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Abstract

Background: “Tail-anchored (TA) proteins” is a collective term for transmembrane proteins with a C-terminal
transmembrane domain (TMD) and without an N-terminal signal sequence. TA proteins account for approximately
3–5 % of all transmembrane proteins that mediate membrane fusion, regulation of apoptosis, and vesicular transport.
The combined use of TMD and signal sequence prediction tools is typically required to predict TA proteins.

Results: Here we developed a prediction system named TAPPM that predicted TA proteins solely from target amino
acid sequences according to the knowledge of the sequence features of TMDs and the peripheral regions of TA
proteins. Manually curated TA proteins were collected from published literature. We constructed hidden markov
models of TA proteins as well as three different types of transmembrane proteins with similar structures and
compared their likelihoods as TA proteins.

Conclusions: Using the HMMmodels, we achieved high prediction accuracy; area under the receiver operator curve
values reaching 0.963. A command line tool written in Python is available at https://github.com/davecao/tappm_cli.
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Abbreviations: AUC, Area under the receiver operator curve; BER, Balanced error rate; CLI, Command line interface
FN, False-negative; FP, False-positive; HMM, Hidden Markov model; SNARE, Soluble N-ethylmaleimide-sensitive factor
attachment protein receptor; SRP, Signal recognition particle; TA proteins, Tail-anchored proteins; TMD,
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Background
“Tail-anchored (TA) proteins” is a collective term for
transmembrane proteins with a C-terminal transmem-
brane domain (TMD) and without an N-terminal signal
sequence. They account for approximately 3–5 % of all
transmembrane proteins that are involved in a wide range
of processes such asmembrane fusion, regulation of apop-
tosis, and vesicular transport [1]. Because TA proteins
lack N-terminal signal sequences, they are not recog-
nized by the ribosomal signal recognition particle (SRP).
After translation, they are bound by an ATPase (TRC40
in mammals and Get3 in yeast) at their TMD [2, 3].
After binding to ATP, TRC40 and Get3 form a so-called
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“closed” structure, and the resulting hydrophobic groove
recognizes the TMD of TA proteins [4–8].
The research on TA proteins started with synap-

tobrevin, a soluble N-ethylmaleimide-sensitive factor
(NSF) attachment protein receptor (SNARE). Certain
membrane proteins with a single TMD near the C-
terminus are not recognized by SRP, because their TMD
remains within the ribosome when translation terminates
[9]. Kutay et al. found that synaptobrevin does not inter-
act with SRP or SEC61 during its translocation to the
membrane [10]. Examples of TA proteins include SNARE
proteins involved inmembrane fusion, Bcl-family proteins
that regulate apoptosis, and the electron transport chain
component cytochrome b5.
Although the mechanism of translocation of TA pro-

teins is gradually being unraveled, more research is
required along with new tools that can predict a TA
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protein from its amino acid sequence. However, public-
domain TA-protein prediction tools are not available. Fur-
thermore, it is difficult to predict TA proteins according
to amino acid sequence similarities, because they belong
to different families that share only their C-terminal
TMDs.
Numerousmethods for identifying transmembrane pro-

teins were either proposed or are available as web-based
tools, and many are very accurate [11–13]. However, no
publicly available prediction tool can distinguish TA pro-
teins from other types of membrane proteins. The con-
ventional computational method to predict TA proteins
analyzes and integrates the results obtained from multi-
ple tools [14]. Such procedures specifically require TMD
prediction tools such as TMHMM and signal sequence
prediction tools such as SignalP and TargetP [15–18]. To
partially circumvent such cumbersome procedures and to
improve prediction accuracy, a dedicated prediction tool
capable of distinguishing TA proteins from other mem-
brane proteins is expected to be highly useful. To address
this issue, we developed a machine-learning based tech-
nique to predict TA proteins from only target amino
acid sequences, which employs Hidden Markov Models
(HMMs). The high-speed prediction capabilities of this
tool can be used to analyze an entire genome.

