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Abstract

Background: Protein secondary structure prediction (SSP) has been an area of intense research interest. Despite
advances in recent methods conducted on large datasets, the estimated upper limit accuracy is yet to be reached.
Since the predictions of SSP methods are applied as input to higher-level structure prediction pipelines, even small
errors may have large perturbations in final models. Previous works relied on cross validation as an estimate of
classifier accuracy. However, training on large numbers of protein chains compromises the classifier ability to
generalize to new sequences. This prompts a novel approach to training and an investigation into the possible
structural factors that lead to poor predictions.
Here, a small group of 55 proteins termed the compact model is selected from the CB513 dataset using a
heuristics-based approach. In a prior work, all sequences were represented as probability matrices of residues
adopting each of Helix, Sheet and Coil states, based on energy calculations using the C-Alpha, C-Beta, Side-chain
(CABS) algorithm. The functional relationship between the conformational energies computed with CABS force-field
and residue states is approximated using a classifier termed the Fully Complex-valued Relaxation Network (FCRN). The
FCRN is trained with the compact model proteins.
Results: The performance of the compact model is compared with traditional cross-validated accuracies and
blind-tested on a dataset of G Switch proteins, obtaining accuracies of ∼81 %. The model demonstrates better results
when compared to several techniques in the literature. A comparative case study of the worst performing chain
identifies hydrogen bond contacts that lead to Coil ↔ Sheet misclassifications. Overall, mispredicted Coil residues
have a higher propensity to participate in backbone hydrogen bonding than correctly predicted Coils.

Conclusions: The implications of these findings are: (i) the choice of training proteins is important in preserving the
generalization of a classifier to predict new sequences accurately and (ii) SSP techniques sensitive in distinguishing
between backbone hydrogen bonding and side-chain or water-mediated hydrogen bonding might be needed in the
reduction of Coil ↔ Sheet misclassifications.
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Background
The earliest models of protein secondary structure were
proposed by Pauling and Corey who predicted that the
polypeptide backbone contains regular hydrogen bonded
geometry, forming α- helices and β-sheets [1, 2]. The
subsequent deposition of structures into public databases
aided growth of methods predicting structures from pro-
tein sequences. Although the number of structures in the
Protein Data Bank (PDB) is growing at an exponential rate
due to advances in experimental techniques, the number
of protein sequences remains far higher. The NCBI Ref-
Seq database [3] contains 47 million protein sequences
and the PDB,∼110,000 structures (including redundancy)
as of April 2016. Therefore, the computational predic-
tion of protein structures from sequences still remains a
powerful complement to experimental techniques. Pro-
tein Secondary Structure Prediction (SSP), often an inter-
mediate step in the prediction of tertiary structures has
been of great interest for several decades. Since struc-
tures are more conserved than sequences, accurate sec-
ondary structure predictions can aid multiple sequence
alignments and threading to detect homologous struc-
tures, amongst other applications [4]. The existing SSP
methods are briefly summarized by developments that
led to increases in accuracy and grouped by algorithms
employed.
The GOR technique pioneered the use of an entropy

function employing residue frequencies garnered from
proteins databases [5]. Later, the development of a sliding
window scheme and the calculation of pair wise propen-
sities (rather single residue frequencies) resulted in an
accuracy of 64.4 % [6]. Subsequent developments include
combining the GOR technique with evolutionary infor-
mation [7, 8] and the incorporation of the GOR technique
with a fragment mining method [9, 10]. The PHDmethod
employed multiple sequence alignments (MSA) as input
in combination with a two level neural network predictor
[11], increasing the accuracy to 72 %. The representation
of an input sequence as a profile matrix obtained from
PSI-BLAST [12] derived position specific scoring matri-
ces (PSSM) was pioneered by PSIPRED, improving the
accuracy up to 76 % [13]. Most techniques now employ
PSSM (either solely or in combination with other pro-
tein properties) as input to machine-learning algorithms.
The neural network based methods [14–21] have per-
formed better than other algorithms in recent large scale
reviews that compared performance on up to 2000 pro-
tein chains [22, 23]. Recently, more neural network based
secondary structure predictors have been developed, such
as the employment of a general framework for prediction
[24], and the incorporation of context-dependent scores
that account for residue interactions in addition to the
PSSM [25]. Besides the neural networks, other methods
use support vector machines (SVM) [26, 27] or hidden

Markov models [28–30]. Detailed reviews of SSPmethods
are available in [4, 31]. Current accuracies tested on nearly
2000 chains yield up to 82 % [22]. In the machine learning
literature, neural networks employed in combination with
SVM obtained an accuracy of 85.6 % on the CB513 dataset
[32]. Apart from the accuracies given in reviews, most of
the literature reports accuracy based onmachine-learning
models employing k-fold cross-validation and does not
provide insight to underlying structural reasons for poor
performance.

The compact model
The classical view adopted in developing SSP methods
is that a large number of training proteins are neces-
sary, because the more proteins the classifier is trained
on, the better the chances of predicting an unseen pro-
tein sequence e.g. [18, 33]. This involved large numbers
of training sequences. For example, SPINE employed
10-fold cross validation on 2640 protein chains and OSS-
HMM employed four-fold cross-validation on approxi-
mately 3000 chains [18, 29]. Cross-validated accuracies
prevent overestimation of the prediction ability. In most
of the protein SSP methods, a large number of protein
chains (of at least a thousand) have been used to train the
methods. Smaller numbers by comparison, (in the hun-
dreds) have been used to test them. The ratio of train to
test chains is 8:1, for YASPIN [28] and∼5:1 for SPINE and
SSPro [14]. However, the exposure to large numbers of
similar training proteins or chainsmay result in over train-
ing and thereby influence the generalization ability when
tested against new sequences.
A question arises on the possible existence of a smaller

number of proteins which are sufficient to build an SSP
model that achieves a similar or better performance.
Despite the high accuracies described, the theoretical
upper limit for the SSP problem, estimated at 88–90 %,
has not been reached [34, 35]. Moreover, some protein
sequences are inherently difficult to predict and the rea-
sons behind, unclear. An advantage of a compact model is
that the number of folds used in training is small and often
distinct from the testing proteins. Subsequently, one could
add proteins whose predictions are unsatisfactory, into
the compact model. This may identify poorly performing
folds, or other structural features which are difficult to
predict correctly by existing feature encoding techniques
or classifiers. This motivates our search for a new training
model for the SSP problem.
The goal of this paper is to locate a small group of pro-

teins from the proposed dataset, such that training the
classifier on them maintains similar accuracies to cross-
validation, yet retains its ability to generalize to new pro-
teins. Such a small group of training proteins is termed
as the ‘compact model’, representing a step towards an
efficient learning model that prevents over fitting. Here,
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the CB513 dataset [36] is used to develop the com-
pact model and a dataset of G Switch proteins (GSW25)
[37] is used for validation. A feature encoding based on
computed energy potentials is used to represent protein
residues as features. The energy potential based features
are employed with a fully complex-valued relaxation net-
work (FCRN) classifier to predict secondary structures
[38]. The compact model employed with the FCRN pro-
vides a similar performance compared to cross-validated
approaches commonly adopted in the literature, despite
using a much smaller number of training chains. The
performance is also compared with several existing SSP
methods for the GSW25 dataset.
Using the compact model, the effect of protein struc-

tural characteristics on prediction accuracies is further
examined. The Q3 accuracies across Structural Classi-
fication of Proteins (SCOP) classes [39] are compared,
revealing classes with poor Q3. For some chains in these
poor performing SCOP classes, the accuracy remains low
(below 70 %) even if they were to be included as train-
ing proteins, or even if tested against other techniques
in the literature. The possible structural reasons behind
the persistent poor performance were investigated, but it
was difficult to attribute the source (e.g. mild distortions
induced by buried metal ligands). However, a detailed
case study of the porcine trypsin inhibitor (the worst
performing chain) highlights the possible significance of
water-mediated vs. peptide-backbone hydrogen bonded
contacts towards the accuracy.
The remaining of the paper is organized as follows.

