
RESEARCH ARTICLE Open Access

A genetic algorithm-based weighted
ensemble method for predicting
transposon-derived piRNAs
Dingfang Li1, Longqiang Luo1, Wen Zhang2,3*, Feng Liu4 and Fei Luo2,3

Abstract

Background: Predicting piwi-interacting RNA (piRNA) is an important topic in the small non-coding RNAs,
which provides clues for understanding the generation mechanism of gamete. To the best of our knowledge,
several machine learning approaches have been proposed for the piRNA prediction, but there is still room for
improvements.

Results: In this paper, we develop a genetic algorithm-based weighted ensemble method for predicting
transposon-derived piRNAs. We construct datasets for three species: Human, Mouse and Drosophila. For each
species, we compile the balanced dataset and imbalanced dataset, and thus obtain six datasets to build and
evaluate prediction models. In the computational experiments, the genetic algorithm-based weighted ensemble
method achieves 10-fold cross validation AUC of 0.932, 0.937 and 0.995 on the balanced Human dataset, Mouse dataset
and Drosophila dataset, respectively, and achieves AUC of 0.935, 0.939 and 0.996 on the imbalanced datasets of three
species. Further, we use the prediction models trained on the Mouse dataset to identify piRNAs of other species, and
the models demonstrate the good performances in the cross-species prediction.

Conclusions: Compared with other state-of-the-art methods, our method can lead to better performances. In
conclusion, the proposed method is promising for the transposon-derived piRNA prediction. The source codes
and datasets are available in https://github.com/zw9977129/piRNAPredictor.
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Abbreviations: “F1~F22”, The features indexed from F1 to F22; 10-CV, 10-fold cross validation; ACC, Accuracy;
AUC, Area under ROC curve; GA, Genetic algorithm; GA-WE, Genetic algorithm-based weighted ensemble;
LSSTE, Local structure-sequence triplet elements; PCPseDNC, Parallel correlation pseudo dinucleotide
composition; PCPseTNC, Parallel correlation pseudo trinucleotide composition; PSSM, Position-specific scoring
matrix; RF, Random forest; SCPseDNC, Series correlation pseudo dinucleotide composition; SCPseTNC, Series
correlation pseudo trinucleotide composition; SN, Sensitivity; SP, Specificity; SVM, Support vector machine

Background
Non-coding RNAs (ncRNAs) are defined as the import-
ant functional RNA molecules which are not translated
into proteins [1, 2]. According to lengths, ncRNAs are
classified into two types: long ncRNAs and short
ncRNAs. Usually, long ncRNAs consists of more than
200 nucleotides [3, 4]. Short ncRNAs having 20 ~ 32 nt

are defined as small ncRNAs, such as small interfering
RNA (siRNA), microRNA (miRNA) and piwi-interacting
RNA (piRNA) [5]. piRNA is a distinct class of small
ncRNAs expressed in animal cells, especially in germline
cells, and the length of piRNA sequences ranges from 26
to 32 in general [6–8]. Compared with miRNA, piRNA
lacks conserved secondary structure motifs, and the
presence of a 5’ uridine is usually observed in both
vertebrates and invertebrates [5, 9, 10].
piRNAs play an important role in the transposon

silencing [11–15]. About nearly one-third of the fruit fly
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and one-half of human genomes are transposon ele-
ments. These transposons move within the genome and
induce insertions, deletions, and mutations, which may
cause the genome instability. piRNA pathway is an im-
portant genome defense mechanism to maintain genome
integrity. Loaded into PIWI proteins, piRNAs serve as a
guide to target the transposon transcripts by sequence
complementarity with mismatches, and then the trans-
poson transcripts will be cleaved and degraded, produ-
cing secondary piRNAs, which is called ping-pong cycle
in fruit fly [13–17]. Therefore, predicting transposon-
derived piRNAs provides biological significance and in-
sights into the piRNA pathway.
The wet method utilizes immunoprecipitation and

deep sequencing to identify piRNAs [18]. Since piRNAs
are diverse and non-conserved, wet methods are time-
consuming and costly [5, 9, 10]. Since the development
of information science, the piRNA prediction based on
the known data becomes an alternative. As far as we
know, several computational methods have been pro-
posed for piRNA prediction. Betel et al. developed the
position-specific usage method to recognize piRNAs
[19]. Zhang et al. utilized a k-mer feature, and adopted
support vector machine (SVM) to build the classifier
(named piRNApredictor) for piRNA prediction [20].
Wang et al. proposed a method named Piano to predict
piRNAs, by using piRNA-transposon interaction infor-
mation and SVM [21]. These methods exploited differ-
ent features of piRNAs, and build the prediction models
by using machine learning methods.
Motivated by previous works, we attempt to differenti-