Results and discussion
Likelihood score predictions
The results of likelihood score-based predictions are
shown in Table 1. For predictions with the signal pep-
tide (SP) and TA datasets, the scores were calculated from
the likelihood values of the TA and SP models. For pre-
dictions with the membrane protein (MP) dataset, the
nonmembrane protein (NO) set, all negative data, and the
TA dataset, scores were calculated from likelihood values
of the TA and MP models. We chose values of the thresh-
old scores that minimized the balanced error rate (BER)
(see ‘Methods’).
The discriminatory powers of the SP and TA datasets

were indicated by sensitivity and specificity values of
approximately 0.877 and 0.917, respectively, and those
of the MP and TA datasets were approximately 0.901
and 0.934, respectively. Thus, the latter achieved the best
performance among the three groups. The sensitivity

and specificity of the NO set were 0.895 and 0.929,
respectively.
To discriminate between the all negative and TA

datasets, sensitivity was 0.864 (0.013-0.037 points lower
than using individual discrimination). Because of this
reduced ability to discriminate between the datasets, the
number of sequences that were correctly recognized as
TA proteins decreased by 2. In contrast, specificity was
approximately 0.952, which was higher than that of any
other example of individual discrimination. The number
of false positives was 327, which was fewer than that of
individual discrimination using the NO set.
Receiver operating characteristic (ROC) curves and

likelihood distributions from discrimination using the SP,
MP, NO, and all-negative datasets are shown in Fig. 1. In
all four cases, the distributions of the likelihood scores
were not completely distinguishable between the posi-
tive and negative data. The distribution of the likelihood
scores of the negative data peaked at a single value,
whereas there were two or three peaks in the distribution
of the TA sets.
Although almost all likelihood scores in the TA set

were> –0.1, the scores were< –0.2 for only one sequence
(UniProt ID: YD012_YEAST). With this exception, the
minimum likelihood scores of the TA set were −0.048 in
Ssp (score for the SP model) and −0.056 in Smp (score for
the MP model).

Decoding-based predictions
The decoding-based prediction results are shown in
Table 2. Because the determination is based on the pres-
ence or absence of TMD and tail regions, this prediction
method lacks a threshold. Therefore, sensitivity and speci-
ficity were used as the evaluation indices.
In the TA set, TMD and tail regions were correctly

predicted for 146 proteins, although prediction attempts
failed for 16 proteins. Of the proteins that were not pre-
dicted, nine had no TMD region in the decoded sequence,
and seven had a tail region comprising at least 31 residues
and a TMD region. For the 146 sequences with success-
fully predicted tail regions, the lengths of the predicted
TMD and tail regions are shown in Fig. 2.
Because of the structural constraints of the TA model,

the lengths of TMD regions were maintained between

Table 1 Likelihood score classification

Negative data AUC Sensitivity Specificity TP FP FN TN

SP 0.957 0.877 0.917 142 108 20 1199

MP 0.971 0.901 0.934 146 27 16 383

NO 0.967 0.895 0.929 145 355 17 4675

Total 0.963 0.864 0.952 140 327 22 6420

Each row corresponds to the specified individual negative data. The “total” at the bottom of the table shows the cross-validation results for all negative data. TP, FP, FN, and
TN represent true-positive, false-positive, false-negative, and true-negative values, respectively
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Fig. 1 Results of likelihood score-based prediction. In a to d, the upper graphs show the ROC curves, and the lower graphs shows the histogram of
likelihood scores. The vertical red lines represent the thresholds for calculating sensitivity and specificity. For NO and ALL set, the MP scores are used
as their likelihood scores (denoted as Smp*) and the threshold value of the MP dataset is used as their threshold values
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Table 2 Classification by decoding

Name Sensitivity Specificity TP FP FN TN

SP 0.901 0.881 146 153 16 1154

MP 0.901 0.924 146 23 16 387

NO 0.901 0.960 146 199 16 4831

Total 0.901 0.944 146 375 16 6372

Each row corresponds to the specified individual negative data. The “total” at the bottom of the table shows the cross-validation results of all negative data. The area under
the receiver operator curve (AUC) cannot be calculated because there are no indices (e.g., likelihood scores) associated with this method

15 and 25 residues. The most abundant sequences (27
sequences) were those with predicted lengths of 18
residues, followed by 24 sequences predicted with 17
residues and 18 sequences predicted with 21 residues. Of
the 146 successful predictions, 124 possessed tail regions
comprising ≤10 residues, accounting for 84.9 % of the
successfully predicted sequences and 76.5 % of all TA-
set sequences. In contrast, 22 sequences were predicted

with tail regions ≥11 residues. Among the sequences with
failed tail-region predictions but successful TMD-region
predictions, the shortest tail region was 31 residues (2
sequences), and the longest was 92 residues.