The Methods section describes the datasets, feature
encoding of the residues (based on energy potentials)
and the architecture and learning algorithm of the
FCRN classifier. Next, the heuristics-based approach
is presented to obtain the compact model. Section
Performance of the compact model investigates the
performance of the compact model compared with
cross-validation in two datasets: the remainder of
the CB513 dataset and on GSW25. The section
Case study of two inhibitors presents the case study in
which the trypsin inhibitor is compared with the inhibitor
of the cAMP dependent protein kinase. The differences
in the structural environments of Coil residues in these
inhibitors are discussed with respect to the accuracy
obtained. The main findings of the work are summarized
in Conclusions.

Methods
Datasets
CB513 The benchmarked CB513 dataset developed by
Cuff and Barton is used [36]. 128 chains were further
removed from this set by Saraswathi et al., [37], to
avoid homology with CATH structural templates used
to generate energy potentials (see CABS-Algorithm based

Vector Encoding of Residues). The resultant set has 385
proteins comprising 63,079 residues. The composition
is approximately 35 % helices, 23 % strands and 42 %
coils. Here, the first and last four residues of each
chain are excluded in obtaining the compact model (see
Development of compact model), giving a final set contain-
ing 59,999 residues which comprise 35.3 % helices, 23.2 %
strands and 41.4 % coils, respectively.

G Switch Proteins (GSW25) This dataset was generated
during our previous work on secondary structure pre-
diction [37]. It contains 25 protein chains derived from
the GA and GB domains of the Streptococcus G protein
[40, 41]. The GA and GB domains bind human serum
albumin and Immunoglobulin G (IgG), respectively. There
are two folds present: a 3α fold and 4β + α fold corre-
sponding to the GA and GB domains, respectively. A series
of mutation experiments investigated the role of residues
in specifying one fold over the other, hence the term
‘switch’ [42].
The dataset contains similar sequences. However, it is

strictly used for blind testing and not used in model devel-
opment. The sequence identities between CB513 and
GSW25 are less than 25 % as checked with the PISCES
sequence culling server [43]. The compactmodel obtained
does not contain either the β-Grasp ubiquitin-like or albu-
min binding domain-like folds, corresponding to GA and
GB domains according to SCOP classification [39]. In this
set, 12 chains belong to GA and 13 chains to GB, with each
chain being 56 residues long. The total number of residues
is 1400 and comprises 52 % helix, 39 % strand and 9 %
coil respectively. The sequences are available in Additional
file 1: Table S1.
The secondary structure assignments were done using

DSSP [44]. The eight to three state reduction is performed
as in other works [18, 37]. States H, G, I (α, 310,π helices)
were reduced to Helix (H) and states E, B (extended, single
residue β-strands) to Sheet (E). States T, S and blanks (β-
turn, bend, loops and irregular structures) were reduced
to Coil (C).

CABS-algorithm based vector encoding of residues
We used knowledge-based statistical potentials to encode
amino acid residues as vectors instead of using PSSM.
This data was generated during our previous work [37] on
secondary structure prediction. Originally these poten-
tials were derived for coarse grained models (CABS-
C-Alpha, C-Beta and Side-chains) of protein structure.
CABS could be a very efficient tool formodeling of protein
structure [45], protein dynamics [46] and protein dock-
ing [47]. The force-field of CABS model has been derived
using careful analysis of structural regularities seen in
a representative set of high resolution crystallographic
structures [48].
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This force-field consist of unique context-dependent
potentials, that encode sequence independent protein-like
conformational preferences and context-dependent con-
tact potentials for the coarse-grained representation of the
side chains. The side chain contact potentials depend on
the local geometry of the main chain (secondary struc-
ture) and on the mutual orientation of the interacting side
chains. A detailed description of the implementation of
CABS-based potentials in our threading procedures could
be found in [37]. It should be pointed out, that use of
these CABS-based statistical potentials (derived for vari-
ous complete protein structures, and therefore accounting
for structural properties of long range sequence frag-
ments) opens the possibility for effective use of relatively
short windows size for the target-template comparisons.
Another point to note is the fact that the CABS force-
field encodes properly averaged structural regularities
seen in the huge collection of known protein structures.
Since such an encoding incorporates proper averages for
large numbers of known protein structures, the use of a
small training set does not reduce the predictive strength
of the proposed method for rapid secondary structure
prediction.
A target residue was encoded as a vector of 27 features,

with the first 9 containing its propensity to formHelix (H),
the next 9 its propensity to form Sheet (E) and the last 9,
its propensity to form Coil (C) structures (see Fig. 1). The
process of encoding was described in [37] and is repeated
here.

Removal of highly similar targets
In this stage, target sequences that have a high similarity
to templates were removed to ensure that the predicted
CB513 sequences are independent of the templates used.
Therefore the accuracies reported may be attributed to
other factors such as the CABS- algorithm, training or
machine-learning techniques used, rather than an existing
structural knowledge.
A library of CATH [49] structural templates was down-

loaded and Needleman-Wunsch [50] global alignment
of templates to CB513 target sequences was performed.
There were 1000 template sequences and 513 target
sequences, resulting in 513000 pairwise alignments. Of
these alignments, 97 % had similarity scores in the range
of 10 to 18 % and the remaining 3 % contained up to
70 % sequence similarity (see Figure S7 in [37]). However,
only 422 CATH templates could be used due to compu-
tational resource concerns and PDB file errors. Structural
similarities between targets and templates were removed
by querying target names against Homology-derived Sec-
ondary Structure of Proteins (HSSP) [51] data for tem-
plate structures. After removal of sequence or structural
similarities, 422 CATH structural templates and 385 pro-
teins from CB513 were obtained. The DSSP secondary

structure assignments were performed for these tem-
plates. Contact maps were next computed for the heavy
atoms C, O and N with a distance cutoff of 4.5 Å.

Threading and computation of reference energy
Each target sequence was then threaded onto each tem-
plate structure using a sliding window of size 17 and the
reference energy computed using the CABS-algorithm.
The reference energy takes the (i) short-range contacts,
(ii) long-range contacts and (iii) hydrophobic/hydrophilic
residue matching into account, weighted 2.0 :0.5 :0.8,
respectively [37]. For short range residues, reference ener-
gies depend on molecular geometry and chemical proper-
ties of neighbours up to 4 residues apart. For long-range
interactions, a contact energy term is added if aligned
residues are interacting according the contact maps gen-
erated in the previous stage. The best matching template
residue is selected using a scoring function (unpublished).
The lowest energy (best fit) residues are retained.
The DSSP secondary structure assignments from the

best fitting template sequences are read in, but this was
done only for the 9 central residues in the window of
17. The probability of the 9 central residues adopting
each of the three states Helix, Sheet or Coil is derived
using a hydrophobic cluster similarity based method [52].
Figure 1 illustrates the representation of an amino acid
residue from an input sequence as a vector of 27 features
in terms of probabilities of adopting each of the three
secondary structures H, E or C.
It is emphasized that the secondary structures of tar-

gets are not used in the derivation of features. How-
ever, since target-template threading of sequences was
performed, the method indirectly incorporates structural
information from the best matching templates. A com-
plete description of the generation of the 27 features for
a given target residue is available in [37]. These 27 fea-
tures serve as input to the classifier that is described
next.