ate transposon-derived piRNAs from non-piRNAs based
on the sequential and physicochemical features. As far
as we know, there are several critical issues for develop-
ing high-accuracy models. Firstly, the accuracy of models
is highly dependent on the diversity of features. In order
to achieve high-accuracy models, we should consider as
many sequence-derived features as possible. Secondly,
how to effectively combine various features for high-
accuracy models is very challenging. In the previous
work [22], we adopted the exhaustive search strategy
to combine five sequence-derived features to predict
piRNAs, and used the AUC scores of individual feature-
based models as weights in the ensemble learning. How-
ever, the method can’t effectively integrate a great amount
of features (NP-hard complexity: 2N-1 combinations of

features, N is the number of features), and the determin-
ation of weights is arbitrary.
In this paper, we develop a genetic algorithm-based

weighted ensemble method (GA-WE) to effectively inte-
grate twenty-three discriminative features for the piRNA
prediction. Specifically, individual features-based models
are constructed as base learners, and the weighted aver-
age of their outputs is adopted as the final scores in the
stage of prediction. Genetic algorithm (GA) is to search
for the optimal weights for the base learners. Moreover,
the proposed method can determine the weights for
each base learner in a self-tune manner.
We construct datasets for three species: Human,

Mouse and Drosophila. For each species, we compile the
balanced dataset and imbalanced dataset, and thus ob-
tain six datasets to build and evaluate prediction models.
In the 10-fold cross validation experiments, the GA-WE
method achieves AUC of 0.932, 0.937 and 0.995 on the
balanced Human dataset, Mouse dataset and Drosophila
dataset, respectively, and achieves AUC of 0.935, 0.939
and 0.996 on the imbalanced datasets of three species.
Further, we use the prediction models trained on the
Mouse dataset to identify piRNAs of other species. The
results demonstrate that the models can produce good
performances in the cross-species prediction. Compared
with other state-of-the-art methods, our method pro-
duces better performances as well as good robustness.
Therefore, the proposed method is promising for the
transposon-derived piRNA prediction.

Methods
Datasets
In this paper, we construct datasets for three species:
Human, Mouse and Drosophila, and use them to build
prediction models and make evaluations.
As shown in Table 1, raw real piRNAs, raw non-

piRNA ncRNAs and transposons are downloaded from
NONCODE version 3.0 [23], UCSC Genome Browser
[24] and NCBI Gene Expression Omnibus [18, 25].
NONCODE is an integrated knowledge database about
non-coding RNAs [23]. The UCSC Genome Browser is
an interactive website offering access to genome se-
quence data from a variety of vertebrate and invertebrate
species, integrated with a large collection of aligned
annotations [24]. The NCBI Gene Expression Omni-
bus is the largest fully public repository for high-

Table 1 Raw data about three species

Species Raw real piRNAs Raw non-piRNA ncRNAs Transposons

Human 32,152 (NONCODE v3.0) 59,003 (NONCODE v3.0) 4,679,772 (UCSC, hg38)

Mouse 75,814 (NONCODE v3.0) 43,855 (NONCODE v3.0) 3,660,356 (UCSC, mm10)

Drosophila 12,903 (NCBI, GSE9138) 102,655 (NONCODE v3.0) 37,326 (UCSC, dm6)
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throughput molecular abundance data, primarily gene
expression data [18, 25].
The datasets are compiled from the raw data (Table 1).

By aligning raw real piRNAs to transposons with Seq-
Map (three mismatches at most) [26], the aligned real
piRNAs are transposon-matched piRNAs, and they are
adopted as the set of real piRNAs. The length of real
piRNAs ranges from 16 to 35. To meet the length range
of real piRNAs, we remove non-piRNA ncRNAs shorter
than 16, and cut non-piRNA ncRNAs longer than 35 by
simulating length distribution of real piRNAs. The cut
sequences are then aligned to transposons, and the
aligned ones are used as the set of pseudo piRNAs. The
real piRNAs and the pseudo piRNAs for three species
are shown in Table 2. In order to the build prediction
models, we build the datasets based on real piRNAs and
pseudo piRNAs. To avoid the data bias caused by dif-
ferent size of positive instances and negative instances,
we construct both balanced datasets and imbalanced
datasets for three species. For balanced datasets, all real
piRNAs are adopted as positive instances, and we sam-
ple the same number of pseudo piRNAs as negative
instances. For imbalanced datasets, we use all real piR-
NAs and pseudo piRNAs as positive instances and
negative instances.