Predictions using both likelihood score and decoding
The results of predictions combining the likelihood score-
based method and the decoding-based method are shown

Fig. 2 Distribution of predicted lengths of tail and TMD regions. a Histogram of the predicted lengths of the TMD regions in sequences successfully
predicted to have TMD and tail regions (146 sequences). b Histogram of the predicted lengths of the tail regions in sequences successfully
predicted to have TMD and tail regions (146 sequences)
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in Table 3. Only sequences judged as TA proteins by both
methods were regarded as positive. Because no threshold
exists for this method (as in the decoding-only method),
the evaluation was based on sensitivity and specificity.
Compared with predictions based only on likelihood

scores or only decoding, sensitivity decreased while speci-
ficity increased using this method, because the results
were the product of the predictions of both methods.
Although sensitivity ranged from approximately 85 % to a
maximum of 92 %, specificity remained between approxi-
mately 94–98 %. This high specificity may prove useful in
applying the method to genomes with all-negative data.

Discussion
In the present study, we used likelihood score-based pre-
dictions to achieve AUC values ≥0.95 for every dataset,
indicating that HMMs developed here successfully reflect
the characteristics of TA proteins and membrane proteins
with signal sequences. The MP dataset had the highest
AUC, likely because the topologies of its members, which
possess multiple TMDs, differ significantly from those of
TA proteins. Many proteins included in the NO dataset
were also expected to have structures different from those
of TA proteins and they did not share common features
except for signal sequences, and had no dedicated models.
Consequently, the AUC value for the NO set was slightly
lower than that of the MP set. Further, the SP set had the
lowest AUC. In this set, 198 sequences contained TMDs
within 30 residues of the C-terminus (approximately 15 %
of all sequences in the SP set). With so many structurally
similar sequences, discrimination from the TA set would
be more difficult than that with the other two datasets.
In all methods, we identified 10 common cases of

failed predictions (Additional file 1: Table S5). Of the
sequences with failed predictions, the SEC20_YEAST
sequence encodes a SNARE protein, which is involved
in transport in the Golgi apparatus, and forms a com-
plex with UFE1 and USE1 [19]. This protein contains a
TMD, but its end is situated 91 residues distal to the
C-terminus. As described in the ‘Methods’ section, the
majority of TA TMD domains reside within 10 residues
of the C-terminus; therefore, in the present model, a

Table 3 Predictions using likelihood scores and decoding

Name Sensitivity Specificity TP FP FN TN

SP 0.846 0.947 137 69 25 1238

MP 0.870 0.956 141 18 21 392

NO 0.920 0.980 149 101 22 4929

Total 0.852 0.978 138 151 24 6596

Each row corresponds to the specified individual negative data. The “total” at the
bottom of the table shows cross-validation results of all negative data. The area
under the receiver operator curve (AUC) cannot be calculated, because there are no
indices (e.g., likelihood scores) associated with this method

TMD 91 residue away from the C-terminus will not
be detected and thereby failed to be predicted. The
YD012_YEAST sequence is another example of a failed
prediction. Although the function of this sequence is
unknown, it localizes to the plasma membrane [20]. The
sequence contains glutamine (Q)-rich regions, account-
ing for its low hydrophobicity and low likelihood score
(Additional file 2: Figure S2).
To further investigate the characteristics of unsuccess-

fully predicted sequences, we analyzed the lengths and
hydrophobicity values of the sequences listed at least
once in Table S5. The length of unsuccessfully predicted
sequences ranged from <100 residues to approximately
1000 residues (Additional file 3: Figure S3). However,
in the 200–300 residue sequence range that includes
an abundance of TA proteins, only one sequence was
not predicted (UniProt ID: O80952_ARATH). In con-
trast, the failure rate was relatively high for proteins with
long sequences. Thus, 9 of 30 TA proteins with ≥400
residues were not predicted (30 % failure rate). Like-
wise, of the 23 TA proteins <100 residues, eight were not
predicted.
These results may be attributable to the Baum–Welch