Fully complex valued relaxation network (FCRN)
The FCRN is a complex-valued neural network classi-
fier that uses a complex plane as its decision boundary.
In comparison with real-valued neurons, the orthogonal
decision boundaries afforded by the complex plane can
result in more computational power [53]. Recently the
FCRN was employed to obtain a five-fold cross-validated
predictive accuracy of 82 % on the CB513 dataset [54].
The input and architecture of the classifier are described
briefly.
Let a residue t be represented by xt where x is the vec-

tor containing 27 probability values pertaining to the three
secondary structure states H, E or C. xt was normalized to
lie between -1 to +1 using the formula 2×[ xt−min(xt)

max(xt)−min(xt) ].
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Fig. 1 Representation of features. A target residue, t in the input sequence is represented as a 27-dimensional feature vector. The input sequence is
read in a sliding window (w) of 17 residues (grey). The central residue (t) and several of its neighbours to the left and right are shown. CATH
templates were previously assigned SS using DSSP. Target to template threading was done using w = 17 and the reference energy computed with
the CABS-algorithm. The SS are read in from best fit template sequences that have the lowest energy for the central 9 residues within w. Since
multiple SS assignments will be available for a residue, t and its neighbours from from templates, the probability of each SS state is computed using
a hydrophobic cluster similarity score. P(H), P(E) and P(C) denote probabilities of t and its four neighbours to the left and right, adopting Helix, Sheet
and Coil structures respectively. CATH templates are homology removed and independent with respect to the CB513 dataset

The normalized xt values were mapped to the complex
plane using a circular transformation. The complex-
valued input representing a residue is denoted by zt and
coded class labels yt denote the complex-valued output.
FCRN architecture is similar to three layered real net-

works as shown in Fig. 2.
However, the neurons employ the Complex plane. The

first layer contains m input neurons that perform the cir-
cular transformation that map real-valued input features
onto the complex plane. The second layer employs K
hidden neurons employing the hyperbolic secant (sech)
activation function. The output layer contains n neu-
rons employing an exponential activation function. The
predicted output is given by

ŷtl = exp
( K

∑

k=1
wlkhtk

)

(1)

Here, htk is the hidden response and wlk the weight
connecting the kth hidden unit and lth output unit. The
algorithm uses projection based learning where optimal
weights are analytically obtained by minimizing an error
function that accounts for both magnitude and phase of
the error. A different choice of classifier could potentially
be used to locate a small training set. However, since it

has been shown in the literature that complex-valued neu-
ral networks are computationally powerful due to their
inherent orthogonal decision boundary, here the FCRN
was employed to select proteins of the compact model and
to predict secondary structures. Complete details of the
learning algorithm are available in [38].

Accuracy measures
The scores used to evaluate the predicted structures are
the Q3 which measures single residue accuracy (correctly
predicted residues over total residues), as well as the
segment overlap scores SOVH , SOVE and SOVC , which
measure the extent of overlap between native and pre-
dicted secondary structure segments for Helix (H), Sheet
(E) and Coil (C) states, respectively. The overall segment
overlap for the three states is denoted by SOV. The partial
accuracies of single states, QH , QE andQC , whichmeasure
correctly predicted residues of each state over the total
number of residues in that state, is also computed.
All segment overlap scores follow the definition in [55]

and were calculated with Zemla’s program. The per-class
Matthew’s Correlation Coefficient (MCC) follows the
definition in [23]. The class-wise MCCj with j ∈ H ,E,C is
obtained by

MCCj = TP × TN − FP × FN√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
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Fig. 2 The Architecture of FCRN. The FCRN consists of a first layer ofm input neurons, a second layer of K hidden neurons and a third layer of n
output neurons. For the SS prediction problem presented in this work,m = 27, n = 3 and K is allowed to vary. The hyperbolic secant (sech)
activation function computes the hidden response (htl ) and the predicted output ŷtl is given by the exponential function. wnK represents the weight
connecting the Kth hidden neuron to the nth output neuron

Here, TP denotes true positive (number of correctly
predicted positives in that class, e.g. native helices which
are predicted as helices; FP denotes false positive (no.
of negative natives predicted as positives), i.e. sheets
and coils predicted as helices); TN denotes true nega-
tive (number of negative natives predicted negative, i.e.
no. of non-helix residues predicted as either sheets or
coils); FN denotes false negative (number of native pos-
itives predicted negative, i.e. no. of helices misclassified
as sheets and coils). Similar definitions follow for Sheets
and Coils.

Development of compact model
The feature extraction procedure uses a sliding window
of size 9 (see Section CABS-algorithm based vector
encoding of residues), resulting in lack of neighbour-
ing residues for the first and last four residues in a
sequence. Since they lack adequate information, the first
and last four residues were not included in the devel-
opment of the compact model. Besides, the termini of
a sequence are subject to high flexibility resulting from
physical pressures; for instance the translated protein
needs to move through Golgi apparatus. Regardless of

sequence, flexible structures may be highly preferred. This
could introduce much variation in the sequence to struc-
ture relationship that is being estimated by the classifier,
prompting for the decision to model them in a separate
work. Here, it was of interest to first establish that training
with a small group of proteins is viable.
Since the number of training proteins required to

achieve the maximum Q3 on the dataset is unknown, it
was first estimated by randomized trials. The 385 pro-
teins derived from CB513 were numbered from 1 to 385
and the uniformly distributed rand function from MAT-
LABwas used to generate unique random numbers within
this range. At each trial, 5 sequences were added to the
training set and the Q3 accuracy (for that particular set)
was obtained by testing on the remainder. The number
of hidden neurons was allowed to vary but capped at a
maximum of 100. The Q3 scores have been shown as a
function of increasing the number of training proteins in
Fig. 3.
The Q3 clearly peaks at 82 % for 50 proteins, indi-

cating that beyond this number, the addition of new
proteins contributes very little to the overall accuracy
and even worsens it slightly at 81.72 %. All trials
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Fig. 3 Q3 vs no. of training sequences (N). The accuracy achieved by FCRN as a function of increasing N is shown. Highest Q3 is observed at 82 % for
50 sequences. Maximum allowed hidden neurons = 100

were conducted using MATLAB R2012b running on a
3.6 GHz machine with 8GB RAM on a Windows 7
platform.

Heuristics-based selection of best set: Using 50 as an
approximate guideline of the number of proteins needed,
various protein sets were selected such that accuracies
achieved are similar to cross-validation scores reported in
the literature (e.g. about 80 %). These training sets are:

1. SSPsampled . Randomly selected 50 proteins (∼7000
residues), distinct from the training sets shown in
Fig. 3.

2. SSPbalanced . Randomly selected residues (∼8000)
containing equal numbers from each of H, E, C states.

3. SSP50. 50 proteins (∼8000 residues) selected by
visualizing CB513 proteins according to H, E, C
ratios. Proteins with varying ratios of H, E, C
structures were chosen such that representatives
were picked over the secondary structure space
populated by the dataset (see Fig 4).

