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Abstract

Background: Adverse drug events (ADEs) constitute one of the leading causes of post-therapeutic death and their
identification constitutes an important challenge of modern precision medicine. Unfortunately, the onset and
effects of ADEs are often underreported complicating timely intervention. At over 500 million posts per day, Twitter
is a commonly used social media platform. The ubiquity of day-to-day personal information exchange on Twitter
makes it a promising target for data mining for ADE identification and intervention. Three technical challenges are
central to this problem: (1) identification of salient medical keywords in (noisy) tweets, (2) mapping drug-effect
relationships, and (3) classification of such relationships as adverse or non-adverse.

Methods: We use a bipartite graph-theoretic representation called a drug-effect graph (DEG) for modeling drug
and side effect relationships by representing the drugs and side effects as vertices. We construct individual DEGs on
two data sources. The first DEG is constructed from the drug-effect relationships found in FDA package inserts as
recorded in the SIDER database. The second DEG is constructed by mining the history of Twitter users. We use
dictionary-based information extraction to identify medically-relevant concepts in tweets. Drugs, along with
co-occurring symptoms are connected with edges weighted by temporal distance and frequency. Finally,
information from the SIDER DEG is integrate with the Twitter DEG and edges are classified as either adverse

or non-adverse using supervised machine learning.

Results: We examine both graph-theoretic and semantic features for the classification task. The proposed approach
can identify adverse drug effects with high accuracy with precision exceeding 85 % and F1 exceeding 81 %. When
compared with leading methods at the state-of-the-art, which employ un-enriched graph-theoretic analysis alone,
our method leads to improvements ranging between 5 and 8 % in terms of the aforementioned measures.
Additionally, we employ our method to discover several ADEs which, though present in medical literature and
Twitter-streams, are not represented in the SIDER databases.

Conclusions: We present a DEG integration model as a powerful formalism for the analysis of drug-effect
relationships that is general enough to accommodate diverse data sources, yet rigorous enough to provide a
strong mechanism for ADE identification.
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Background

Introduction

The advent and proliferation of public social media plat-
forms has provided unprecedented access to large
streams of information related to drug effects. Such data
can provide significant insights about drug action at a
scale (both numeric and in terms of patient variability)
that far outstrips what can often be considered in
clinical trials. Consider for example this (real) Twitter
message: “Prednisone did kill most of my gut microbes &
worsened my malnutrition though.” Evidently, the tweet
contains significant drug effect and adverse side-effect
information. Furthermore, the information is being pro-
vided, possibly in a time-frame that is recent vis-a-vis
the described drug-effects. Thanks to the “share all”
usage promoted on social media, the content of such
streams is widely available and may be used for pharma-
covigilance and/or for collecting large-scale longitudinal
information on therapeutics and their intended as well
as side effects. At the same time, it should be noted that
in the above tweet, the relevant information is embedded
in a very short and noisy stream of conversations.

A particularly important formulation in this context is
the identification of Adverse Drug Events/Effects (ADEs).
An ADE can be defined as “any undesirable effect of a
drug beyond its anticipated therapeutic effects occurring
during clinical use” [1]. ADEs are estimated to account for
4.7 % of hospitalizations each year with an additional
6.7 % incidence rate among already hospitalized patients.
Significantly, ADEs are between the fourth and sixth lead-
ing cause of death in hospitals [2]. ADEs have led to the
withdrawal of several drugs, including Rofecoxib (Vioxx)
whose long term cardiovascular risks were only later
known [3]. Typically, for a given drug, it is expected that
ADEs would be identified during clinical trials. However,
due to a variety of factors including intrinsic polypharma-
cology of a drug, formulation of the trial criteria, and the
limited diversity of the cohort that can be accommodated,
ADEs may only be partially identified. Traditionally,
aftermarket ADE identification is performed as a post-
factum analysis of explicit event reports from volun-
tary post-market surveillance programs such as the US
Food and Drug Administration’s Adverse Event
Reporting System (FAERS) which allows clinicians,
drug manufacturers and consumers to report potential
ADEs. The shortcomings of such a spontaneous
reporting systems (SRS) are well documented [4], and

include latency, both in the reporting of ADEs and
their analysis. More importantly, because reports are
filed voluntarily by the users of the system, it is esti-
mated that less than 10 % of cases involving ADEs
actually get reported [5, 6].