Features of piRNAs
For prediction, we should explore informative features
that can characterize piRNAs and convert variable-length
piRNA sequences into fixed-length feature vectors. Here,
we consider various potential features that are widely used
in biological sequence prediction. Among these features,
six features have been utilized for the piRNA prediction,
while the rest are taken into account for the first time.
These sequence-derived features are briefly introduced
as follows.
Spectrum profile: k-spectrum profile, also named k-mer

feature, is to count the occurrences of k-mers (k-length
contiguous strings) in sequences (k ≥ 1), and its suc-
cess has been proved by numerous bioinformatics
applications [27–30].
Mismatch profile: (k, m)-mismatch profile also counts

the occurrences of k-mers, but allows max m (m < k) in-
exact matching, which is the penalization of spectrum
profile [30, 31].
Subsequence profile: (k, w)-subsequence profile

considers not only the contiguous k-mers but also

the non- contiguous k-mers, and the penalty factor
w (0 ≤w ≤ 1) is used to penalize the gap of non-contiguous
k-mers [30, 32].
Reverse compliment k-mer (k-RevcKmer): k-RevcKmer

is a variant of the basic k-mer, in which the k-mers are
not expected to be strand-specific [29, 33, 34].
Parallel correlation pseudo dinucleotide composition

(PCPseDNC): PCPseDNC is proposed to avoid losing the
physicochemical properties of dinucleotides. PCPseDNC of
a sequence consists of two components, the first compo-
nent represents the occurrences of different dinucleotides,
while the other component reflects the physicochemical
properties of dinucleotides [28, 29, 35].
Three features: parallel correlation pseudo trinucleo-

tide composition (PCPseTNC), series correlation pseudo
dinucleotide composition (SCPseDNC) and series correl-
ation pseudo trinucleotide composition (SCPseTNC) are
similar to the PCPseDNC. PCPseTNC considers the oc-
currences of trinucleotides and their physicochemical
properties, and SCPseDNC and SCPseTNC consider
series correlations of physicochemical properties of
dinucleotides or trinucleotides [28, 29, 35, 36].
Sparse profile [37] and position-specific scoring matrix

(PSSM) [38–40] are usually generated from the fixed-
length sequences. Here, we use a simple strategy to
process the variable-length sequences, and obtain the
features. We truncate the first d nucleotides of long se-
quences which lengths are more than d, and extend
short sequences which lengths are less than d by adding
the null character. Here, ‘E’ represent the null character,
which are added to the short sequences to meet the
length d. In this way, all variable-length sequences are
converted into fixed-length sequences, and the fixed-
length sequences consist of five letters {A,C,G,T, E}.
For the sparse profile, by encoding each letter of se-
quence as a 5-bit vector with 4 bits set to zero and 1
bit set to one, the sparse profile of a sequence is ob-
tained by merging the bit vector for its letters. For
the PSSM feature, PSSM can be calculated on the
fixed-length sequences consisted of five letters {A,C,
G,T, E} [38–40]. Given a new sequence, it is truncated
or extended, and then is encoded by PSSM as the
feature vector. The PSSM representation of sequence
x = R1R2… Rd is defined as:

f d
PSSM xð Þ ¼ score R1ð Þ; score R2ð Þ;…; score Rdð Þð Þ

where

score Rkð Þ ¼ m Rkð Þ; Rk∈ A;C;G;Tf g
0; Rk ¼ E

�
; k ¼ 1; 2;…; d

and m(Rk) represents the score of Rk in the k-th column
of PSSM, if Rk ∈ {A,C,G,T}, k = 1, 2,…, d.

Table 2 Number of real piRNAs and pseudo piRNA

Species Real piRNAs Pseudo piRNA

Human 7,405 21,846

Mouse 13,998 40,712

Drosophila 9,214 22,855
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Local structure-sequence triplet elements (LSSTE):
LSSTE adopts the piRNA-transposon interaction in-
formation to extract 32 different triplet elements, which
contain the structural information of transposon-piRNA
alignment as well as the piRNA sequence information
[21, 41, 42].
A total of twenty-three feature vectors are finally

obtained, and they are summarized in Table 3.