Tests on the remainder of the CB513 dataset indicated
only a slight difference in accuracy between the above
training sets, with Q3 values hovering at ∼81 %. The sets
of training sequences from Q3 vs. N experiments (Fig. 3)
as well as the three sets listed above were tested against
GSW25, revealing a group of 55 proteins that give the best
results. The 55 proteins have been presented in Additional
file 1: Table S2. These 55 proteins are termed the com-
pact model. A similar technique could be applied on other
datasets and is described here as follows.
The development of a compact model follows three

stages. First, the number of training proteins, P needed to
achieve a desired accuracy on a given dataset, is estimated

by randomly adding chains to an initial small training set
and monitoring the effect on Q3. This first stage also nec-
essarily gives several randomly selected training sets of
varying sizes. Second, P is used as a guideline for the
construction of additional, training sets that are selected
according to certain characteristics such as the balance
of classes within chains (described under the heading
‘Heuristics-based Selection of Best Set’). Here, other ran-
domly selected proteins may also form a training set.
Other training sets of interest may also be constructed
here. In the third stage, the resultant training sets from
stages one and two are tested against an unknown dataset.
The best performing set of these, is termed the compact
model. Procedure ‘Obtain Compact Model’ given in Fig. 5
shows the stages described.

Results and discussion
Performance of the compact model
First, a five-fold cross-validated study, similar to other
methods reported in the literature was conducted to serve
as a basis for comparison for the compact model. The 385
proteins were divided into 5 partitions by random selec-
tion. Each partition contained 77 sequences and was used
once for test, with the rest for training. Any single pro-
tein served only once as a test protein, ensuring that final
results reflected a full training on the dataset.
The compact model of 55 training proteins is denoted

SSP55 and the cross-validation model, SSPCV . For SSP55,
the remaining 330 proteins containing 51,634 residues
served as the test set. For a fair comparison, SSPCV
results for these same 330 test proteins were considered.
The FCRN was separately trained with parameters from
both models and was allowed to have a maximum of
100 hidden neurons. Train and test times averaged for
100 residues were 4 min and 0.3 s, respectively on a



Rashid et al. BMC Bioinformatics  (2016) 17:362 Page 8 of 18

Fig. 4 Plot of CB513 proteins by their secondary structure content. One circle represents a single protein sequence. SSP50 proteins are represented as
yellow circles while the remainder of the CB513 dataset are green circles. The compact model, SSP55 proteins are spread out in a similar fashion to the
SSP50 proteins shown here. Axes show the proportion of Helix, Coil and Sheet residues divided by the sequence length. For instance, a hypothetical
30 residue protein comprised of only Helix residues, would be represented at the bottom-right most corner of the plot

3.6 GHz processor with 8G RAM. Results are shown in
Table 1. The performance of SSP55 was extremely close
to that of SSPCV across most predictive scores as well
as the Matthew’s correlation coefficients (MCC). Further
discussion follows.

The Q3 values for SSP55 and SSPCV were 81.72 % and
82.03 % respectively. This is a small difference of 0.31 %
which amounts to 160 residues in the present study. As
reported in earlier studies [18, 22] it was easiest to pre-
dict Helix residues followed by Coil and Sheet for both

Fig. 5 Procedure obtain compact model
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Table 1 Results on CB513 (51,634 residues)

Model Observed j Predicted j Qj (%) Q3 (%) SOVj (%) SOV (%) MCCj

H E C

H 16469 48 1840 89.72 83.14 0.82

SSPCV E 92 8804 2955 74.29 82.03 72.24 79.46 0.71

C 2313 2032 17081 79.73 75.46 0.64

H 16333 62 1962 88.98 82.19 0.81

SSP55 E 87 9001 2763 75.96 81.72 73.43 78.93 0.71

C 2288 2279 16859 78.69 74.5 0.63

the SSP55 and SSPCV models. The QH , QE and QC val-
ues were 89.72 %, 74.29 %, 79.73 % respectively under the
SSPCV model and 88.98 %, 75.96 % and 78.69 % under
the SSP55 model. SSPCV training predicted Helix and Coil
residues better at about 1 %. The SSP55 model predicted
Sheet residues better by 1.7 %.
The SOV score indicates SSPCV predicted overall seg-

ments better by a half percentage point than SSP55. SSP55
predicted the strand segments better by 1.2 % with an
SOVE of 73.43 % vs. 72.24 % obtained by SSPCV . Similar
findings were made when results of all 385 proteins (i.e.
including training) were considered.
Since the results between both models were close, sta-

tistical tests were conducted to examine if the Q3 and
SOV scores obtained per sequence were significantly dif-
ferent under the two models. For SSPCV , the scores used
were averages of 5 partitions. First, the Shapiro-Wilk test
[56] was conducted to detect if the scores are normally
distributed. P values for both measures (<< 10−5) indi-
cated that neither was normal at an α = 0.05 level of
significance. The non-parametric Wilcoxon signed-rank
test [57] was next used to determine if paired values
per sequence were significantly different. The P-values
obtained for the Q3 and SOV measures were 0.0012 and
0.015, indicating that SSPCV is better at a significance level
of α = 0.05.
It was expected that a smaller training set of 55 training

proteins would give lower accuracies. However, the scores
achieved were extremely close to those obtained from the
larger training model (SSPCV ). It is therefore remarkable
that the increase in accuracy afforded by 5 times the num-
ber of proteins is less than half a percentage point for the
Q3 score. SPINE reported seemingly different findings to
those here [18]. A drop in Q3 of up to 4 percentage points
was reported when smaller datasets were used in train-
ing. Other than the training sets, the accuracy achieved
depends on factors like the choice of classifier and the type
of feature encoding used. The latter two were different
from the work here and could be a reason for the different
conclusions.
It is further unknown if the sequence to structure infor-

mation learnt by the network depends on entire proteins

or if residue-based selection could show a comparable
performance. In theory, if secondary structure involves
mainly local interactions, residue-based training selec-
tions should yield comparable predictive accuracies. Since
each amino acid residue is often encoded as a feature vec-
tor representing some properties of its sequential neigh-
bours in a sliding window scheme, one could presume
that local interactions are captured and that it is possi-
ble to randomly select residues for training rather than
entire proteins. In 5-fold cross-validation experiments
conducted previously, in which the partitions were cre-
ated based on randomly selected residues rather than
proteins, a Q3 score of 81.7 % was achieved [54]. However,
training based on residues was found to improve Sheet
prediction at the expense of the Coil class. The SSPBalanced
model was also created by selection of residues, but
despite a high performance for sheet (QE = 83.83 %), the
model gave a considerably lower accuracy for the Coil
residues at 71.42 %.
A separate experiment was also conducted in which

the first and last four residues of the 55 proteins
of the compact model were included (see Section
Development of compact model for reasons of exclusion).
The Q3 obtained by the compact model was 81.5 % on
54,274 test residues, which indicates that a slight depreci-
ation in performance (0.21 %) had been observed.
Results here suggest that most of the information relat-

ing to the structural folds present in CB513 is cap-
tured by the SSP55. Otherwise, the accuracies would have
been much lower than expected with merely 55 training
proteins.