Due to these reasons, identification of ADEs through
algorithmic analysis of information from alternative
sources such as electronic medical records, search en-
gine query logs, internet forums and social media is
increasingly becoming important. At over 500 million
posts per day, Twitter is one of the more commonly
used social media platforms. The ubiquity of its day-to-
day personal information exchange model makes Twitter
data (tweets) a promising target for ADE mining and
real time pharmacovigilance. In this paper we describe
an analytic framework for the identification of ADEs in
Twitter-streams. The proposed approach leverages a
graph-theoretic framework to represent drug and side
effect information from tweets. This information is
enriched using supplemental databases, such as the Side
Effect Resource (SIDER) [7], that store ADE-related data.
Information enrichment between the two sources is
facilitated by an edge matching strategy.

The benefits of such a framework are threefold: first, it
provides a mechanism for hypothesis generation of pre-
viously unreported ADEs. Second, the identification of
known ADEs in real-time social media streams can pro-
mote timely medical intervention. Third, it can supple-
ment current SRSs for a more accurate representation of
ADE frequency in the public. The Key features and
contributions of our work include:

o Drug-Effect Knowledge Representation Framework: A
graph-theoretic knowledge representation frame-
work which we call the Drug Effect Graph (DEG) is
proposed to rigorously integrate and model drug
and side effect relationships found in both
Twitter-streams and static ADE databases. Our
method shows performance gains of up to 8 %
over previously published methods.

o Automated Twitter-stream processing: We
implement a Twitter processing pipeline in two
phases. First, we use a machine learned Twitter
content filter to identify Twitter posts that relate a
user’s personal experience. We then extract
medically relevant terms with the MetaMap
information extraction system.
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e Semantic Context of Medical Terms: We incorporate
semantic, conversation level features into the DEG
model, including sentiment polarity and topic
context. This allows the model to consider how the
medical terms are being discussed when identifying
ADEs, leading to significant performance gains.

e Adverse Drug Effect Discovery: The DEG model
provides a mechanism for hypothesizing implicit
ADEs that are not represented in the source data
through edge enumeration and classification.
Specifically, we identify several instances of ADEs
which, though not present in the SIDER resource
show evidence in both medical literature and the
Twitter-stream.

Prior work
Traditionally, ADEs have been identified through expert
review of the event reports. Obvious scalability concerns
have led to the application of data mining approaches on
SRS repositories to find abnormally frequent drug-event
relationships at scale. The FDA has employed Gamma
Poisson Shrinking (GPS) and Multi-Item Gamma Pois-
son Shrinking (MGPS) algorithms [8] and the World
Health Organization has used Bayesian Confidence
Propagation Neural Networks (BCPNN) at its Upsalla
Monitoring Center [9]. Additionally, empirical Bayes
screening [10], odds ratios [11], and incidence report
ratios [12] have been successfully implemented. Associ-
ation rule mining [13] and biclustering [14] have also
been explored to detect pairs of events that occur to-
gether with high confidence in a report database. These
data sources have also been used to identify novel drug-
drug interactions through regression modelling [15]. All
of these methods, however, rely on the integrity and
completeness of the voluntary reporting mechanism and
therefore suffer from the issues mentioned previously.
Less direct methods of discovery have been explored to
overcome the weaknesses of SRS analysis. For example,
latent ADEs have been mined from patient Electronic
Medical Records (EMRs) where prescriptions and symp-
toms are recorded individually, yet correlations between
them have not been explicitly noted. EMRs contain both
structured data (for example ICD9 codes) and unstruc-
tured data (clinical free text), both of which have been
targeted for ADE discovery. Methods from SRS mining
have been applied here such as GPS, MGPS, and BCPNN
as well as association rule mining and biclustering
approaches [16]. Information Extraction techniques from
the field of Natural Language Processing have been used
to identify drug-effect pairs in textual patient discharge
summaries [17] with a y* test to identify potential ADEs.
As an alternative to post-factum report analysis, predict-
ive methods have been developed to leverage the content
of wider biological resources. The FDA approved drug
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labels include textual pharmacological content such as
the known drug side effects and indications. In this
context, topic modelling has been applied to find
common pharmacological “topics” or distributions of
effects amongst the drug labels. These topics allow
for drug clustering and prediction of unreported
ADEs through association [18]. This method has also
been applied to the question of drug repositioning.
The mechanistic relationship between drug effects
and drug-protein interactions motivated the integra-
tion of drug-protein interaction networks with the
drug-effect networks implicit in drug labels to predict
ADEs [19]. In a similar vein, off target drug interac-
tions were predicted using the molecular similarity
between drugs and known ligands. These predicted
off-target interactions were shown to explain several
known ADEs [20].

