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Abstract

Background: Protein secondary structure prediction (SSP) has been an area of intense research interest. Despite
advances in recent methods conducted on large datasets, the estimated upper limit accuracy is yet to be reached.
Since the predictions of SSP methods are applied as input to higher-level structure prediction pipelines, even small
errors may have large perturbations in final models. Previous works relied on cross validation as an estimate of
classifier accuracy. However, training on large numbers of protein chains compromises the classifier ability to
generalize to new sequences. This prompts a novel approach to training and an investigation into the possible
structural factors that lead to poor predictions.

Here, a small group of 55 proteins termed the compact model is selected from the CB513 dataset using a
heuristics-based approach. In a prior work, all sequences were represented as probability matrices of residues
adopting each of Helix, Sheet and Coil states, based on energy calculations using the C-Alpha, C-Beta, Side-chain
(CABS) algorithm. The functional relationship between the conformational energies computed with CABS force-field
and residue states is approximated using a classifier termed the Fully Complex-valued Relaxation Network (FCRN). The
FCRN is trained with the compact model proteins.

Results: The performance of the compact model is compared with traditional cross-validated accuracies and
blind-tested on a dataset of G Switch proteins, obtaining accuracies of ~81 %. The model demonstrates better results
when compared to several techniques in the literature. A comparative case study of the worst performing chain
identifies hydrogen bond contacts that lead to Coil <> Sheet misclassifications. Overall, mispredicted Coil residues
have a higher propensity to participate in backbone hydrogen bonding than correctly predicted Coils.

Conclusions: The implications of these findings are: (i) the choice of training proteins is important in preserving the
generalization of a classifier to predict new sequences accurately and (i) SSP techniques sensitive in distinguishing
between backbone hydrogen bonding and side-chain or water-mediated hydrogen bonding might be needed in the
reduction of Coil <> Sheet misclassifications.
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Background

The earliest models of protein secondary structure were
proposed by Pauling and Corey who predicted that the
polypeptide backbone contains regular hydrogen bonded
geometry, forming «- helices and S-sheets [1, 2]. The
subsequent deposition of structures into public databases
aided growth of methods predicting structures from pro-
tein sequences. Although the number of structures in the
Protein Data Bank (PDB) is growing at an exponential rate
due to advances in experimental techniques, the number
of protein sequences remains far higher. The NCBI Ref-
Seq database [3] contains 47 million protein sequences
and the PDB, ~110,000 structures (including redundancy)
as of April 2016. Therefore, the computational predic-
tion of protein structures from sequences still remains a
powerful complement to experimental techniques. Pro-
tein Secondary Structure Prediction (SSP), often an inter-
mediate step in the prediction of tertiary structures has
been of great interest for several decades. Since struc-
tures are more conserved than sequences, accurate sec-
ondary structure predictions can aid multiple sequence
alignments and threading to detect homologous struc-
tures, amongst other applications [4]. The existing SSP
methods are briefly summarized by developments that
led to increases in accuracy and grouped by algorithms
employed.

The GOR technique pioneered the use of an entropy
function employing residue frequencies garnered from
proteins databases [5]. Later, the development of a sliding
window scheme and the calculation of pair wise propen-
sities (rather single residue frequencies) resulted in an
accuracy of 64.4 % [6]. Subsequent developments include
combining the GOR technique with evolutionary infor-
mation [7, 8] and the incorporation of the GOR technique
with a fragment mining method [9, 10]. The PHD method
employed multiple sequence alignments (MSA) as input
in combination with a two level neural network predictor
[11], increasing the accuracy to 72 %. The representation
of an input sequence as a profile matrix obtained from
PSI-BLAST [12] derived position specific scoring matri-
ces (PSSM) was pioneered by PSIPRED, improving the
accuracy up to 76 % [13]. Most techniques now employ
PSSM (either solely or in combination with other pro-
tein properties) as input to machine-learning algorithms.
The neural network based methods [14-21] have per-
formed better than other algorithms in recent large scale
reviews that compared performance on up to 2000 pro-
tein chains [22, 23]. Recently, more neural network based
secondary structure predictors have been developed, such
as the employment of a general framework for prediction
[24], and the incorporation of context-dependent scores
that account for residue interactions in addition to the
PSSM [25]. Besides the neural networks, other methods
use support vector machines (SVM) [26, 27] or hidden
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Markov models [28—-30]. Detailed reviews of SSP methods
are available in [4, 31]. Current accuracies tested on nearly
2000 chains yield up to 82 % [22]. In the machine learning
literature, neural networks employed in combination with
SVM obtained an accuracy of 85.6 % on the CB513 dataset
[32]. Apart from the accuracies given in reviews, most of
the literature reports accuracy based on machine-learning
models employing k-fold cross-validation and does not
provide insight to underlying structural reasons for poor
performance.