The GA-based weighted ensemble method
In the view of information science, a variety of features
can bring diverse information, and the combination of
various features can lead to better performance than
individual features [22, 43–46]. Ensemble learning is a
sophisticated feature combination technique widely used
in bioinformatics. Its success has been proved by numer-
ous bioinformatics applications, such as the prediction
of B-cell epitopes [44] and the prediction of immuno-
genic T-cell epitopes [45].
To the best of our knowledge, there are two crucial

issues for designing good ensemble systems, i.e. base
learners and combination rules. First, the training

sequences are encoded into different feature vectors, re-
spectively, and multiple base learners are constructed on
these feature vectors by using classification engines. We
compare two most popular classification methods, random
forest (RF) [47] and support vector machine (SVM) [48]
(results are given in the section ‘Results and Discussion’),
and finally adopt RF as the basic classification engine
because of its high efficiency and high accuracy. Then,
how to combine the outputs of base learners is crucial
for the success of our ensemble system. Our ensemble
learning adopts the weighted average of outputs from
base learners as the final score. However, the deter-
mination of weights is difficult. In this paper, we
develop a genetic algorithm (GA)-based weighted en-
semble method, which can automatically determine
the optimal weights and construct high-accuracy pre-
diction models.
Given N features, we can construct N base learners:

f1, f2,…, fN on training set. w1,w2,…,wN (∑i = 1
N wi, 0 ≤wi ≤

1, i = 1, 2,…,N) represent the corresponding weights.
For a testing sequence x, fi(x) ∈ [0, 1] represents the
probability of predicting x as real piRNA, i = 1, 2,…,N,

Table 3 Twenty-three sequence-derived features

Index Feature Dimension Parameter Annotation

F1 1-Spectrum Profile 4 No Parameters Used in [20]

F2 2-Spectrum Profile 16 No Parameters Used in [20]

F3 3-Spectrum Profile 64 No Parameters Used in [20]

F4 4-Spectrum Profile 256 No Parameters Used in [20]

F5 5-Spectrum Profile 1024 No Parameters Used in [20]

F6 (3, m)-mismatch profile 64 m: the max mismatches New features

F7 (4, m)-mismatch profile 256 m: the max mismatches New features

F8 (5, m)-mismatch profile 1024 m: the max mismatches New features

F9 (3, w)-subsequence profile 64 w: penalty for the non-contiguous matching New features

F10 (4, w)-subsequence profile 256 w: penalty for the non-contiguous matching New features

F11 (5, w)-subsequence profile 1024 w: penalty for the non-contiguous matching New features

F12 1-RevcKmer 2 No Parameters New features

F13 2-RevcKmer 10 No Parameters New features

F14 3-RevcKmer 32 No Parameters New features

F15 4-RevcKmer 136 No Parameters New features

F16 5-RevcKmer 528 No Parameters New features

F17 PCPseDNC 16 + λ λ: the highest counted rank of the correlation New features

F18 PCPseTNC 64 + λ λ: the highest counted rank of the correlation New features

F19 SCPseDNC 16 + 6 × λ λ: the highest counted rank of the correlation New features

F20 SCPseTNC 64 + 12 × λ λ: the highest counted rank of the correlation New features

F21 Sparse Profile 5 × d d: the fixed length of sequences New features

F22 PSSM d d: the fixed length of sequences New features

F23 LSSTE 32 No parameters Used in [21]
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and the final predicted results of the weighted ensemble
model is given as:

F xð Þ ¼
XN

i¼1
wif i xð Þ

As discussed above, the optimal weights are very im-
portant for the weighted ensemble model. We consider
the determination of weights as an optimization problem
and adopt the genetic algorithm (GA) to search the opti-
mal weights. GA is a search approach that simulates the
process of natural selection. It can effectively search the
interesting space and easily solve complex problems
without requiring the prior knowledge about the space.
Here, we use the adaptive genetic algorithm [49]. In the
adaptive genetic algorithm, crossover probability and
mutation probability are dynamically adjusted according
to the fitness scores of chromosomes. The size of an ini-
tial population is 1000 chromosomes, and the iteration
number is 500.
The flowchart of the GA-WE method is shown in

Fig. 1. In each training-testing process, the dataset is
split into the training set, the validation set and the test-
ing set. In the GA optimization, a chromosome repre-
sents weights. For each chromosome (weights), the
weighted ensemble model is constructed on the training
set, and makes predictions for the validation set. The
AUC score of the weighted ensemble model on the val-
idation set is taken as the fitness of the chromosome.
After randomly generating an initial population, the
population is updated by three operators: selection,
crossover and mutation, and the best individual with a
chromosome will be obtained. Finally, the weighted en-
semble model with the optimal weights is used to make
predictions for the testing set.