New and non traditional data sources have recently
been explored as targets for ADE identification. These
include search engine query logs, internet forums, and
social media messages. With the hypothesis that users
search for their symptoms and the drugs they are taking,
the search logs of several major search engines were
mined for drug-effect associations and drug pair-effect
associations in [21]. As a proof of concept, the study
showed the ability of search logs analysis to correctly
correlate the drug pair Pravastatin and Paroxetine with
symptoms of hyperglycemia. Unfortunately, access to
search engine query logs is not a privilege afforded to
most researchers. Additionally, association rules have
been mined from these new media sources. An associ-
ation rule is a rule of the form {a a,....a,} — {c,cp....C}
where the occurrence of the antecedents a; predict the
occurrence of the consequents ¢; with a given confi-
dence. Association rule mining suffers from the lack of a
global model so information about entities not present
in the rule makes no contribution. Also, in the case of
sparse data, confidence values may be over estimated. A
related notion is that of language templates that repre-
sent usage patterns containing ADE references, for ex-
ample “I took [drug], now I feel [effect].” This approach
has been applied to text from the medical internet forum
DailyStrength [22]. In addition to limitations related to
association rules, the method is sensitive to minor varia-
tions in language. Furthermore, all ADE information are
required to be contained within a single sentence pre-
cluding identification of ADEs with long range depend-
encies, for example across sentences in a user post, or
across posts in a user’s history.

Twitter constitutes a natural target for ADE identifica-
tion. In [23], a multi stage SVM classification pipeline was
used in conjunction with an entity extraction system to
identify individual tweets containing ADEs. This and re-
lated approaches [24—26] suffer from the same assumption
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as the forum mining method above, namely, that an indi-
vidual tweet must contain all elements of the ADE. To
address this issue, a global knowledge structure was pro-
posed in [27] to represent co-occurrences of drug and effect
references on social media as a bipartite graph and the
ADE identification problem was posed as an edge classifica-
tion problem between nodes in the graph. Such a graph
representation can be understood as a generalization of
the association rule approach for the single precedent —
single consequent case, in that, a rule is represented as
an edge in the graph. While clearly an advancement in
holistic knowledge modeling, the implementation in
[27] neither leveraged the inherent transferability of
knowledge provided by the graph data structure nor
did it attempt to exploit the context in which the drug
and effect references were embedded. Obviously, the
manner in which drugs and effects are discussed can
provide valuable information about their relationship.
The notion of enriching a relationship graph with se-
mantic context has been successfully employed in the
context of biomedical literature mining [28, 29].

The proposed method leverages the global drug-effect
knowledge structure of the DEG model but does not
limit it to the drugs and effects found in one data
source. The formal DEG structure allows for an implicit
mapping between edges in DEGs constructed from
different data sources. We exploit this property by con-
structing two DEGs, one from drugs and effects identi-
fied in Twitter-streams and one from the Side Effect
Resource (SIDER), and leveraging them jointly for ADE
identification. Additionally, we enrich the DEG with
information about the semantic context in which the
drugs and effects are discussed on Twitter. Overall, the
method allows for the identification of ADEs in social
media with long range dependencies. As a framework
for general drug — side effect analysis, it is not strictly
limited to use on Twitter and SIDER. It may be applied
to other social media platforms such as forums and
blogs as well as other static knowledge bases. Thus, the
data sources can be broader and more current than
those used in traditional SRS and EMR based ap-
proaches. Finally, we use the DEG model to hypothesize
unrepresented ADEs by enumerating and individually
classifying all potential edges in the DEG. In particular,
we are able to identify several ADEs that are not
reported in the SIDER resource.

Methods

Our method is based on a graph-theoretic framework,
which we call the Drug Effect Graph (DEG). A DEG is a
graph that models the relationships between drugs and
side effects. Properties of DEG(s) can be used to distin-
guish between relationships that represent ADEs and
those that do not. In this work we construct two DEGs
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over two datasets and then use them jointly to improve
overall performance of ADE identification. The first
DEG is built on the drug - side effect relationships
recorded in the Side Effect Resource (SIDER) [7] and the
second DEG is built by extracting information from the
social media network Twitter. Finally, we use the DEG
knowledge structure to discover ADEs that, while expli-
citly absent in the data source, are otherwise noted in
medical literature.