Effect of SCOP classes on accuracy
The composition of the CB513 dataset based on the Struc-
tural Classification of Proteins (SCOP) [39] classes was
analysed to determine what effect structural classes have
on the predictive accuracy. Effort was made to match
CB513 sequences to sequences in PDB files derived from
ATOM records. All 385 proteins were matched with cur-
rent PDB structures with corresponding PDB identifiers
and chains except for two of them. In some cases, obso-
lete PDB entries had to be kept to maintain sequence
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matches, but the IDs of superseding structures were also
noted (385 proteins with PDB and SCOP identifiers is
available on request). Using PDB identifiers, correspond-
ing SCOP domains were assigned from parseable files of
database version SCOPe 2.03. Sequences of the domains
were also matched with the 385 proteins from CB513.
For a majority of proteins, the sequences of the SCOP
domains matched the CB513 sequences. The rest had par-
tial or gapped matches, likely due to updated versions
of defined domains for older structures. For such cases
the corresponding domains were nevertheless assigned as
long as the sequences matched partially. Structures with
missing or multiple SCOP domain matches (a total of 11
proteins) were excluded in the following discussion.
The distribution of SCOP classes and Q3 scores in the

compact model (SSP55) as well as the remainder of the
CB513 dataset was compared (Fig 6). The results for SSP55
represent tests on the compact model itself. The 4 main
protein structural classes according to SCOP are the (a) all
alpha proteins, (b) all beta proteins, (c) interspersed alpha
and beta proteins and (d) segregated alpha and beta pro-
teins. Additional classes are (e) multi domain proteins for
which homologues are unknown , (f ) membrane and cell
surface proteins, (g) small proteins, (h) coiled coil struc-
tures, (j) peptides and (k) designed proteins. Class (i) low
resolution proteins, are absent from the dataset.
All the 4 main protein structural classes were found

to have high Q3 scores ranging from 85 % for the alpha

proteins (a) to 80 % for the beta proteins (b). The best
performing proteins were those rich in Helix residues as
expected (Class (a)). However, the lowest performing class
was that of small proteins (g) with a Q3 of 74 % (aver-
aged over 19 structures), rather than β-strand containing
classes such as (b), (c), or (d) as might be inferred from the
Sheet residues having the worst performance. One expla-
nation is that poor Sheet performance arises from mis-
predicted single residue strands (state B of DSSP). These
may be harder to predict than extended strands (state
E of DSSP) which form more larger and more regular
structures that are used in classifying proteins.
Additionally the prediction of Q3 is always much lower

for Sheet structures since the hydrogen bonds are formed
between residues that have high contact order; they are
separated bymany residues along a chain so these contacts
are outside the sliding window. Hence, they are difficult
to predict by sliding window-based methods. Also, the
predictions are usually unreliable at the end of secondary
structure elements. Thus, if there are many shorter sec-
ondary structures to be considered (such as for small
proteins), the accuracy may be lower, which may account
for the poor performance of small proteins (SCOP
class (g)).
Overall there was hardly any difference in average Q3

scores between the compact model (SSP55) and testing
proteins of CB513. Training a classifier with a given pro-
tein and subsequently testing the classifier on that same

Fig. 6 Q3 breakdown by SCOP classes a–k. Two types of Q3 are presented below the classes. 1. Tests on the SSP55 compact model proteins, which
had been used in training (shaded bars). 2. Tests on the remainder of CB513 dataset NOT used in training (white bars). The Q3 for SSP55 is not
necessarily higher than the remainder. Class g (small proteins) is the worst performing. A Q3 of 0 indicates no structures were found in that category
(absent bar). The no. of structures present in each class is indicated above columns
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protein is expected to have a higher accuracy than if an
unseen protein sample were presented to the classifier.
However, for SCOP classes a, g and c the average Q3 of
SSP55 was only marginally higher than the testing set at
1 % and 2 % respectively. This is an extremely small differ-
ence (1 % is approximately 11 residues in class a of SSP55).
Unexpectedly, the Q3 of the testing proteins was higher
in classes (b) and (e) instead. It is suggested that some
intrinsic structural features of a protein arising from its
class, pose a greater limitation on the predictive accuracy
than if a given classifier has ‘learnt’ a particular protein (or
class) previously. The confusion matrices of SSP55 and the
remainder of the CB513 proteins broken down by their
SCOP classes are available in Additional file 1: Tables S3
and S4, respectively.

Blind tests of the compact model
The SSP55 and SSPCV training models were tested in blind
prediction experiments on a dataset of G Switch proteins
(GSW25). Here the first and last four residues of the G
Switch Proteins were included unlike the previous tests
on CB513 (see Development of compact model). Although
the training models did not include the first and last four
residues of proteins, for a fair study, the normalization of
the GSW25 proteins was done with respect to maxima
and minima of the CB513 dataset that included the first
and last four residues. For SSPCV , parameters from the
best performing cross-validation partition were selected.
Results are in Table 2.
SSP55 scored higher (Q3 = 80.36 %) than the conven-

tional cross-validation model, SSPCV (Q3 = 76.65 %).
The widest difference was found for the Sheet and Coil
classes, with QE and QC accuracies of SSP55 at 70.33 %
and 46.22 % respectively, compared to much lower accu-
racies of 64.47 % and 29.55 % obtained by SSPCV training.
The SOV score was slightly higher for SSP55 at 62.44 %
compared to 59.07 % of SSPCV .
Both training models achieved perfect SOV scores for

the helix segments (SOVH = 100 %), but difficulties arose
for the Sheet and Coil predictions. The SSPCV model was
better than SSP55 for Sheet segment predictions (SOVE

of 66.04 % vs 63.68 %). However, there was a sharp drop
in scores for the Coil residues (SOVC = 78.91 % vs
62.75 %) for the former. The class-wise Matthew’s Corre-
lation Coefficients (MCC) supported the results further.
For MCCH , SSP55 obtained 0.83, vs 0.79 obtained by
SSPCV , for MCCE , 0.73 vs 0.65 and for MCCC , 0.25 vs
0.13, respectively for each model. The SSP55 further had
a better ability to distinguish between Helix and Sheet
residues compared to the SSPCV model; the helix to strand
and vice versa mispredictions quantified by QHEerror are
1.8 % for SSP55 which were about two times lower as
those obtained by SSPCV at 4.2 %. The PDB structures
of G Switch proteins (e.g. 2KDM) indicated that most of
the Coil residues in the dataset are present at the ends of
helical segments connecting one helix to another, which
resulted in extremely low scores for this class. The Coil
structures located at the end of structure segments are
an area of future work. The compact model was further
compared with several existing methods.

Comparisonwith othermethods
The performance of SSP55 was compared with five well-
known secondary structure prediction methods in the lit-
erature. These are the homology-based predictors SSpro
[33] and PROTEUS [17] as well as the top-performing
ab-initio predictors, PSIPRED [20], SPINEX [19] and
PORTER [15]. These methods were recently assessed in a
comprehensive survey in which they obtained Q3 accura-
cies between 80 to 82 % on a dataset of nearly 2000 protein
chains [22]. Recent versions were used for three methods:
PORTER 4.0 [58], PROTEUS 2 (http://www.proteus2.ca/
proteus2/index.jsp) and a recently updated server for the
SPINE method named SPIDER2, (http://sparks-lab.org/
yueyang/server/SPIDER2/) that utilizes deep learning to
predict several structural properties [59]. Results for FLO-
PRED, which used an extreme learning machine classifier
employed with identical feature encoding data to those
used in this work, have also been presented [37]. All
results are in Table 3, ordered according to Q3. For con-
sistency, all method names have been capitalized in the
following discussion.