Results and discussion
Performance evaluation metrics
The proposed methods are evaluated by the 10-fold
cross validation (10-CV). In the 10-CV, a dataset is ran-
domly split into 10 subsets with equal size. For each
round of 10-CV, 8 subsets are used as the training set, 1
subset is used as the validation set and the rest one is
considered as the testing set. Prediction models are con-
structed on the training set, and the parameters or opti-
mal weights of models are determined on the validation
set. Finally, optimized prediction models are adopted to
predict the testing set. This processing is repeated until
all subsets are ever used for testing.
Here, we adopt several metrics to assess the perfor-

mances of prediction models, including the accuracy
(ACC), sensitivity (SN), specificity (SP) and the AUC
score (the area under the ROC curve). These metrics are
defined as:

SN ¼ TP
TP þ FN

SP ¼ TN
TN þ FP

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

Where TP, FP, TN and FN are the numbers of true
positives, false positives, true negatives and false nega-
tives, respectively. The ROC curve is plotted by using
the false positive rate (1-specificity) against the true
positive rate (sensitivity) for different cutoff thresholds.
Here, we consider the AUC as the primary metric, for it
assesses the performance regardless of any threshold.

Fig. 1 Flowchart of the GA-based weighted ensemble method
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Parameters of various features
As shown in Table 3, we consider twenty-three
sequence-derived features to develop prediction models.
Since subsequence profile, PCPseDNC, PCPseTNC,
SCPseDNC, SCPseTNC, sparse profile and PSSM have
parameters, we discuss how to determine the parameters
based on the balanced Human dataset, and use them in
the following studies. Considering the parameter λ and d
refer to the length of piRNAs, we analyze the length dis-
tribution of piRNAs in three species (Human, Mouse
and Drosophila). As shown in Fig. 2, the length of piR-
NAs ranges from 16 to 35, and reaches the peak at 30
for Human and Mouse, and 25 for Drosophila. Here, the

impacts of parameters are evaluated according to the
10-CV performances of corresponding models.
In the mismatch profile, the parameter m represents

the max mismatches. Here, we assume that m does not
exceed one third of length of k-mers. Therefore, (3, 1)-
mismatch profile, (4, 1)-mismatch profile and (5, 1)-mis-
match profile are used.
In the subsequence profile, the parameter w represents

the gap penalty of non-contiguous k-mers. As shown in
Fig. 3 (a), w = 1 produces the best AUC scores for (3, w)-
subsequence profile, (4, w)- subsequence profile and (5, w)-
subsequence profile. Therefore, (3, 1)-subsequence profile,
(4, 1)-subsequence profile and (5, 1)-subsequence profile
are finally adopted in the following study.
In the PCPseDNC, PCPseTNC, SCPseDNC and

SCPseTNC, the parameter λ represents the highest counted
rank of the correlation, 1 ≤ λ ≤ L − 2 (for the PCPseDNC
and SCPseDNC); 1 ≤ λ ≤ L − 3 (for the PCPseTNC and
SCPseTNC) [28, 29, 35, 36]. L is the length of shortest
piRNA sequences, and is 16 according to Fig. 2. To test the
impact of the parameter λ on the four features, we con-
struct the prediction models by using different values. As
shown in Fig. 3 (b). λ = 1 leads to the best AUC scores for
PCPseDNC, PCPseTNC, SCPseDNC and SCPseTNC.
Therefore, the best parameters are adopted for the final
prediction models.
In the sparse profile and PSSM, the parameter d repre-

sents the fixed length of sequences. As show in Fig. 2,

Fig. 2 The length distribution of piRNAs in three species (Human,
Mouse and Drosophila)

Fig. 3 a AUC scores of the (k, w)-subsequence profile-based models with the variation of parameter w on balanced Human dataset; b AUC scores
of the PCPseDNC, PCPseTNC, SCPseDNC and SCPseTNC-based models with the variation of the parameter λ on balanced Human dataset; c AUC
scores of the sparse profile and PSSM-based models with the variation of the parameter d on balanced Human dataset
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the lengths of piRNAs range from 16 to 35. Therefore,
the prediction models are constructed based on different
lengths. As shown in Fig. 3 (c), d = 35 produces the best
AUC scores for the sparse profile and PSSM feature.
Therefore, we set the parameter d as 35 for the sparse
profile feature and the PSSM feature.