Data sources

Our work is built on publically available data from two
resources, the SIDER Side Effect Resource and the Twit-
ter microblog social media platform. SIDER is a database
of drug and side effect relationships extracted from the
text of FDA package inserts that list known drug side
effects. This database currently contains 1,430 drugs,
5,868 side effects, and 139,756 drug-side effect relation-
ships. Drugs are identified by their PubChem Compound
ID, thus individual chemical compounds with multiple
trade names are identified by a single ID. Side effect
terms come from the Medical Dictionary for Regulatory
Activities (MedDRa) list and are provided with concept
identifiers that map to the Unified Medical Language
System (UMLS) [30].

Twitter is a microblog social networking platform that
allows users to post “status updates,” or “tweets,” con-
taining up to 140 characters of Unicode text. Users are
neither limited in post frequency nor censored on con-
tent. Twitter data is accessed through two free public
APIs. The streaming API provides access to the real-
time Twitter-stream, and the search API allows querying
against previously posted tweets. We note that neither
of these public APIs guarantee completeness of results,
and each API provides access to only a sampling of the
total posts reported at approximately 1 %.

Basic concepts and definitions

This section presents the set of definitions and notations
used throughout the paper. Drugs refer to chemicals
used for therapeutic intervention and are limited here to
the set of drugs contained in the SIDER database and
associated synonyms. We understand side effect to be
any physiological effect caused by taking the drug, ex-
cluding the expected therapeutic effect. Side effects are a
consequence of drug polypharmacology as well the
interplay of bio-molecules and pathways. The set of side
effects we consider is limited to those contained in the
SIDER database. A Drug Effect Graph (DEG) is a bipart-
ite graph modeling drug-side effect relationships where
drugs and side effects are disjoint partite sets of nodes
and an edge indicates a drug - side effect relationship.
DEGg;,,., is a DEG constructed on the SIDER database.
DEG,,,, is a DEG constructed out of the drug and effect
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entities found in the tweet history of an individual Twitter
user. DEGy,.r is @ DEG constructed out of one or more
DEG ., graphs by combining their nodes and edges. An
adverse edge is an edge in a DEG (DEGs;zer DEGser OF
DEGryi4r) that connects a drug to an effect known to be
adverse in the SIDER database. A pseudo-non-adverse
edge is any edge that is not explicitly considered adverse.
The pharmacological neighborhood of a drug node x in a
DEG is denoted by I'(x) and is defined as the set of nodes
that can be reached within two hops of x. Thus, two drugs
are considered to be pharmacological neighbors if they
share a side effect and vice versa.

We consider a tweet to be experiential if it relates the
personal experience of an individual user, as opposed to
tweets posted as advertisements, news sources or other
non personal tweets. An entity in a tweet is any drug or
drug-effect mentioned within the tweet.

Method overview

Our method consists of the construction of two DEGs,
DEGgs; 4., and DEGryse, that are used in conjunction to
identify ADE’s in Twitter-streams. Figure 1 provides
an overview of the DEG construction process. The
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construction of DEGg;,, is relatively straightforward;
the nodes are all individual drugs and effects in
SIDER and the drug-effect relationships from SIDER
are represented as edges. The construction of DEGy .
witter 1S significantly more complex. First, a set of
tweets is collected using the Twitter streaming API.
We filter for tweets that are both experiential and
reference a drug from a list of 200 commonly pre-
scribed drugs [Additional file 1: Table S1]. User tweet
histories are then queried using the Twitter query
API Drug and effect entities are extracted from the
user tweet histories with the MetaMap information
extraction system. Edges are constructed in the DEGr;yer
between drug and effect entities that are mentioned within
a prescribed time window in an individual user’s history.
Edges are labeled based on the SIDER database. These
DEGs are used to build classification models that can,
with high accuracy, predict whether a drug-effect relation-
ship is adverse.