Table 2 Results for G switch proteins (1400 residues)

Model Observed j Predicted j Qj (%) Q3 (%) SOVj (%) SOV (%) MCCj

H E C

H 682 1 39 94.46 100 0.79

SSPCV E 58 352 136 64.47 76.65 66.04 59.07 0.65

C 53 40 39 29.55 62.75 0.13

H 680 0 42 94.19 100 0.83

SSP55 E 25 384 137 70.33 80.36 63.68 62.44 0.73

C 51 20 61 46.22 78.91 0.25

http://www.proteus2.ca/proteus2/index.jsp
http://www.proteus2.ca/proteus2/index.jsp
http://sparks-lab.org/yueyang/server/SPIDER2/
http://sparks-lab.org/yueyang/server/SPIDER2/
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Table 3 Methods comparison on G Switch Proteins

Method Observed j Predicted j Qj (%) Q3 (%)

H E C

H 680 0 42 94.19

SSP55 E 25 384 137 70.33 80.36

C 51 20 61 46.22

H 665 19 38 92.11

FLOPRED E 41 380 125 69.6 78.72

C 49 26 57 43.19

H 556 50 116 77.01

PROTEUS 2 E 17 302 227 55.32 61.72

C 2 124 6 4.55

H 519 99 104 71.89

PSIPRED E 167 243 136 44.51 57.36

C 5 86 41 31.07

H 405 99 218 56.1

PORTER 4.0 E 22 267 257 48.91 51.08

C 0 89 43 32.58

H 473 95 154 65.52

SPIDER2 E 112 213 221 39.02 50.79

C 0 107 25 18.94

H 368 162 192 50.97

SSPRO E 13 312 221 57.15 50.43

C 1 105 26 19.7

The SSP55 compact model proved better than the 6
methods in predicting the secondary structure states of
the G Switch proteins with a Q3 of 80.36 %. FLOPRED
obtained the next best Q3 of 78.72 % followed by PRO-
TEUS 2, PSIPRED, PORTER 4.0, SPIDER2 and SSPRO at
61.72 %, 57.36 %, 51.08 %, 50.79 % and 50.43 %, respec-
tively. Unlike results for the CB513 dataset, the worst
performing residues were coils rather than strands, with
QC approaching 4.5 % for PROTEUS 2. Overall, Coil
residues had been wrongly classified by most methods
as Sheets with QCE (i.e. coils mispredicted as sheets)
that ranged from 65 to 94 %. For the homology based
methods SSPRO and PROTEUS 2 it is possible that
wrongly assigned structural states from a high scoring
but poor fitting template resulted in the low scores. In
general, the remainder of the measures showed a poor
performance for the Helix and Sheet classes, with the
former being more successfully predicted for PSIPRED,
PROTEUS 2 and PORTER 4.0. SSPRO however pre-
dicted the Sheet residues more successfully than the Helix
residues.

Results from FLOPRED were similar to those of the
SSP55 model, but the latter performed slightly better. The
largest margin was for Coil with QC of SSP55 being 3.03 %
higher than FLOPRED. For Sheet and Helix, FLOPRED
scores were extremely close to those of SSP55.
The choice of feature encoding likely plays a role in the

better results shown by SSP55 and FLOPRED since both
have used energy based feature representation in com-
parison to other methods employing PSSM. The better
results obtained by SSP55 over SSPCV indicate that the
choice of training proteins is highly important to preserve
the generalization ability of the classifier and that, it is not
necessary that a larger number of training proteins is a
guarantee of good performance.
Here, energy based feature representation has been

employed with a complex-valued neural network classi-
fier. However, the derivation of a compact training model
could potentially be used in subsequent works employing
different classifiers or feature representation techniques.
One important criteria for consideration is the speed of
the learning algorithm. This should be sufficiently fast to
produce results from large numbers of prediction trials,
for selection of various training sets.
While the real-value neural networks may also be used

in the derivation of the compact model, the FCRN shows
a slightly better performance. Table 4 indicates that, for
the G Switch Proteins dataset, the FCRN Q3 is slightly
better than a 2-layered standard feed forward Multi Layer
Perceptron (MLP) employing a conjugate gradient descent
algorithm. Both the FCRN and MLP have been allowed
100 hidden neurons and are given exactly the same train-
ing samples. For the G Switch proteins the FCRN Q3 is
higher by 1.14 %. This could be attributed to the extra
decision boundary of the Complex plane employed in the
FCRN hidden layer that enhances separability. For the
same number of hidden neurons, the FCRN is slightly
advantageous over the standard real networks.
Some deficiencies of our technique are noted

to be addressed in future works. First, the feature
representation process is time consuming since reference

Table 4 FCRN and MLP performance on G Switch Proteins

Method Observed j Predicted j Qj (%) Q3 (%)

H E C

H 680 0 42 94.19

FCRN E 25 384 137 70.33 80.36

C 51 20 61 46.22

H 691 0 31 95.71

MLP E 38 394 114 72.17 79.22

C 51 57 24 18.19

Both networks were trained with SSP55
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energies must be computed across all templates (esti-
mated at 2 hrs/100 residues on a 2.3 GHz processor with
8G RAM). Second, the poor Coil residue predictions
(MCCC = 0.25) for the GSW25 dataset leave much room
for improvement.
In our earlier paper we had shown that we have

removed possible similarities between proteins in the
CB513 dataset and the CATH supplementary template
structures, and therefore the performance of our method
does not depend on significant homologies between these
sets (See Supplementary Data in [37]). It is suggested
that some theoretical support for the success in predic-
tive accuracy in using a small set of training proteins is
provided by work in protein fold space. In 2009, Skolnick
et. al., demonstrated that protein fold space could be visu-
alized as a continuum with each protein structure being
related to another by 7 transitive structures, applied to
single domain proteins at most 300 residues long [60].
Therefore, most structures are related and it is possible
to “traverse” from one structure to another in fold space
given some constraints such as the limits on domains or
residue numbers. An efficient sampling of protein fold
space results in some training sets being better than oth-
ers. However, it is difficult to directly elucidate the struc-
tural relationship between train and test proteins that
makes such performance possible; the inclusion of a cer-
tain protein fold in training does not directly give the
classifier an ability to predict new structures similar to
that fold.

Case study of two inhibitors
Most of the errors in SS prediction arise from an inability
of classifiers to distinguish between: (i) Sheet and Coil and
(ii) Helix and Coil [18]. A comparison of two inhibitors
in this section gives a possible reason for (i). Coil struc-
tures involved in hydrogen bonds with peptide backbone
atoms were observed to be predicted as Sheet, while those
preferring hydrogen bonds with waters were correctly
predicted as Coil.
The worst performing sequence in the experiments con-

ducted was the trypsin inhibitor molecule (PDB: 1MCT)

with a Q3 of 40 % from the CB513 dataset. The pre-
dicted region of the inhibitor peptide was 20 residues
(28 residues for entire peptide). Despite the small size,
the molecule is of interest because none of the compared
methods were able to achieve a Q3 greater than 60 %. The
Q3 was poor even if the entire sequence was considered,
or included in training. The accuracies of the methods
for this sequence, in descending order were PORTER (60
%), PSIPRED (45 %), PROTEUS 2 (45 %), SSP55 (40 %)
and SSPRO (30 %). Seventy percent of predicted residues
adopt the Coil state and more than half of these were mis-
classified as Sheets by SSP55 (see Table 5). Likewise for
other methods most of the errors were Coils misclassified
as Sheet, or vice versa.
The methods compared differed in factors such as fea-

ture encoding, learning algorithm and underlying training
models. Most have likely already included the trypsin
inhibitor as part of training since it belongs to an older
dataset. The persistent poor predictions could therefore
arise from structural features that remain difficult to cap-
ture by current techniques. To characterize the structural
environments that are a source of mistakes between Coil
and Sheet classes, comparisons were made with the pep-
tide inhibitor of the cAMP dependent protein kinase
(PDB: 1ATP). The kinase inhibitor was of a compara-
ble length (20 residues, of which 12 were predicted) and
comprises 75 % Coil in the predicted region. Unlike in
the trypsin inhibitor, all observed Coils are predicted cor-
rectly by SSP55 (QC = 100 %). The QC of other methods
were PORTER (100 %), PSIPRED (88.9 %), PROTEUS 2
(100 %) and SSPRO (88.9 %). The inhibitor sequences
and their observed and predicted SS states by SSP55 have
been presented in Table 5. Both inhibitors appear to com-
prise mostly of long loop regions with the kinase inhibitor
possessing a 7-residue long N-terminal helical segment
followed by a 13 residue Coil segment (see Fig 7b).
In the trypsin inhibitor, the peptide segment ’RIWM’