The compact model

The classical view adopted in developing SSP methods
is that a large number of training proteins are neces-
sary, because the more proteins the classifier is trained
on, the better the chances of predicting an unseen pro-
tein sequence e.g. [18, 33]. This involved large numbers
of training sequences. For example, SPINE employed
10-fold cross validation on 2640 protein chains and OSS-
HMM employed four-fold cross-validation on approxi-
mately 3000 chains [18, 29]. Cross-validated accuracies
prevent overestimation of the prediction ability. In most
of the protein SSP methods, a large number of protein
chains (of at least a thousand) have been used to train the
methods. Smaller numbers by comparison, (in the hun-
dreds) have been used to test them. The ratio of train to
test chains is 8:1, for YASPIN [28] and ~5:1 for SPINE and
SSPro [14]. However, the exposure to large numbers of
similar training proteins or chains may result in over train-
ing and thereby influence the generalization ability when
tested against new sequences.

A question arises on the possible existence of a smaller
number of proteins which are sufficient to build an SSP
model that achieves a similar or better performance.
Despite the high accuracies described, the theoretical
upper limit for the SSP problem, estimated at 88—90 %,
has not been reached [34, 35]. Moreover, some protein
sequences are inherently difficult to predict and the rea-
sons behind, unclear. An advantage of a compact model is
that the number of folds used in training is small and often
distinct from the testing proteins. Subsequently, one could
add proteins whose predictions are unsatisfactory, into
the compact model. This may identify poorly performing
folds, or other structural features which are difficult to
predict correctly by existing feature encoding techniques
or classifiers. This motivates our search for a new training
model for the SSP problem.

The goal of this paper is to locate a small group of pro-
teins from the proposed dataset, such that training the
classifier on them maintains similar accuracies to cross-
validation, yet retains its ability to generalize to new pro-
teins. Such a small group of training proteins is termed
as the ‘compact model, representing a step towards an
efficient learning model that prevents over fitting. Here,
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the CB513 dataset [36] is used to develop the com-
pact model and a dataset of G Switch proteins (GSW25)
[37] is used for validation. A feature encoding based on
computed energy potentials is used to represent protein
residues as features. The energy potential based features
are employed with a fully complex-valued relaxation net-
work (FCRN) classifier to predict secondary structures
[38]. The compact model employed with the FCRN pro-
vides a similar performance compared to cross-validated
approaches commonly adopted in the literature, despite
using a much smaller number of training chains. The
performance is also compared with several existing SSP
methods for the GSW25 dataset.

Using the compact model, the effect of protein struc-
tural characteristics on prediction accuracies is further
examined. The Qg3 accuracies across Structural Classi-
fication of Proteins (SCOP) classes [39] are compared,
revealing classes with poor Q3. For some chains in these
poor performing SCOP classes, the accuracy remains low
(below 70 %) even if they were to be included as train-
ing proteins, or even if tested against other techniques
in the literature. The possible structural reasons behind
the persistent poor performance were investigated, but it
was difficult to attribute the source (e.g. mild distortions
induced by buried metal ligands). However, a detailed
case study of the porcine trypsin inhibitor (the worst
performing chain) highlights the possible significance of
water-mediated vs. peptide-backbone hydrogen bonded
contacts towards the accuracy.