algorithm used for training HMMs, which is a type
of maximum likelihood estimation, and depends on
the training data. Therefore, the models were highly
compatible with more accurately annotated 200–300
residue sequences. However, because data is scarce for
sequences of vastly different lengths, the characteristics
of such sequences were likely not fully reflected during
training. The hydrophobicity scores for many individual
sequences of TA proteins were highest 10–20 residues
upstream of the C-terminus, thereby creating highly
hydrophobic regions near the C-terminus. Nevertheless,
in some sequences, hydrophobic regions were relatively
distant from the C-terminus (e.g., NDB3B_ARATH,
TO221_ARATH, and MTX1_HUMAN). Moreover,
because SEC20_YEAST and TLG2_YEAST sequences
possess TMDs >50 residues upstream from the C-
terminus, there were no hydrophobic regions in these
plots. In such sequences, the likelihood decreased during
decoding until a TMD was detected. Therefore, predict-
ing their correct topology may be more difficult than for
sequences with hydrophobic domains in the proximity of
the C-terminus.
For the genomes of humans, yeast, and thale cress,

the conventional prediction method involves the com-
bined use of existing prediction tools for TMDs and signal
sequences.
The conventional method employed the tools TMHMM

[16] to predict TMDs and SignalP [15] to predict sig-
nal sequences. We applied this method to the TA set to
determine its differences with our method named Tailed-
Anchored Protein Prediction Method, TAPPM (Table 4).
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Table 4 Sequences not predicted by the TMHMM or our
method TAPPM

TAPPM TMHMM TMHMM TAPPM
failures failures failures and failures and

TAPPM success TMHHM successes

TOM7_YEAST GDAP1_HUMAN TOM22_YEAST O22825_ARATH

PGC1_YEAST PEX15_YEAST YBM6_YEAST MAVS_HUMAN

TOM7_HUMAN PGC1_YEAST GDAP1_HUMAN TOM6_YEAST

MAVS_HUMAN SEC20_YEAST PEX15_YEAST TLG2_YEAST

O22825_ARATH TOM22_YEAST VPS64_YEAST TOM7_HUMAN

GEX2_ARATH TOM7_YEAST UFE1_YEAST GEX2_ARATH

MTX1_HUMAN UFE1_YEAST MTX1_HUMAN

YD012_YEAST VPS64_YEAST Q9FNB2_ARATH

TOM6_YEAST YBM6_YEAST

TLG2_YEAST YD012_YEAST

Q9FNB2_ARATH

SEC20_YEAST

The TMHMM/SignalP and the TAPPM methods failed
to predict 10 and 12 TA proteins, respectively. The pre-
diction rate of SignalP was 100 %. To construct the TA
dataset, we used annotations from the UniProt/SwissProt
database that assigns signal sequence annotations accord-
ing to SignalP. Therefore, our datasets contained only
sequences that were successfully predicted using SignalP.
Although we did not necessarily consider this while com-
piling our datasets, the TMD annotations were partially
based on TMHMM. Because datasets contained pre-
existing findings derived from the conventional method,
this may impart a slight advantage over our method
for accurate predictions. Although our method failed to
predict more sequences than the conventional method,
some successful predictions included those missed by
the conventional method. In particular, ganglioside-
induced differentiation-associated protein 1 (UniProt ID:
GDAP1_HUMAN) is an empirically confirmed TA pro-
tein, and UniProt/SwissProt assumes it has two TMDs
[21]. Therefore, we believe that the significance of our
method lies in its ability to predict sequences that are not
predicted by the conventional method and for sequences
in databases with annotation errors.