(residues 5–8) and ’KCI’ (residues 19–21) were Coils
that had been wrongly predicted as Sheets. CYS20 and
ILE21 in particular, were wrongly predicted as Sheets
in all methods tested. In the kinase inhibitor, the 9

Table 5 Observed and predicted SS in two Inhibitors by SSP55

Trypsin Inhibitor, QC = 42.8 %

AA R I C P R I W M E C T R D S D C M A K C I C V A G H C G

OB C C C C E C C C H H H C C C C C C E E C

PRED E E E E E C C C C C C C C C E E E E C E

Kinase Inhibitor, QC = 100 %

AA T T Y A D F I A S G R T G R R N A I H D

OB H H H C C C C C C C C C

PRED H H C C C C C C C C C C

Coil residues mispredicted as Sheets are in bold
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residue coil segment ’ASGRTGRRN’ (residues 8–16) was
predicted correctly as Coils. Coil regions from both
molecules are involved in extensive hydrogen bonds with
their respective enzymes and water molecules. How-
ever, an important difference is that the trypsin inhibitor
participates more heavily in hydrogen bonds formed
by carbonyl oxygen (CO) or amide NH groups of the
peptide backbone (either the trypsin molecule, or its
own peptide segments that are turned upon itself ). In
contrast, the kinase inhibitor relies more on hydrogen
bonding with water molecules to maintain the complex
(Fig 7).

Detailed hydrogen bonded contacts
The putative hydrogen bonds listed in the discussion
below are inferred from distance based polar contacts
using PyMOL (http://www.pymol.org/). Capitalised ital-
ics indicate residues from the trypsin and protein kinase
chains in their respective complexes. Numbers follow-
ing three letter amino acid abbreviations correspond to
residue numbers of ATOM records in their respective
PDB files.

Trypsin inhibitor: Bonds involving peptide backbone
atoms are listed for this inhibitor (PDB: 1MCTI. Figure 7a
shows some of these). The carbonyl oxygen (CO) of ARG5
in bifurcated hydrogen bonds with the amide (NH) of
SER195 andGLY193; NH of ARG5, hydrogen bonded with
CO of SER195; NH of TRP7 with CO of PHE41; CO
of MET8 with NH of CYS27; NH of LYS19 with CO of

ILE2; CO of ILE21, with NH of GLY28; NH of CYS20, is
hydrogen bonded to CO of MET17 and so forth. Besides
these, several potential contacts with water molecules
are seen; CO of ILE6 which participates in bifurcated
hydrogen bonds with 2 waters, CO of TRP7, NH of
MET8, NH of MET17 and CO of CYS22 all of which
participate in hydrogen bonds with one water molecule,
each [61].

Kinase inhibitor: For this inhibitor (PDB: 1ATPI), only
one hydrogen bond involving the peptide backbone, NH
of SER13 with CO of PHE10, is observed. Apart from
SER13, no others in residues 8–16 are observed to poten-
tially contain hydrogen bonds involving the peptide back-
bone (CO. . .HN), although sidechain contacts such as
(GLY10 N and ASP241 OD) are possible. Instead, water
molecules are observed to be in contact, such as: SER9
CO, GLY10 CO, THR12 N, ARG14 CO, ARG15 CO and
so forth with nearby waters (see Fig. 7b for examples). Not
all putative hydrogen bonded contacts are listed.
Not all wrongly predicted Coils may be attributed to the

presence of hydrogen bonding involving the peptide back-
bone. For instance in 1MCTI, CO of Sheet residue VAL23
is hydrogen bonded to HIS26 N and is wrongly predicted
as Coil. However it is possible to infer from the structural
comparisons that the kinase inhibitor relies more heavily
on water mediated hydrogen bonds than does the trypsin
inhibitor.
The solvent accessibilities of individual residues in both

predicted segments of the inhibitor peptides, as well as

Fig. 7 Detailed views of Coil prediction in inhibitors. a Porcine trypsin inhibitor (PDB entry: 1MCT). b cAMP dependent protein kinase inhibitor (PDB
entry: 1ATP) with partially visible ATP in yellow. Correct predictions are in light purple and wrong predictions are in magenta. First and last four
terminal residues are light brown and are not predicted. N marks the N-terminal. 1ATPI has more correct predictions than 1MCTI. Residues RIWM
(5–8) and KCI (19–21) of 1MCTI are Coils wrongly predicted as Sheets. Residues ASGRTGRRN (8–16) of 1ATPI are correct Coil predictions. Waters are
red and white sticks in a and red spheres in b. Putative hydrogen bonds (h-bonds) are indicated with dashed black lines, identified by inhibitor polar
atom centres within 3.6Å of any O, N atoms. Italics denote the respective enzyme residues (green). The trypsin inhibitor residues make several
h-bonds with peptide backbone O, N atoms and the kinase inhibitor, none. Examples in a ARG5 CO with GLY193 NH; ILE6 NH with PHE41 CO. The
kinase inhibitor prefers side-chain and water molecule contacts. Examples in b SER9 N with ASP241 OD1; THR12 CO with ARG133 NH1; ARG14 CO
with two waters. Not all h-bonds are shown; see text for more

http://www.pymol.org/
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the hydrophobicity of residues were considered. However,
it was difficult to distinguish the differing QC accuracies
based on these characteristics. The crystal structure res-
olutions are 1.6 Å and 2.2 Å for 1MCT and 1ATP respec-
tively. If low resolution were a factor the prediction for the
kinase inhibitor (PDB: 1ATP) should be of poorer qual-
ity, but the opposite is observed. The effect of hydrogen
bonds contacts (whether between main-chains to involv-
ing waters) on residue misprediction is further investi-
gated by analysing all structures in the CB513 dataset.
In the following discussion, hydrogen bond contacts

of protein main-chain atoms are investigated. In partic-
ular, the proportion of contacts formed between main-
chain atoms and water atoms in correct vs. mispredicted
residues, is discussed. When the entire dataset is con-
sidered, evidence suggests that the presence of water-
mediated hydrogen bonding can influence misprediction
rates. In particular, the type of hydrogen bond contacts a
residue makes- whether only between main chain atoms,
or involving water molecule, is a factor.
The HBPLUS software [62] was used to detect puta-

tive hydrogen bonds in the 385 chains of the CB513
dataset. Nine chains had to be discarded from the analy-
sis, since their PDB derived sequences did not match their
CB513 sequences. The Donor-Acceptor (DA) distance,
specifies the maximum allowed distance between the
hydrogen-bond donor and acceptor atoms. The DA dis-
tance was set to 3.6Å and other settings were the default
values.
The results of the case study indicated that for mispre-

dicted Coils, the main chain atoms are more likely to be
in contact with other main chain atoms. Conversely, the
correctly predicted Coils were more likely to be in con-
tact with hetero-atom water molecules. The notation of
HBPLUS was followed. Here, the Donor (D) or Accep-
tor (A) role is ignored; as long as a (M)ain chain atom of
a residue satisfies hydrogen bonding geometry with any
other (M)ain chain atom, the bond is denoted as MM.
If the main chain atom forms a potential contact with
water (H)etero-atom in the structure, the bond is classi-
fied asMH. ThereforeMM denotes twomain chain atoms
that act as DA, while MH denotes a main chain atom
and (water) hetero-atom that are DA. The MM and MH
counts are presented in Table 6.