The remaining of the paper is organized as follows.
The Methods section describes the datasets, feature
encoding of the residues (based on energy potentials)
and the architecture and learning algorithm of the
FCRN classifier. Next, the heuristics-based approach
is presented to obtain the compact model. Section
Performance of the compact model investigates the
performance of the compact model compared with
cross-validation in two datasets: the remainder of
the CB513 dataset and on GSW25. The section
Case study of two inhibitors presents the case study in
which the trypsin inhibitor is compared with the inhibitor
of the cAMP dependent protein kinase. The differences
in the structural environments of Coil residues in these
inhibitors are discussed with respect to the accuracy
obtained. The main findings of the work are summarized
in Conclusions.

Methods

Datasets

CB513 The benchmarked CB513 dataset developed by
Cuff and Barton is used [36]. 128 chains were further
removed from this set by Saraswathi et al, [37], to
avoid homology with CATH structural templates used
to generate energy potentials (see CABS-Algorithm based
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Vector Encoding of Residues). The resultant set has 385
proteins comprising 63,079 residues. The composition
is approximately 35 % helices, 23 % strands and 42 %
coils. Here, the first and last four residues of each
chain are excluded in obtaining the compact model (see
Development of compact model), giving a final set contain-
ing 59,999 residues which comprise 35.3 % helices, 23.2 %
strands and 41.4 % coils, respectively.

G Switch Proteins (GSW25) This dataset was generated
during our previous work on secondary structure pre-
diction [37]. It contains 25 protein chains derived from
the G4 and Gp domains of the Streptococcus G protein
[40, 41]. The G4 and G domains bind human serum
albumin and Immunoglobulin G (IgG), respectively. There
are two folds present: a 3« fold and 48 + « fold corre-
sponding to the G4 and Gp domains, respectively. A series
of mutation experiments investigated the role of residues
in specifying one fold over the other, hence the term
‘switch’ [42].

The dataset contains similar sequences. However, it is
strictly used for blind testing and not used in model devel-
opment. The sequence identities between CB513 and
GSW25 are less than 25 % as checked with the PISCES
sequence culling server [43]. The compact model obtained
does not contain either the 8-Grasp ubiquitin-like or albu-
min binding domain-like folds, corresponding to G4 and
Gp domains according to SCOP classification [39]. In this
set, 12 chains belong to G4 and 13 chains to Gp, with each
chain being 56 residues long. The total number of residues
is 1400 and comprises 52 % helix, 39 % strand and 9 %
coil respectively. The sequences are available in Additional
file 1: Table S1.

The secondary structure assignments were done using
DSSP [44]. The eight to three state reduction is performed
as in other works [18, 37]. States H, G, I («, 319, = helices)
were reduced to Helix (H) and states E, B (extended, single
residue B-strands) to Sheet (E). States T, S and blanks (8-
turn, bend, loops and irregular structures) were reduced
to Coil (C).

CABS-algorithm based vector encoding of residues

We used knowledge-based statistical potentials to encode
amino acid residues as vectors instead of using PSSM.
This data was generated during our previous work [37] on
secondary structure prediction. Originally these poten-
tials were derived for coarse grained models (CABS-
C-Alpha, C-Beta and Side-chains) of protein structure.
CABS could be a very efficient tool for modeling of protein
structure [45], protein dynamics [46] and protein dock-
ing [47]. The force-field of CABS model has been derived
using careful analysis of structural regularities seen in
a representative set of high resolution crystallographic
structures [48].
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This force-field consist of unique context-dependent
potentials, that encode sequence independent protein-like
conformational preferences and context-dependent con-
tact potentials for the coarse-grained representation of the
side chains. The side chain contact potentials depend on
the local geometry of the main chain (secondary struc-
ture) and on the mutual orientation of the interacting side
chains. A detailed description of the implementation of
CABS-based potentials in our threading procedures could
be found in [37]. It should be pointed out, that use of
these CABS-based statistical potentials (derived for vari-
ous complete protein structures, and therefore accounting
for structural properties of long range sequence frag-
ments) opens the possibility for effective use of relatively
short windows size for the target-template comparisons.
Another point to note is the fact that the CABS force-
field encodes properly averaged structural regularities
seen in the huge collection of known protein structures.
Since such an encoding incorporates proper averages for
large numbers of known protein structures, the use of a
small training set does not reduce the predictive strength
of the proposed method for rapid secondary structure
prediction.