Conclusions
In the present study, we developed a prediction sys-
tem, TAPPM, to identify TA proteins from amino acid
sequences using HMMs, which provides highly accu-
rate predictions. By taking advantage of the properties of
HMMs, we devised two evaluation methods with varying
characteristics. Further, we collected data from empir-
ically confirmed TA proteins to include in the train-
ing data. Despite reduced accuracy to a certain extent

compared with that of the conventional method, our
method predicted the sequences of a few TA proteins
that were not predicted using the conventional method.
Another advantage of our method is that it avoids the
cumbersome procedures required to use the conventional
methods.
We will aim to achieve even higher specificity, which

is required for predicting genomic sequences that encode
TA proteins. To achieve this goal, we will optimize HMMs
for TA proteins and construct sequence models for non-
TA proteins. The identities of intracellular organelles har-
boring TA proteins are unknown as well as the motifs
and mechanisms required for their transport. Therefore,
we believe that prediction of subcellular localization will
contribute to identifying the transport mechanisms.

Methods
Datasets
Before constructing a prediction tool using machine
learning, amino acid sequence data for TA and non-TA
proteins with different signal sequences were prepared as
positive and negative datasets, respectively.

Positive dataset
We manually curated TA protein data mainly from pub-
lished literature for studying TA proteins in humans
(Homo sapiens), thale cress (Arabidopsis thaliana), and
budding yeast (Saccharomyces cerevisiae) [14, 22, 23].
To exclude the non-experimentally confirmed TA pro-

teins, we searched initially collected TA proteins against
the existing databases. The following databases were used:
UniProt (The UniProt Consortium 2012), Saccharomyces
Genome Database [24], TAIR [25], and SUBA 3 [26].
The dataset initially contained 190 sequences; however,
22 sequences are either empirically unsubstantiated or
are nonmembrane proteins and were therefore excluded
from the dataset, leaving 168 sequences (Additional file
4: Table S1). To eliminate sequence redundancy within
the dataset, clustering was performed using BLASTClust
[27] with an 80 % sequence identity threshold and 80 %
length coverage. As a result, 162 clusters were generated,
and their representative 162 sequences were selected as
the final version of the TA protein dataset (Table 5). The
condition of this clustering is not common for general
reductions in homology. However, TA proteins have the
unique characteristics at the C-terminus of the amino
acid sequences which are responsible for targeting mem-
branes of different organelles. We used the above condi-
tion to avoid the removal of relatively similar sequences
but whose C-terminus subsequences are different. In our
analysis of these 162 sequences, all but four sequences
actually had pairwise sequence identities less than 20 % in
the C-terminal subsequences of 30 amino acids, i.e., the
parts subjected to the prediction, demonstrating that our
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Table 5 Subcellular locations of the collected TA protein
sequences

Subcellular location # of sequences

Endoplasmic reticulum 52

Plasma membrane 46

Golgi apparatus 33

Plastid 13

Nucleus 7

Vacuole 8

Peroxisome 3

Synaptic vesicle membrane 3

Certain sequences localize to several subcellular locations; therefore, the sum is <162

method could produce a dataset containing a wide variety
of sequences.
Table 5 shows the numbers of sequences localized to

subcellular compartments. While the majority localize to
the endoplasmic reticulum (ER), plasma membrane, and
Golgi apparatus, some reside in vacuoles or peroxisomes.

Negative dataset
We collected non-TA protein data from the
UniProt/SwissProt database. The annotation (features)
section of each sequence was analyzed to determine the
presence or absence of signal sequences, and the number
of TMDs. Apart from signals belonging to secretory pro-
teins, signals for localization to the nuclear membrane,
mitochondria, and plastids were regarded as equivalent
to a signal sequence. Only those TMDs in the database
with the description “helical” were used to facilitate effi-
cient learning of the difference between TA and non-TA
proteins. All data entries had a signal sequence and were
divided into the groups as follows:

1. Multiple TMDs (multi-pass, “MP set”)
2. Single TMD (single-pass, “SP set”)
3. No TMD (nontransmembrane, “NO set”)

The MP, SP, and NO sets comprised 1902, 5779, and
26,554 sequences, respectively. To eliminate redundancy,
clustering was performed using BLASTClust, with clus-
tering conditions of 40 % length coverage and 45 % score
coverage. From each generated cluster, one sequence was
randomly chosen and included in the final dataset, and the
final MP, SP, and NO datasets contained 410, 1307, and
5030 sequences, respectively.