Evaluation of various features
After discussing feature parameters, we compare the
capabilities of various features for the piRNA prediction.
Here, individual feature-based models are constructed
on balanced Human dataset and imbalanced Human
dataset by using classification engines, and the perfor-
mances of these models are evaluated by 10-CV.
To test different classifiers, we respectively adopt the

random forest (RF) and support vector machine (SVM)
to build the individual feature-based prediction models.
Here, we use the python package “scikit-learn” to imple-
ment RF and SVM, and default values are adopted for
parameters. The results demonstrate that RF can pro-
duce better performances in most cases (13 out of the
23 individual feature-based models). Moreover, RF runs
much faster than SVM, and it is very important for

implementing the following experiments. Results of RF
models and SVM models are provided in the Additional
files 1 and 2. For these reasons, RF is adopted in the fol-
lowing study.
To test the impacts of the ratio of positive instances

versus negative instances, we build the individual
feature-based prediction models based on the balanced
human datasets and the imbalanced human dataset. As
shown in Table 4 and Table 5, the prediction models
produce similar results on the balanced dataset and
imbalanced dataset, indicating that they are robust to
the different datasets. The performances of individual
feature-based models help to rank the importance of
features. According to Table 4 and Table 5, the sparse
profile yields the best results among these features,
and the performance of LSSTE is much poorer than
that of other features. Therefore, we adopt features
indexed from F1 to F22 (“F1 ~ F22”) for the final
ensemble models.

Performances of GA-based weighted ensemble method
The GA-based weighted ensemble (GA-WE) method
integrates sequence-derived features and constructs

Table 4 The performances of individual feature-based models
on balanced Human dataset

Index Feature AUC ACC SN SP

F1 1-Spectrum Profile 0.754 0.690 0.731 0.649

F2 2-Spectrum Profile 0.841 0.756 0.780 0.732

F3 3-Spectrum Profile 0.839 0.750 0.747 0.754

F4 4-Spectrum Profile 0.829 0.740 0.732 0.748

F5 5-Spectrum Profile 0.802 0.718 0.681 0.755

F6 (3,1)-Mismatch Profile 0.862 0.772 0.819 0.725

F7 (4,1)-Mismatch Profile 0.854 0.761 0.788 0.734

F8 (5,1)-Mismatch Profile 0.842 0.750 0.754 0.747

F9 (3,1)-Subsequence Profile 0.850 0.767 0.809 0.725

F10 (4,1)-Subsequence Profile 0.866 0.782 0.821 0.743

F11 (5,1)-Subsequence Profile 0.875 0.791 0.829 0.754

F12 1-RevcKmer 0.746 0.699 0.889 0.509

F13 2-RevcKmer 0.803 0.724 0.774 0.673

F14 3-RevcKmer 0.818 0.732 0.765 0.698

F15 4-RevcKmer 0.808 0.718 0.717 0.718

F16 5-RevcKmer 0.791 0.702 0.658 0.746

F17 PCPseDNC 0.836 0.757 0.776 0.738

F18 PCPseTNC 0.849 0.765 0.787 0.742

F19 SCPseDNC 0.833 0.754 0.770 0.739

F20 SCPseTNC 0.832 0.751 0.777 0.725

F21 Sparse Profile 0.904 0.819 0.815 0.824

F22 PSSM 0.880 0.807 0.815 0.799

F23 LSSTE 0.688 0.631 0.664 0.598

Table 5 The performances of individual feature-based models
on imbalanced Human dataset