A target residue was encoded as a vector of 27 features,
with the first 9 containing its propensity to form Helix (H),
the next 9 its propensity to form Sheet (E) and the last 9,
its propensity to form Coil (C) structures (see Fig. 1). The
process of encoding was described in [37] and is repeated
here.

Removal of highly similar targets

In this stage, target sequences that have a high similarity
to templates were removed to ensure that the predicted
CB513 sequences are independent of the templates used.
Therefore the accuracies reported may be attributed to
other factors such as the CABS- algorithm, training or
machine-learning techniques used, rather than an existing
structural knowledge.

A library of CATH [49] structural templates was down-
loaded and Needleman-Wunsch [50] global alignment
of templates to CB513 target sequences was performed.
There were 1000 template sequences and 513 target
sequences, resulting in 513000 pairwise alignments. Of
these alignments, 97 % had similarity scores in the range
of 10 to 18 % and the remaining 3 % contained up to
70 % sequence similarity (see Figure S7 in [37]). However,
only 422 CATH templates could be used due to compu-
tational resource concerns and PDB file errors. Structural
similarities between targets and templates were removed
by querying target names against Homology-derived Sec-
ondary Structure of Proteins (HSSP) [51] data for tem-
plate structures. After removal of sequence or structural
similarities, 422 CATH structural templates and 385 pro-
teins from CB513 were obtained. The DSSP secondary
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structure assignments were performed for these tem-
plates. Contact maps were next computed for the heavy
atoms C, O and N with a distance cutoff of 4.5 A.

Threading and computation of reference energy
Each target sequence was then threaded onto each tem-
plate structure using a sliding window of size 17 and the
reference energy computed using the CABS-algorithm.
The reference energy takes the (i) short-range contacts,
(ii) long-range contacts and (iii) hydrophobic/hydrophilic
residue matching into account, weighted 2.0 :0.5 :0.8,
respectively [37]. For short range residues, reference ener-
gies depend on molecular geometry and chemical proper-
ties of neighbours up to 4 residues apart. For long-range
interactions, a contact energy term is added if aligned
residues are interacting according the contact maps gen-
erated in the previous stage. The best matching template
residue is selected using a scoring function (unpublished).
The lowest energy (best fit) residues are retained.

The DSSP secondary structure assignments from the
best fitting template sequences are read in, but this was
done only for the 9 central residues in the window of
17. The probability of the 9 central residues adopting
each of the three states Helix, Sheet or Coil is derived
using a hydrophobic cluster similarity based method [52].
Figure 1 illustrates the representation of an amino acid
residue from an input sequence as a vector of 27 features
in terms of probabilities of adopting each of the three
secondary structures H, E or C.

It is emphasized that the secondary structures of tar-
gets are not used in the derivation of features. How-
ever, since target-template threading of sequences was
performed, the method indirectly incorporates structural
information from the best matching templates. A com-
plete description of the generation of the 27 features for
a given target residue is available in [37]. These 27 fea-
tures serve as input to the classifier that is described
next.

Fully complex valued relaxation network (FCRN)
The FCRN is a complex-valued neural network classi-
fier that uses a complex plane as its decision boundary.
In comparison with real-valued neurons, the orthogonal
decision boundaries afforded by the complex plane can
result in more computational power [53]. Recently the
FCRN was employed to obtain a five-fold cross-validated
predictive accuracy of 82 % on the CB513 dataset [54].
The input and architecture of the classifier are described
briefly.

Let a residue ¢ be represented by x* where x is the vec-
tor containing 27 probability values pertaining to the three

secondary structure states H, E or C. x was normalized to
xt —min(xt) ]

lie between -1 to +1 using the formula 2x [ ===
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Fig. 1 Representation of features. A target residue, t in the input sequence is represented as a 27-dimensional feature vector. The input sequence is
read in a sliding window (w) of 17 residues (grey). The central residue (t) and several of its neighbours to the left and right are shown. CATH
templates were previously assigned SS using DSSP. Target to template threading was done using w = 17 and the reference energy computed with
the CABS-algorithm. The SS are read in from best fit template sequences that have the lowest energy for the central 9 residues within w. Since
multiple SS assignments will be available for a residue, t and its neighbours from from templates, the probability of each SS state is computed using
a hydrophobic cluster similarity score. P(H), P(E) and P(C) denote probabilities of t and its four neighbours to the left and right, adopting Helix, Sheet
and Coil structures respectively. CATH templates are homology removed and independent with respect to the CB513 dataset

The normalized x’ values were mapped to the complex
plane using a circular transformation. The complex-
valued input representing a residue is denoted by z‘ and
coded class labels y* denote the complex-valued output.