HMMs
In the present study, we constructed three HMMs cor-
responding to the datasets as follows: the TA model for
the TA structure in the positive dataset, the SP model
for the SP dataset structure in the negative dataset, and

the MP model for the MP dataset structure in the neg-
ative dataset. Descriptions of the respective models are
presented below.

TAmodel
The entire structure of the TA model can be approx-
imately divided into four domains, which we refer to
(from the N-terminus) as the globular, cap, TMD, and
tail regions (Fig. 3a). The starting point was placed at
the C-terminus of the sequence so that the TMDs of
TA proteins, which were mainly distributed near the C-
terminus, could be easily recognized. If many transitions
were required for the HMMbefore reaching the TMD, the
probability of detecting a TMD was extremely low. Before
training, the output probability of each region was defined
(Additional file 5: Table S2). Further, the initial probabil-
ities of the tail and TMD regions in the initial state were
each defined as 50 %. Output probabilities were set such
that hydrophilic, hydrophobic, and basic residues were
more likely to occur in the tail, TMD, and cap regions,
respectively. The definition of these amino acid groups
were given in Additional file 5: Table S2.
The starting point of this model is a hydrophilic site at

the end of the C-terminus (tail region). The tail region has
the transition states as follows: itself, the adjacent state,
and the initial state of the TMD. The initial transition
probabilities were set such that all transition states were
equally probable. For the initial output probability con-
ditions, hydrophilic residues were allowed to occur more
frequently. The number of states was set to either two or
four, and both were used for the calculations of decoding
and probability (described later).
Themodeled TMD region resides next to the tail region.

This region consists of 25 transition states, and the first
14 states transition only to the next state. This design
ensured that the TMD was at least 15 residues long. The
11 states that follow transition to the next state and to the
initial state in the cap region. The initial output proba-
bility conditions were set such that hydrophobic residues
were more likely to occur, and the hydrophilic and basic
residues were less likely to occur.
In the cap region, basic residues were concentrated in

the proximity of TMD. The cap region was assumed to
retain TMD within the plasma membrane through inter-
actions between lipids and hydrophilic residues [28]. The
cap region was designed with a maximum length of five
residues, with two transition states, the next state and
hydrophilic states. The initial output probability condi-
tions for this region were set such that basic residues
were abundant. Finally, the modeled hydrophilic domain,
which was the sequence closest to the N-terminus, was
located at the N-terminus of the protein (globular region).
This region has only one state capable of transitioning to
itself.
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Fig. 3 Transition-state diagram of HMMmodels. a TA model: Circles represent nodes (hidden states) and arrows signify transitions. Two models
were constructed with either two or four states in the tail region. b SP model: Although globular region (1) and globular region (2) have different
transitional states, their initial output probability conditions were identical. cMP model: Under the initial conditions, the output and transition
probabilities of the SP, cap, and TMD regions were identical to those of the SP model. The loop region may comprise one to 20 residues

SPmodel
The SP model encompasses modeled membrane proteins
with a signal sequence and a single TMD. The objective
of this model was to train the HMM to recognize the sig-
nal sequences in TMD and those near the N-terminus,
thereby distinguishing between the TA and the SP pro-
teins that are structurally similar to TA proteins. The
initial output probability conditions for this model are
presented in Additional file 6: Table S3. The transition-
state diagram for this model is shown in Fig. 3b. The
starting point of this model was the N-terminal amino
acid residue. We assigned a probability of 50 % to each
of the initial states of the signal peptide and globular

regions, and the probability of the other states was set
to 0 %. Similar to the TA model, the SP model can be
divided approximately into sections referred to (from the
N-terminus) as the signal peptide (SP) region, globular
region (1), cap region, TMD region, and globular region (2).
The signal peptide region is situated at the front of the