Constructing DEGg;ge,
The SIDER database contains a set of drugs D ={dds,...
d,}, where n = 1,430, a set of side effects S = {s;,55...,5,,}

-

Twitter Streaming API

MetaMap

Medical Entity
Extraction

Effects

Tweet Dataset

DEGg;q, Construction| DEGy,,4r Construction
SIDER Drug — Side Effect pairs
orug [ et |
Tamoxifen Hot flush 2
Tamoxifen Amenorrhoea
Tamoxifen Asthenia
Sunitinib Hot flush TWeetS
Sunitinib Fistula
Drugs Effects 3
Tamoxifen Hot flush Drug List =
4 Filter
amexifer Amenorrhoea Experiential =
Tweet Filter
Sunitinib ©®@R® Fistula
Drugs Effects 4
Tangziten BuRl st Tweet History
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LA A Pgnia
Sunitinib Fistula

Twitter query API

Fig. 1 Method Overview. Two DEGs are constructed from two datasets, SIDER (left) and Twitter (Right) 1. DEGsqge, is @ graph built from the drug
and effect relationships recorded in the SIDER database, forming a comprehensive DEG containing the Adverse Drug Relationships known to
SIDER. 2. DEGryirter is constructed by mining Twitter posts for mentions of drugs and effects. 3. The live Twitter-stream is filtered for tweets that
reference drugs and relate an individual user's experience. 4. From the tweets gathered from the Twitter-stream, user’s histories are queried. 5.
Drug and effect mentions are extracted with MetaMap. 6. An edge is drawn between a drug and an effect if they are both referenced in a user’s
history within a fixed window of time. These edges are labeled as adverse or psuedo-non-adverse based on their presence or absence in SIDER

Drugs +  Effects

Tweet History

for User1
Label Edges
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with m =5,868, and a set of relationships R = {r;rs,...
ri, where r; € Dx S and k=139,756. Because R con-
tains no (drug, drug) or (side effect, side effect) pairs,
we construct a DEG by defining a bipartite graph
DEG,; ., ={U,V,E} where U=D and V=S, with the
constraint: U n V= and the edges in E capture the
drug-side effect relationships and take the form (d, e)
with de U and ee V. Figure 1(1) illustrates the con-
struction of DEGg; -

Topological features

Our goal, is to build a model based on the topo-
logical properties of DEGg;,,, that can differentiate be-
tween edges that represent adverse effects and those
that do not.

The first and simplest feature that we consider in clas-
sifying an edge (d,e) is the number of edges incident to
each node, or the edge degrees. Next, we consider the
number of common neighbors for each edge, as given by
Eq. (1),

N (d.e) = |I(d)nl(e)|. (1)

The common neighborhood of an edge (d,e) defines a
connected sub-graph of DEG;;,,., centered around (d,e),
where the maximum distance between any two nodes
from the same set (ie, two drug nodes) is two hops, and
the maximum distance between nodes of a different set
is three hops. The intuition behind this measure is that
the size of this sub-graph indicates a level of related-
ness. The larger the neighborhood is, the more drug
and effect neighbors the two nodes have in common.
For example, an edge that connects a drug that is
known to have many gastrointestinal side effects with
a gastrointestinal side effect will have a larger com-
mon neighborhood than if the drug were connected
to a neurological side effect. Figure 2 shows a portion
of the common neighborhood sub network for the
drug Tamoxifen (a breast cancer drug) and the side
effect Ovarian Cyst.

The common neighbor size feature is not normalized
and may be highly influenced by the connectedness of
the nodes in (d,e) and not adequately measure the neigh-
borhood similarity. To account for this fact, we compute
another measure that normalizes the common neighbor-
hood size by the size of the combined neighborhoods.
This measures the similarity of the two neighborhoods
and is computed using Eq. (2),

_ If(@d)nT(e)|

[ I(d) U Ie) |

S(d,e) (2)

Eq.(2) reflects the proportion of the total neighbor-
hood (bottom term) that is also in the common
neighborhood which is equivalent to the Jaccard
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Coefficient. A value of 1 implies that I'(d) = I'(e). Con-
tinuing with this logic, it is apparent that the neigh-
borhood of a node is also influenced by the individual
connectedness of the neighborhood member nodes.
For example, Headache is a very common side effect,
and its presence in the neighborhood may be less
informative because it is present in many neighbor-
hoods. To address this, we adopt the Adamic-Adar
index [31] defined in Eq. (3):

1
2 gt ®)

zel'(d) N I'(e)

Ad,e) =

This equation discounts a common neighborhood
node’s importance by the size of its individual neigh-
borhood, this approach has a corollary in the inverse
document frequency measure from text analysis. The
Adamic-Adar index formulation implies that the con-
nectedness of individual nodes and by extension
edges, is informative in itself. To capture the ‘con-
nectedness’ of an edge, we take the notion of ‘prefer-
ential attachment’ from [32]. Preferential attachment
is motived by the property of many biological (and
scale free) networks, that a node is more likely to be
linked to a node that already has a large number of
links than one with few links. This notion is captured
using Eq. (4).