FCRN architecture is similar to three layered real net-
works as shown in Fig. 2.

However, the neurons employ the Complex plane. The
first layer contains m input neurons that perform the cir-
cular transformation that map real-valued input features
onto the complex plane. The second layer employs K
hidden neurons employing the hyperbolic secant (sech)
activation function. The output layer contains # neu-
rons employing an exponential activation function. The
predicted output is given by

K
¥ = exp <Z Wlkh1t<> (1)
k=1

Here, h,i is the hidden response and wy the weight
connecting the k” hidden unit and [ output unit. The
algorithm uses projection based learning where optimal
weights are analytically obtained by minimizing an error
function that accounts for both magnitude and phase of
the error. A different choice of classifier could potentially
be used to locate a small training set. However, since it

has been shown in the literature that complex-valued neu-
ral networks are computationally powerful due to their
inherent orthogonal decision boundary, here the FCRN
was employed to select proteins of the compact model and
to predict secondary structures. Complete details of the
learning algorithm are available in [38].

Accuracy measures

The scores used to evaluate the predicted structures are
the Q3 which measures single residue accuracy (correctly
predicted residues over total residues), as well as the
segment overlap scores SOVy, SOVg and SOV, which
measure the extent of overlap between native and pre-
dicted secondary structure segments for Helix (H), Sheet
(E) and Coil (C) states, respectively. The overall segment
overlap for the three states is denoted by SOV. The partial
accuracies of single states, Qx, Qr and Qc, which measure
correctly predicted residues of each state over the total
number of residues in that state, is also computed.

All segment overlap scores follow the definition in [55]
and were calculated with Zemla’s program. The per-class
Matthew’s Correlation Coefficient (MCC) follows the
definition in [23]. The class-wise MCC; with j € H,E, C is
obtained by

TP x TN — FP x FN
VTP +EP) x (IP T+ EN) x (IN + EP) x (IN + EN)

MCCj =
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hy =sech(V]T(zt -u))

Fig. 2 The Architecture of FCRN. The FCRN consists of a first layer of m input neurons, a second layer of K hidden neurons and a third layer of n
output neurons. For the SS prediction problem presented in this work, m = 27,n = 3 and K is allowed to vary. The hyperbolic secant (sech)
activation function computes the hidden response (h) and the predicted output ¥} is given by the exponential function. wyx represents the weight

connecting the Kth hidden neuron to the nth output neuron

Here, TP denotes true positive (number of correctly
predicted positives in that class, e.g. native helices which
are predicted as helices; FP denotes false positive (no.
of negative natives predicted as positives), i.e. sheets
and coils predicted as helices); TN denotes true nega-
tive (number of negative natives predicted negative, i.e.
no. of non-helix residues predicted as either sheets or
coils); FN denotes false negative (number of native pos-
itives predicted negative, i.e. no. of helices misclassified
as sheets and coils). Similar definitions follow for Sheets
and Coils.

Development of compact model

The feature extraction procedure uses a sliding window
of size 9 (see Section CABS-algorithm based vector
encoding of residues), resulting in lack of neighbour-
ing residues for the first and last four residues in a
sequence. Since they lack adequate information, the first
and last four residues were not included in the devel-
opment of the compact model. Besides, the termini of
a sequence are subject to high flexibility resulting from
physical pressures; for instance the translated protein
needs to move through Golgi apparatus. Regardless of

sequence, flexible structures may be highly preferred. This
could introduce much variation in the sequence to struc-
ture relationship that is being estimated by the classifier,
prompting for the decision to model them in a separate
work. Here, it was of interest to first establish that training
with a small group of proteins is viable.