model and recognizes protein signal sequences. In gen-
eral, signal sequences are approximately 15 to 30 residues
long and there is no definite consensus sequence. Never-
theless, a typical signal sequence can be broadly divided
into three regions with different characteristics [29]. At
the N-terminal end, there are frequent occurrences of
many positively charged residues. Adjacent is a region
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comprising ≥6 hydrophobic amino acid residues. At
the C-terminal end, uncharged polar residues frequently
occur with the conservation of one or three residues away
from the signal-sequence cleavage site, and the protein is
transferred from the translocon toward the N-terminus
after cleavage.
To reflect the characteristics of these three sections in

our model signal peptide region, we attempted to repro-
duce the aforementioned differences by altering the initial
output probabilities of the first 10 residues and the two
downstream regions comprising 15 residues each. Basic,
hydrophobic, or hydrophilic residues were specifically set
to occur more frequently in the first 10 and the two
subsequent 15 residue regions, respectively.
The region contiguous to the signal peptide region is

the globular region (1), which was the modeled domain
present between the signal sequence and TMD. This
region has itself and the next cap region as its transition
states.
Similar to the TA model, the cap region models the area

near TMD where basic residues are concentrated. This
region was designed with one to five residues and a higher
representation of basic residues in their initial conditions.
The subsequent TMD region is the modeled TMD with
the same structure as its counterpart in the TA model
and was designed to include between 15 and 25 residues.
Therefore, the first 15 states can only transition to the
next state, whereas the next 10 states can transition to the
globular region (2) and the next state. Located at the end,
the globular region (2) is the modeled hydrophilic domain
located outside TMD, and its single transition state is
itself. The other probability parameters were the same as
those in the globular region (2).

MPmodel
The MP model encompasses proteins with a signal
sequence and multiple TMDs. This model was con-
structed with the aim of establishing a general-purpose
archetype applicable to all membrane proteins with a sig-
nal sequence. The transition-state diagram for this model
is shown in Fig. 3c. The MP model can be approximately
divided into 5 sections, of which the signal peptide, glob-
ular, cap, and TMD regions are similar to those of the SP
model. The additional region is the loop region, which is
a modeled looping structure between TMDs. Although
the overall structure is similar to that of the SP model, a
marked difference is that the TMD region is followed by
a loop region instead of the globular region, and this loop
region can transition back to the cap region.
The starting point of the amino acid sequence was

also the N-terminal amino acid residue. The model was
designed so that the signal peptide and globular regions
had initial probabilities of 50 %, and the initial probabil-
ities of the other states were set to zero. Under initial

conditions, the structures of the signal peptide, globular,
cap, and TMD regions were identical to those of the SP
model. The loop region follows the TMD region. Based on
a report that the loop section linking the TMD consists of
no more than approximately 20 residues [30], this region
was 1–20 residues long. Because two TMDs were not
always linked by a looping structure, each state in the loop
region can transition to the globular region in addition to
the cap region. Under the initial conditions, transitions to
the next state within the loop, globular, and cap regions
were set to occur with equal probability. The initial output
probability conditions (Additional file 7: Table S4) within
the loop region were set such that hydrophilic residues
were more likely to occur.

Training and evaluation
We implemented two algorithms in python, the Baum-
Welch learning algorithm to train our HMM models,
and the Viterbi decoding algorithm [31] to detect the C-
terminal TMD and obtain models’ likelihoods. In training
procedure, we used a 5-fold cross validation to obtain
the optimal parameters of HMM models. Concretely, for
every sequence in the datasets, decoding was performed
to obtain their likelihoods using the respective TA, SP,
and MP models. We acquired three likelihoods and the
most probable hidden sequence per protein sequence to
establish the evaluation criteria.
One evaluation method used a sequence of regions

(defined as the state sequence) in which each residue in
the sequence belonged to the sequence with the highest
likelihood. The TA model included the regions (states) as
follows: TMD, tail, cap, and globular; and each of the state
sequence was one of the four states. With this method,
the only criterion was whether or not a TMD or tail
region of appropriate length was contained within the
decoded state sequence. A sequence was specifically iden-
tified as a TA protein if it had a TMD region comprising
≥15 residues and a tail region ≤30 residues. For decod-
ing, we used the TA model with two loop sections within
the tail region. If it was decoded as a tail region over its
entire length, no transition to the TMD region occurred
(Additional file 8: Figure S1).
The second evaluation method compared the likelihood