Index Feature AUC ACC SN SP

F1 1-Spectrum Profile 0.748 0.739 0.398 0.854

F2 2-Spectrum Profile 0.841 0.808 0.416 0.940

F3 3-Spectrum Profile 0.850 0.814 0.321 0.982

F4 4-Spectrum Profile 0.844 0.811 0.284 0.989

F5 5-Spectrum Profile 0.836 0.813 0.305 0.986

F6 (3,1)-Mismatch Profile 0.867 0.824 0.427 0.959

F7 (4,1)-Mismatch Profile 0.856 0.814 0.328 0.979

F8 (5,1)-Mismatch Profile 0.851 0.810 0.277 0.991

F9 (3,1)-Subsequence Profile 0.850 0.808 0.443 0.932

F10 (4,1)-Subsequence Profile 0.864 0.822 0.473 0.940

F11 (5,1)-Subsequence Profile 0.871 0.829 0.492 0.944

F12 1-RevcKmer 0.745 0.746 0.005 0.997

F13 2-RevcKmer 0.803 0.778 0.411 0.902

F14 3-RevcKmer 0.823 0.800 0.265 0.981

F15 4-RevcKmer 0.823 0.803 0.241 0.993

F16 5-RevcKmer 0.818 0.806 0.255 0.992

F17 PCPseDNC 0.841 0.806 0.374 0.952

F18 PCPseTNC 0.857 0.813 0.337 0.975

F19 SCPseDNC 0.836 0.803 0.346 0.958

F20 SCPseTNC 0.842 0.808 0.312 0.977

F21 Sparse Profile 0.905 0.856 0.634 0.932

F22 PSSM 0.882 0.832 0.584 0.916

F23 LSSTE 0.688 0.766 0.175 0.966
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high-accuracy prediction models. We evaluate the
performances of the GA-WE model on the datasets of
three species. Moreover, we carry out the cross-
species prediction, in which we build prediction
models on Mouse species, and make prediction for
other species.

Results of GA-WE models on three species
As show in Table 6, the GA-WE models achieve AUC of
0.932, accuracy of 0.839, sensitivity of 0.858 and specifi-
city of 0.820 on the balanced Human dataset. Compared
with the best individual features-based model (the sparse
profile-based model), the GA-WE model improves AUC
of >3%, indicating the GA-WE model can effectively
combine various features to enhance performances. The
proposed method also performs accurate prediction on
balanced Mouse dataset, achieving AUC of 0.937. Com-
pared with the piRNA prediction on mammalian: Hu-
man and Mouse, the prediction on Drosophila is much

better, achieving AUC of 0.995. Similarly, the GA-WE
model performs high-accuracy prediction on the imbal-
anced datasets of the three species, achieves AUC of
0.935, 0.939 and 0.996, respectively, which demonstrates
that the GA-WE model has not only high accuracy but
also good robustness.
Further, we investigate the optimal weights for the

GA-WE model in each fold of 10-CV. Taking Human
dataset as an example, the optimal weights of “F1 ~ F22”
for the GA-WE model are visualized by the heat map
(Fig. 4). We can draw several conclusions from the re-
sults. Firstly, different features have different weights in
each fold of 10-CV, and the optimal weights can lead to
the best ensemble model. Secondly, optimal weights re-
flect the contributions of the corresponding features for
the ensemble model, and the feature having the best
performances for piRNA prediction always makes the
greatest contribution to the ensemble model. For ex-
ample, the sparse profile (F21) performs the highest con-
tribution to the ensemble model in each fold of 10-CV,
for the sparse profile has the best predictive ability
among all features. Thirdly, the optimal weights for the
ensemble model depend on the training set, and deter-
mining the optimal weights is necessary for building
high-accuracy models.

Results of cross-species prediction
Considering that Mouse instances are more than Human
instances and Drosophila instances, we construct the

Table 6 The performances of the GA-WE model on three species
(Human, Mouse and Drosophila)

Dataset Species AUC ACC SN SP

Balanced Human 0.932 0.839 0.858 0.820

Mouse 0.937 0.838 0.824 0.852

Drosophila 0.995 0.959 0.951 0.966

Imbalanced Human 0.935 0.869 0.687 0.931

Mouse 0.939 0.889 0.745 0.939

Drosophila 0.996 0.958 0.897 0.983

Fig. 4 Optimal weights for the GA-WE model in each fold of 10-CV
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GA-WE model on Mouse dataset, and make predictions
for Human dataset and Drosophila dataset.
As shown in Table 7, the GA-WE model trained

with Mouse dataset achieves AUC of 0.863 and 0.687
on the balanced Human and Drosophila datasets, and
achieves AUC of 0.868 and 0.746 on the imbalanced
datasets of the two species. Compared with the exper-
iments on a same species, the cross-species experi-
ments produce lower scores, indicating that piRNAs
derived from different species may have different pat-
terns. Moreover, the results on Human dataset are
better than the results on Drosophila dataset, and the
possible reason is that the length distribution of
Mouse piRNAs is similar to that of Human piRNAs,
and is different from that of Drosophila piRNAs

(shown in Fig. 2). Therefore, we’d better train models
and make predictions based on a same species.