Since the number of training proteins required to
achieve the maximum Qg3 on the dataset is unknown, it
was first estimated by randomized trials. The 385 pro-
teins derived from CB513 were numbered from 1 to 385
and the uniformly distributed rand function from MAT-
LAB was used to generate unique random numbers within
this range. At each trial, 5 sequences were added to the
training set and the Qs accuracy (for that particular set)
was obtained by testing on the remainder. The number
of hidden neurons was allowed to vary but capped at a
maximum of 100. The Qs scores have been shown as a
function of increasing the number of training proteins in
Fig. 3.

The Qs clearly peaks at 82 % for 50 proteins, indi-
cating that beyond this number, the addition of new
proteins contributes very little to the overall accuracy
and even worsens it slightly at 81.72 %. All trials
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Fig. 3 Q3 vs no. of training sequences (N). The accuracy achieved by FCRN as a function of increasing N is shown. Highest Qs is observed at 82 % for

40 50 60 70 80

N

were conducted using MATLAB R2012b running on a
3.6 GHz machine with 8GB RAM on a Windows 7
platform.

Heuristics-based selection of best set: Using 50 as an
approximate guideline of the number of proteins needed,
various protein sets were selected such that accuracies
achieved are similar to cross-validation scores reported in
the literature (e.g. about 80 %). These training sets are:

1. SSPgsmpied- Randomly selected 50 proteins (~7000
residues), distinct from the training sets shown in
Fig. 3.

2. SSPputanced- Randomly selected residues (~8000)
containing equal numbers from each of H, E, C states.

3. SSPs0. 50 proteins (~8000 residues) selected by
visualizing CB513 proteins according to H, E, C
ratios. Proteins with varying ratios of H, E, C
structures were chosen such that representatives
were picked over the secondary structure space
populated by the dataset (see Fig 4).

Tests on the remainder of the CB513 dataset indicated
only a slight difference in accuracy between the above
training sets, with Q3 values hovering at ~81 %. The sets
of training sequences from Q3 vs. N experiments (Fig. 3)
as well as the three sets listed above were tested against
GSW25, revealing a group of 55 proteins that give the best
results. The 55 proteins have been presented in Additional
file 1: Table S2. These 55 proteins are termed the com-
pact model. A similar technique could be applied on other
datasets and is described here as follows.

The development of a compact model follows three
stages. First, the number of training proteins, P needed to
achieve a desired accuracy on a given dataset, is estimated

by randomly adding chains to an initial small training set
and monitoring the effect on Qs. This first stage also nec-
essarily gives several randomly selected training sets of
varying sizes. Second, P is used as a guideline for the
construction of additional, training sets that are selected
according to certain characteristics such as the balance
of classes within chains (described under the heading
‘Heuristics-based Selection of Best Set’). Here, other ran-
domly selected proteins may also form a training set.
Other training sets of interest may also be constructed
here. In the third stage, the resultant training sets from
stages one and two are tested against an unknown dataset.
The best performing set of these, is termed the compact
model. Procedure ‘Obtain Compact Model’ given in Fig. 5
shows the stages described.

Results and discussion

Performance of the compact model

First, a five-fold cross-validated study, similar to other
methods reported in the literature was conducted to serve
as a basis for comparison for the compact model. The 385
proteins were divided into 5 partitions by random selec-
tion. Each partition contained 77 sequences and was used
once for test, with the rest for training. Any single pro-
tein served only once as a test protein, ensuring that final
results reflected a full training on the dataset.