of the different models inferred from the Viterbi algo-
rithm. For specific sequences, comparison of the likeli-
hoods obtained from differentmodels enabled selection of
the model that best represented the sequence. For exam-
ple, if the likelihood value of the TAmodel was higher than
that of the SPmodel for a certain sequence, in comparison,
that sequence was assumed more structurally similar to
the TA model than the SP model. Thus, this approach can
be used to determine whether the sequences represent TA
proteins. The scores used for comparisons were calculated
as the difference between the log value of the likelihood
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of the SP or MP model (ln lsp, ln lmp) and that of the TA
model (ln lta) divided by the length of the sequence. The
scores of SP model and MP model are denoted as Ssp and
Smp, respectively. Because the log-likelihood values were
calculated by adding the logs of the probabilities, longer
sequences computed to smaller values.
Therefore, longer sequences had larger absolute log-

likelihood values, and normalization was achieved to a
certain extent by dividing by the sequence length. After
calculating the score for each sequence, we determined a
threshold value for discriminating the different datasets
with the highest efficacy. The threshold value was defined
as the value with the smallest balanced error rate (BER).
The indices used were as follows:

Accuracy = TP+TN
TP+FP+FN+TN

Sensitivity = TP
TP+FN

Specificity = TN
FP+TN

BER =
(

FN
TP+FN + FP

FP+TN

)
÷ 2

Here TP, FP, FN, and TN signify true-positive, false-
positive, false-negative, and true-negative values, respec-
tively.
Themethods based on the decoding results and the like-

lihood values were combined in the present study, and the
sequences that scored positive using both methods were
defined as TA proteins. For each X of the three datasets
TA, SP, and MP, the likelihood of each X of three pro-
tein models TA, SP, and MP was calculated. For dataset
X, cross-validation was only performed to calculate the
likelihood of corresponding model X and all data were
used (cross-validation was not performed) for the other
models. Because data from other models were not used
for training, there was no risk of overtraining caused by
the use of the same data for training and evaluation. The
log-ratio of likelihoods of TA and MP are taken as the
prediction score in the web application.

Additional files

Additional file 1: Table S5. Sequences that were not predicted.
(PDF 40 kb)

Additional file 2: Figure S2. YD012_YEAST sequence and hydrophobicity
scores. (A): Amino acid sequence of YD012_YEAST, which is exceptionally
rich in glutamine (Q). (B): Distribution of hydrophobicity scores. Linear
smoothing was applied to the Kyte-Doolittle hydrophobicity indices.
(TIF 162 kb)

Additional file 3: Figure S3. Lengths and hydrophobicities of sequences
that were not predicted. Upper: Sequence lengths. The gray bars represent
all TA proteins and red portions indicating prediction failures. Lower:
Hydrophobicity scores of unsuccessfully predicted sequences. Linear
smoothing was applied to Kyte–Doolittle hydrophobicity scores. Each row
corresponds to a sequence, and each column represents a residue. The
sequences are listed in order of hydrophobicity between the C-terminus
and the 50th residue (sequences in the upper rows are more hydrophobic).
(TIF 1658 kb)

Additional file 4: Table S1. Empirically validated TA proteins. (PDF 119 kb)

Additional file 5: Table S2. Initial conditional probability in the TA model.
(PDF 35 kb)

Additional file 6: Table S3. Initial conditions for the SP model. (PDF 35 kb)

Additional file 7: Table S4. Initial conditions for the MP model.
(PDF 37 kb)

Additional file 8: Figure S1. Decoding example. Decoding using the TA
model for human cytochrome b5 and yeast TOM7. The first line is the
header describing details such as the sequence name. From the second
line onward, the amino acid sequence (Seq) and decoded state sequence
(Path) appear alternately with direct correspondence between the amino
acid residues and state designations. In state sequences, the letters G, C, H,
and T indicate the globular, cap, TMD (hydrophobic), and tail regions,
respectively. In the example shown, a TMD (H) was predicted in the
proximity of the C-terminus of cytochrome b5 (success), whereas the entire
TOM7 sequence was predicted to be a tail region (failure). (TIF 864 kb)
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