Route phase
of the implementation, and the CPU energy is measured
by the Powerstat tool under Linux, using the Advanced
Configuration and Power Interface (ACPI) battery data of
a laptop. Considering the gene selection for cancer clas-
sification problem with NF=8, we obtained a power con-
sumptions of 3, 6.4 and 0.2 watts for Virtex5, Virtex6 and
Spartan6 devices respectively, whereas the Core2-E6750
processor used around 40 watts for the same configu-
ration. This means that the FPGA reduces the power
consumption at least 84 % with regard to the CPU.

Conclusions

The interest of applying the reconfigurable computing
technology based on FPGAs to implement the fitness
function lies in the possibility of accelerating the evalua-
tion phase in many metaheuristics. This phase evaluates
a population of solutions to a combinatorial optimization
problem in the bioinformatics domain. The design of a
custom circuit that implements the fitness equation allows
its replication in several processing units that work in
parallel and, thus, accelerate the evaluation phase.

Since many optimization problems in bioinformatics
define fitness functions as floating-point arithmetic oper-
ations, we have tested two of them in order to check spe-
cific implementation features: area occupation, response
time and energy, mainly. From these values we can obtain
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Fig. 6 FPGA area occupied by just one fitness circuit and maximum number of such units to work in parallel in the biclustering problem

the number of replicated units working in parallel and
the time for the evaluation phase. The results show that
FPGAs provide better performances than CPUs, not only
because of the parallelization of the arithmetic operations
of the fitness, but also thanks to the concurrent fitness
evaluation for several individuals of the population in the
metaheuristic.

Finally, the very low power consumption of the FPGA
devices in comparison to CPUs proves that FPGA-
based parallel computing environments are excellent
low-cost computing solutions for intensive computing
scenarios.

As future research line, we will tackle the connection
of these accelerated fitness functions with evolutionary
frameworks for solving the combinatorial optimization
problems. The main idea is to implement an EA in soft-
ware, leaving the intensive fitness computation to the
hardware.

Methods

The methodology for designing and simulating the dif-
ferent circuits considers the software tools described
before in Section “Design tools”. Assuming that these tools
require depth knowledge in hardware description lan-
guages, as well as the corresponding software licenses
from the vendors, the general methodology followed in
this work is composed of nine steps:

1. Build a hardware project under Xilinx ISE 14.6
environment, selecting the corresponding FPGA
device.

2. Design the code files corresponding to the
bioinformatics problem: VHDL files. This is the core

step of the work, meaning the greatest effort of the
project.

3. Generate the floating-point arithmetic operators
from the CoreGen tool.

4. Synthesize and implement the design, activating the
corresponding option to obtain advanced reports.

5. After the implementation phase, check the clock
period required.

6. Simulate the design using a VHDL testbench,
adjusting the clock period to the reported before.

7. Check the time response for the FPGA.

8. Build a C code to run the fitness function in usual
microprocessors, compile, run and check the time
response.

9. Compare the measured time against the obtained in
the FPGA, and calculate the speedup.
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