The compact model of 55 training proteins is denoted
SSPs5 and the cross-validation model, SSP¢y . For SSPss,
the remaining 330 proteins containing 51,634 residues
served as the test set. For a fair comparison, SSPcy
results for these same 330 test proteins were considered.
The FCRN was separately trained with parameters from
both models and was allowed to have a maximum of
100 hidden neurons. Train and test times averaged for
100 residues were 4 min and 0.3 s, respectively on a



Rashid et al. BMC Bioinformatics (2016) 17:362 Page 8 0of 18

© cBs13
o SsPy
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Fig. 4 Plot of CB513 proteins by their secondary structure content. One circle represents a single protein sequence. SSPsq proteins are represented as
yellow circles while the remainder of the CB513 dataset are green circles. The compact model, SSPss proteins are spread out in a similar fashion to the
SSPso proteins shown here. Axes show the proportion of Helix, Coil and Sheet residues divided by the sequence length. For instance, a hypothetical
30 residue protein comprised of only Helix residues, would be represented at the bottom-right most corner of the plot

3.6 GHz processor with 8G RAM. Results are shown in
Table 1. The performance of SSP55 was extremely close
to that of SSPcy across most predictive scores as well
as the Matthew’s correlation coefficients (MCC). Further

The Qg values for SSP55 and SSP¢y were 81.72 % and
82.03 % respectively. This is a small difference of 0.31 %
which amounts to 160 residues in the present study. As
reported in earlier studies [18, 22] it was easiest to pre-

discussion follows. dict Helix residues followed by Coil and Sheet for both

Procedure Obtain Compact Model
Input: Main dataset of protein chains, D, and
Blind Test Dataset, D.
Output: Compact Model, M,

J4 Initialization. Qy
Q0
M, « 5 randomly selected training sequences from Dy

= single residue accuracy.

repeat
Train FCRN classifier with train dataset M, ;
Obtain Q; on test dataset D, - M,;
M.+ + M, + 5 random sequences from Dy ;
Update best Qs;
Save all M; and their FCRN parameters that give Qs within desired error;
Save P, the no of training sequences giving best Q; ;
until )5 does not increase significantly:

erate more training sets, M, from D,
Usmg Pas guldelme select training sets based on various characteristics (See text);

Compact Model, M; by

choosing the best

foreach M. do
Test M, against D using FCRN;
Save Q; ;
if BEST < ()4 then
BEST + Qs;
My +— M,;
end
end

Fig. 5 Procedure obtain compact model
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Table 1 Results on CB513 (51,634 residues)
Model Observed j Predicted j Q; (%) Q3 (%) SQV; (%) SOV (%) MCG
H E C
H 16469 48 1840 89.72 83.14 0.82
SSPev E 92 8804 2955 74.29 82.03 72.24 7946 0.71
C 2313 2032 17081 79.73 7546 0.64
H 16333 62 1962 88.98 82.19 0.81
SSPss E 87 9001 2763 75.96 81.72 7343 7893 0.71
C 2288 2279 16859 78.69 74.5 0.63

the SSPs5 and SSPcy models. The Qg, Qr and Q¢ val-
ues were 89.72 %, 74.29 %, 79.73 % respectively under the
SSPcy model and 88.98 %, 75.96 % and 78.69 % under
the SSP55 model. SSP¢y training predicted Helix and Coil
residues better at about 1 %. The SSP55 model predicted
Sheet residues better by 1.7 %.

The SOV score indicates SSPcy predicted overall seg-
ments better by a half percentage point than SSPs5. SSPs5
predicted the strand segments better by 1.2 % with an
SOVE of 73.43 % vs. 72.24 % obtained by SSPcy. Similar
findings were made when results of all 385 proteins (i.e.
including training) were considered.

Since the results between both models were close, sta-
tistical tests were conducted to examine if the Qs and
SOV scores obtained per sequence were significantly dif-
ferent under the two models. For SSPcy, the scores used
were averages of 5 partitions. First, the Shapiro-Wilk test
[56] was conducted to detect if the scores are normally
distributed. P values for both measures (<< 10~°) indi-
cated that neither was normal at an @« = 0.05 level of
significance. The non-parametric Wilcoxon signed-rank
test [57] was next used to determine if paired values
per sequence were significantly different. The P-values
obtained for the Q3 and SOV measures were 0.0012 and
0.015, indicating that SSPcy is better at a significance level
of @ = 0.05.