PA(d,e) = |I'(d)| * ()] (4)

In sum, the aforementioned topological features form
a numerical representation of the graph neighborhood
characteristics that surround a given edge in a DEG.

Constructing DEGrjtter

DEGTyi4er is @ DEG designed to model the drug and side
effect relationships as they are expressed by Twitter
users. The DEGry,;ye, construction is performed in four
steps, similar to the method described in [27]. First, we
identify users whose Twitter status updates include drug
references. Second, we obtain the recent tweet history
from these users. Third, drug and effect references are
extracted from the user histories. Finally, edges are
drawn between drugs and effects based on temporal
proximity.

The user identification step is performed through the
Twitter streaming API which provides access to a sam-
pling of the live tweets and the option to set filters for
specified keywords. We recorded tweets over two weeks
between January 28, 2016 and February 11, 2016 filtering
for 200 of the most commonly prescribed drugs
[Additional file 1: Table S1]. Our filtering led to
shortlisting of 157,735 tweets from 7981 users. From
this set, the most recent tweets from each user were
queried, with a limit of 400 tweets per user. In the
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Fig. 2 A subset of the Common Neighborhood Sub Network of the drug Tamoxifen and effect Ovarian cyst. This network defines a
pharmacological neighborhood where every node can reach every other node within a maximum of three hops, Tamoxifen and Ovarian cyst
serve as hub nodes that can connect any two other nodes. The size of a pharmacological neighborhood is used as a measure of relatedness
between the two hub nodes

next step, tweet filtering was employed to limit our
data set to only those tweets that relate a user’s per-
sonal experience, or experiential tweets. We formulate
tweet filtering as the binary classification task of la-
beling a tweet experiential or non-experiential and
use a supervised classifier (Random Forests) learned
on a dataset of 1500 tweets manually labeled for this
purpose. The features extracted from these tweets are
enumerated in Table 1 and are similar to the features
suggested in [23]. Evaluation of the classification per-
formance is provided in the Results section.
Extraction of drug and side effect entities from Twitter
text is performed by using the MetaMap biomedical an-
notator [33] which provides mappings from plain text to
terms in the Unified Medical Language System (UMLS).

MetaMap was designed for use on biomedical research
literature. However, language usage in the medical do-
main can be distinct from usage on Twitter, which can
result in incorrect mappings. We encountered significant
problems with medical acronyms and abbreviations that
commonly have different meanings on Twitter. For ex-
ample, the characters “pic” is a common abbreviation of
the word “picture” on Twitter, but “PIC” is also a med-
ical acronym for “Punctate Inner Choroidopathy.” This
is one of many such examples that required us to manu-
ally curate a stop list of acronyms, abbreviations and
terms that otherwise cause frequent erroneous mappings
[Additional file 1: Table S2]. Entities appearing in this
stop list were disregarded. An additional difficulty in en-
tity identification is the proliferation of synonyms and
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Table 1 Text Features used for Tweet Classification

Tweet Text Feature

Number of hashtags

Number of words indicating negation
Number of URLs

Number of pronouns

Number of drug entities

Number of effect entities

~N O 0 hWwN

Bag of words text representation

Table 1 The textual features extracted from twitter text for classification. Many
spam and irrelevant tweets are designed to redirect a user to a desired
website, thus the presence of URL's in the tweet text is a strong indicator
of spam. Spam tweets often contain many hashtags in an attempt to
exploit trending topics, this makes the number of hashtags a very
informative feature as well

trade names that refer to the same chemical compound.
For example, there are well over 100 trade names for
Ibuprofen, including Advil, Motrin, and Nurofen, many
of these synonyms have unique entries in the UMLS.
To overcome this, we use the drug synonym re-
sources available through the PubChem [34] API
which aggregates synonym lists from several sources,
including the Medical Subject Heading (MeSH) vo-
cabulary, Depositor supplied terms, and other chem-
ical databases. We use this list to resolve synonymous
references to a canonical term.