For Coils mispredicted as Sheets (RCE), the rate of par-
ticipation in main-chain to main-chain hydrogen bond
contacts (MM) is 47 % compared to that of correctly pre-
dicted Coils (RCC), 41.3 %. Correctly predicted Coils also
have a higher rate of main-chain to water molecule hydro-
gen bond contacts (MH) compared to those mispredicted
as Sheets (58.7 % vs 53.0 %). For Sheet residues, the dis-
tinction between the proportion ofMM andMH contacts,
is more apparent. For correctly predicted Sheet residues
(REE), 72.5 % of main chain atom contacts are with other
main chain atoms when compared against a total of main-
chain to main-chain and main-chain to water contacts
(MM+MH). Main-chain to water atom contacts (MH)
comprise the remaining 27.5 %. For Sheet residuesmispre-
dicted as Coil (REC), the proportion of main-chain atoms
involved hydrogen bonded contacts with water molecules,
is higher at 36.7 %.
The implications of these findings are discussed.

Since regular, hydrogen bonded geometry of the peptide
backbone forms the major definition of the secondary
structure states, main-chain atoms that are in potential
hydrogen bonds with water atoms could be harder to pre-
dict correctly, for the Sheet residues. For the Coil residues,
having more contacts with water atoms (and therefore,
less with the nearby main-chain atoms) results in them
having a higher chance of being predicted correctly rather
than being misclassified as Sheet. The other types of con-
tacts made, such as towards non-water hetero-atoms and
also to Side-Chain atoms, are not discussed here, but the
total number of all hydrogen bonded contacts made, as
well as the number of residues for which the hydrogen
bond counts were made, is provided in the Table 6.
From the structures, it is suggested that residue seg-

ments in flexible or coil like states which participate in
hydrogen bonding with peptide backbone atoms of spa-
tially close residues may be misclassified as Sheets, since
such type of bonding is similar to the peptide backbone
hydrogen bonding commonly found in Sheets. However,
residue segments in loop or Coil conformation that partic-
ipate in extensive water coordination could be predicted
with greater ease. This is in agreement with previous find-
ings that solvent exposed coils are predicted with greater
accuracy than buried coils, since buried coils are more
likely to interact with other protein atoms [22].

Table 6 Detected hydrogen bonds of sheet and coil residues

MM MH MM + MH MM
(MM+MH)

(%) MH
(MM+MH)

(%) All No. of residues

RCC 10345 14690 25035 41.3 58.7 78700 19182

RCE 1685 1898 3583 47.0 53.0 10652 2584

REC 3972 2303 6275 63.3 36.7 17052 3193

REE 15143 5732 20875 72.5 27.5 51286 10370

Types of hydrogen bond contacts considered are fromMain-chain toMain-chain (MM) atoms andMain-chain to Hetero-atom Water (MH) atoms. MM + MH is their sum. All
indicates all hydrogen bonds including those involving side chains. Rij denotes a residue in native state i predicted as j
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Unlike the energy based CABS encoding, the PSSM
based feature representation contains no structure
comparison steps that could be an indirect source of
structure-based information. Nevertheless, methods
employing both types of feature encoding techniques,
failed to capture the trypsin inhibitor adequately. It
therefore, is possible that the ambiguity between Sheet
and Coil classes in mispredicted residues arises at the
level of secondary structure detection and assignment,
due to the environment of main-chain atoms. For
instance, a Sheet residue’s main-chain CO in proximity
to a water molecule, has another potential hydrogen
bond Donor, rather than only the NH group in a typi-
cal hydrogen bonded β-sheet geometry. This could in
turn be harder to predict, than if the water molecule
were absent. The findings of Table 6 suggest that mis-
predicted Sheet residues have a higher proportion
of water molecule contacts than correctly predicted
Sheets.
Previous works sought to investigate the residue contact

order and to increase the sliding window sizes to accom-
modate long-range interactions. Another factor that may
be responsible for persistently poor prediction (such as
the inhibitor peptide discussed) is the role of the struc-
tural environment of the protein main-chain atoms in the
mis-prediction rates. This could assist the improvement
of future secondary structure prediction methods and has
not been considered before.
A difficulty of distinguishing between Coil residues

involved in hydrogen bonds with the peptide backbone
and Sheet residues was identified in this work. This is
reflected in the higher accuracies for the kinase inhibitor
as compared to the trypsin inhibitor across all methods
compared, despite both peptides comprising largely of
Coils.

Conclusions
In conclusion, the choice of training proteins can affect
the classifier performance. Results from employing the
compact model for secondary structure prediction indi-
cate that training classifiers on large numbers of proteins
may lead to loss of prediction ability when faced with
new sequences. This hints at the presence of structural
relationships between train and test proteins that may
influence prediction results.
In general, a compact model has two practical advan-

tages which are the small size allowing rapid training
and more importantly, a good preservation of the clas-
sifier’s generalization ability. At the same time, the sec-
ondary structure preferences seen in the large data sets are
encoded in the context-dependent statistical potentials of
the CABS force-field used in our method, thereby making
the secondary structure predictions less dependent on the
training set.

The case studies presented highlight the difficulty of
current secondary structure prediction techniques in han-
dling some chains, even if they were to be included in the
dataset of the training proteins.
Specifically, Coil residues of the trypsin inhibitor that

contained hydrogen bonding involving the peptide back-
bone atoms were found to have been predicted as Sheet.
Conversely, Coil residues of a protein kinase inhibitor
(of similar length) had been correctly predicted, with the
structural difference being that these were involved in an
extensive water-mediated hydrogen bonding network that
maintained the complex. This highlights the possible need
formethods that can accurately distinguish between Sheet
and Coil residues involved in different types of hydro-
gen bonding. Other limits of the current approach that
need to be addressed in future work are, the reduction of
time taken for the CABS-algorithm based feature encod-
ing process as well as an automated procedure that can
locate the key proteins to be included in training for any
given dataset.

Additional file

Additional file 1: Table S1. The 25 sequences of the G Switch Proteins
dataset (GSW25). The 12 GA sequences and 13 GB sequences are given and
cited with their original source. Table S2. The 55 proteins of the compact
model (SSP55). The protein names, SCOP classes, folds, number of residues,
and the Q3 achieved per protein are given. Table S3. The confusion
matrices broken down by SCOP classes, are given for the SSP55 proteins.
Table S4. The confusion matrices broken down by SCOP classes, are given
for the remainder of the CB513 dataset (330 proteins). (XLSX 30 KB)
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