It was expected that a smaller training set of 55 training
proteins would give lower accuracies. However, the scores
achieved were extremely close to those obtained from the
larger training model (SSPcvy). It is therefore remarkable
that the increase in accuracy afforded by 5 times the num-
ber of proteins is less than half a percentage point for the
Q3 score. SPINE reported seemingly different findings to
those here [18]. A drop in Q3 of up to 4 percentage points
was reported when smaller datasets were used in train-
ing. Other than the training sets, the accuracy achieved
depends on factors like the choice of classifier and the type
of feature encoding used. The latter two were different
from the work here and could be a reason for the different
conclusions.

It is further unknown if the sequence to structure infor-
mation learnt by the network depends on entire proteins

or if residue-based selection could show a comparable
performance. In theory, if secondary structure involves
mainly local interactions, residue-based training selec-
tions should yield comparable predictive accuracies. Since
each amino acid residue is often encoded as a feature vec-
tor representing some properties of its sequential neigh-
bours in a sliding window scheme, one could presume
that local interactions are captured and that it is possi-
ble to randomly select residues for training rather than
entire proteins. In 5-fold cross-validation experiments
conducted previously, in which the partitions were cre-
ated based on randomly selected residues rather than
proteins, a Qs score of 81.7 % was achieved [54]. However,
training based on residues was found to improve Sheet
prediction at the expense of the Coil class. The SSPg,141ceq
model was also created by selection of residues, but
despite a high performance for sheet (Qr = 83.83 %), the
model gave a considerably lower accuracy for the Coil
residues at 71.42 %.

A separate experiment was also conducted in which
the first and last four residues of the 55 proteins
of the compact model were included (see Section
Development of compact model for reasons of exclusion).
The Q3 obtained by the compact model was 81.5 % on
54,274 test residues, which indicates that a slight depreci-
ation in performance (0.21 %) had been observed.

Results here suggest that most of the information relat-
ing to the structural folds present in CB513 is cap-
tured by the SSP55. Otherwise, the accuracies would have
been much lower than expected with merely 55 training
proteins.

Effect of SCOP classes on accuracy

The composition of the CB513 dataset based on the Struc-
tural Classification of Proteins (SCOP) [39] classes was
analysed to determine what effect structural classes have
on the predictive accuracy. Effort was made to match
CB513 sequences to sequences in PDB files derived from
ATOM records. All 385 proteins were matched with cur-
rent PDB structures with corresponding PDB identifiers
and chains except for two of them. In some cases, obso-
lete PDB entries had to be kept to maintain sequence
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matches, but the IDs of superseding structures were also
noted (385 proteins with PDB and SCOP identifiers is
available on request). Using PDB identifiers, correspond-
ing SCOP domains were assigned from parseable files of
database version SCOPe 2.03. Sequences of the domains
were also matched with the 385 proteins from CB513.
For a majority of proteins, the sequences of the SCOP
domains matched the CB513 sequences. The rest had par-
tial or gapped matches, likely due to updated versions
of defined domains for older structures. For such cases
the corresponding domains were nevertheless assigned as
long as the sequences matched partially. Structures with
missing or multiple SCOP domain matches (a total of 11
proteins) were excluded in the following discussion.

The distribution of SCOP classes and Q3 scores in the
compact model (SSP55) as well as the remainder of the
CB513 dataset was compared (Fig 6). The results for SSPs5
represent tests on the compact model itself. The 4 main
protein structural classes according to SCOP are the (a) all
alpha proteins, (b) all beta proteins, (¢) interspersed alpha
and beta proteins and (d) segregated alpha and beta pro-
teins. Additional classes are (e) multi domain proteins for
which homologues are unknown , (f) membrane and cell
surface proteins, (g) small proteins, (%) coiled coil struc-
tures, (j) peptides and (k) designed proteins. Class (i) low
resolution proteins, are absent from the dataset.

All the 4 main protein structural classes were found
to have high Qs scores ranging from 85 % for the alpha
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proteins (a) to 80 % for the beta proteins (b). The best
performing proteins were those rich in Helix residues as
expected (Class (a)). However, the lowest performing class
was that of small proteins (g) with a Q3 of 74 % (aver-
aged over 19 structures), rather than 8-strand containing
classes such as (), (c), or (d) as might be inferred from the
Sheet residues having the worst performance. One expla-
nation is that poor Sheet performance arises from mis-
predicted single residue strands (state B of DSSP). These
may be harder t