Comparison with other state-of-the-art methods
Here, three latest methods: piRNApredictor [20], Piano
[21] and our previous work [22] are adopted as the bench-
mark methods, for they build prediction models based on
machine learning methods. piRNApredictor used k-mer
feature (i.e, spectrum profile), k = 1, 2, 3, 4, 5, and Piano
used the LSSTE feature. piRNApredictor and Piano
adopted the support vector machine (SVM) to construct
prediction models. Our previous work adopted the ex-
haustive search strategy to combine five sequence-derived
features to predict piRNAs. We implement piRNApredic-
tor obtain the results. Since the source codes of Piano are
available at http://ento.njau.edu.cn/Piano.html, we can run
the program on the benchmark datasets. The proposed
methods and three benchmark methods are evaluated on
six benchmark datasets by using 10-CV.
As shown in Table 8, our previous work, piRNApre-

dictor and Piano achieve AUC of 0.920, 0.894 and 0.592
on the balanced Human dataset, respectively. Our GA-
WE model produces AUC of 0.932 on the dataset. The

Table 8 Performances of GA-WE and the state-of-the-art methods on three species

Dataset Species Method AUC ACC SN SP

Balanced Human Piano 0.592 0.560 0.855 0.265

piRNApredictor 0.894 0.812 0.859 0.764

Ensemble Learning 0.920 0.807 0.815 0.800

GA-WE 0.932 0.839 0.858 0.820

Mouse Piano 0.445 0.5365 0.837 0.236

piRNApredictor 0.892 0.819 0.862 0.776

Ensemble Learning 0.924 0.810 0.863 0.756

GA-WE 0.937 0.838 0.826 0.850

Drosophila Piano 0.741 0.692 0.836 0.547

piRNApredictor 0.983 0.952 0.927 0.977

Ensemble Learning 0.994 0.958 0.952 0.965

GA-WE 0.995 0.959 0.949 0.966

Imbalanced Human Piano 0.449 0.747 0.000 1.000

piRNApredictor 0.905 0.847 0.548 0.949

Ensemble Learning 0.922 0.836 0.589 0.919

GA-WE 0.935 0.869 0.687 0.931

Mouse Piano 0.441 0.744 0.000 1.000

piRNApredictor 0.892 0.848 0.568 0.944

Ensemble Learning 0.928 0.849 0.586 0.940

GA-WE 0.939 0.889 0.745 0.939

Drosophila Piano 0.804 0.712 0.000 1.000

piRNApredictor 0.982 0.961 0.902 0.985

Ensemble Learning 0.995 0.965 0.920 0.984

GA-WE 0.996 0.964 0.940 0.973

Table 7 The performances of cross-species prediction

Dataset Species AUC ACC SN SP

Balanced Human 0.863 0.788 0.796 0.781

Drosophila 0.687 0.668 0.639 0.698

Imbalanced Human 0.868 0.811 0.425 0.942

Drosophila 0.746 0.774 0.370 0.936
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proposed method also yields much better performances
than piRNApredictor and Piano on the balanced Mouse
dataset and balanced Drosophila dataset. There are sev-
eral reasons for the superior performances of our
method. Firstly, various useful features can guarantee
the diversity for the GA-WE model. Secondly, the GA-
WE model automatically determines the optimal weights
on validation set.
Further, we compare the capabilities of the GA-WE

method with the state-of-the-art methods in the cross-
species prediction. All models are constructed on Mouse
dataset, and make predictions for Human and Drosoph-
ila dataset. As shown in Table 9, our GA-WE model
trained with Mouse dataset performs better than the
state-of-the-art methods on the Human datasets, but
performs worse than piRNApredictor on the Drosophila
dataset. Moreover, the performances on Human dataset
are always better than that on Drosophila dataset regard-
less of any method, and the possible reason is that the
length distribution of Mouse piRNAs is similar to that of
Human piRNAs, and is different from that of Drosophila
piRNAs (shown in Fig. 2). In general, our method can
produce satisfying results in the cross-species prediction.

Conclusions
In this paper, we develop the GA-based weighted ensem-
ble method, which can automatically determine the im-
portance of different information resources and produce
high-accuracy performances. We compile the Human,
Mouse and Drosophila datasets from NONCODE ver-
sion 3.0, UCSC Genome Browser and NCBI Gene

Expression Omnibus. In the computational experiments,
the GA-based weighted ensemble method achieves AUC
of >93% by 10-CV. Compared with other state-of-the-art
methods, our method produces better performances as
well as good robustness. In conclusion, the proposed
method is promising for transposon-derived piRNA pre-
diction. The source codes and datasets are available in
https://github.com/zw9977129/piRNAPredictor.
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