After the tweet dataset has been filtered for experi-
ential tweets and the medical entities identified, the
DEG7yister is constructed in two steps. First individ-
ual user histories are used to construct a set of user
DEGs or DEG,, graphs. Next, this set of DEG,,
graphs is merged to form the DEGry,ye To begin,
individual users’ tweet histories are examined and
edges are drawn between citations of drugs and side
effects occurring within a fixed time window. This
window length is an experimentally-set parameter
and we examine its effect in the Results section. The
edges are weighted by the average time between the
drug and effect mentions. This produces a set of
DEG,;., graphs, USERS={DEG,s,;;, DEG,sx2...,
DEG s} where, in our case, n=7,981, DEG,,;
={V,E}, and V; and E; are the nodes and edges
found in the history of user i per the description
above. The global DEG7,., is constructed by aggre-
gating the user gfaPhS’ DEGTwitterz{VTwittenETwitter}
where Virwister = Uv < usersVs Etwister = UE < usersE
and the temporal edge weights are averaged for
common edges. A second edge weight is added to
the model for the frequency of the edge in USERS,
or equivalently, t he number of users whose histories
contain the same (drugeffect) pair.

Page 84 of 186

Case study: constructing DEGritter

To illustrate the above process, we present an example
that demonstrates the construction of DEGr,., using
18 tweets from our dataset, shown in Fig. 3. These
tweets were posted by a total of 9 unique users. Userl
posted 3 tweets, User5 posted one tweet and the rest
posted 2 tweets each. Each of these tweets successfully
passed the experiential tweet filter and thus each related
a user’s individual experience. References to drug and
effect entities were identified with MetaMap. Three
unique drugs were found: Clonazepam, Prednisone, and
Xanax. Furthermore, the following nine effects were
identified: Depression, Pain, Confusional State, Anxiety,
Exhaustion, Malnutrition, Nighmares, Hunger, and,
Tremors. These drug and effect mentions have been used
to build the individual DEG,,,, graphs shown at label 2 in
the Fig. 3. Userl mentioned Clonazepam on Feb. 9, 2016
and then mentioned Depression, Pain, and Confusion on
February 11, 2016. Each effect was mentioned two days
after Clonazepam. Accordingly, a four node graph is con-
structed with edges connecting each effect to Clonazepam
with a weight of two. A similar operation is performed for
every user, resulting in 9 individual DEG ., graphs.

Next, the edges in the DEGys., graphs are labeled per
their presence in SIDER. For example, SIDER lists
Depression as a known side effect of Clonazepam, so the
edge is labeled adverse (colored green). Edges that do
not appear in SIDER are labeled pseudo-non-adverse
(colored grey). Label 3 in Fig. 3 shows both the edge
labeling and the beginning of the merging step where
drug nodes are merged between DEGy, instances. The
merging step is completed by merging all effect nodes
(label 4). Two edge weights are assigned to each edge to
reflect average temporal distance and frequency. In this
case, all frequency values are equal to 1. We now have
an instance of DEGry,., that represents all of the drug-
effect relationships mined from the set of tweets.

Extracting semantic context

Drugs and effects mentioned in a tweet are embedded
within a semantic context consisting of the words
contained in the text of the tweet. We look to capture
two elements of this context through sentiment analysis
and topic modeling. The sentiment analysis of a text
attempts to assign it a ‘sentiment polarity, that is,
whether a tweet expresses positive, negative, or neutral
sentiment. Such sentiment can help distinguish the role
an entity is playing in a sentence. For example, the
entity headache may be the symptom being treated
when it is mentioned in a positive tweet, for example
“I love Advil! I no longer have a headache!” However,
the sentence “I hate how caffeine always gives me a
headache” shows a negative sentiment and indicates
that headache is a side effect.
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Wuse wirerpostioe —————————Toae sent. |

Userl which you know reminds me why it will be great when I'm successfully withdrawn from clonazepam! It will be Feb 9,2016 -
*my* fault when | drop pens :)

Userl [medical] kinda told the dude off that | dont never leave the house because Im depressed | never leave the house Feb 11,2016 -
because Im IN PAIN
Userl @eevee | remain confused but at least comics are supposed to be in print lettering regardless of the tool used Feb 11, 2016 -
User2 Where's my clonazepam? Jan 28, 2016 -
User2 The chicks have all made it through the night. I'm way to anxious for this baby thing. Feb 11,20116 -
User3 By the way | am no longer falling over from exhaustion from the new meds. They still make me sleepy but most Mar 23,2013 -
days it's kind of tolerable.
User3 | even took 1mg of clonazepam but it didn't stop my racing thoughts. | can't seem to lie still and get all fidgety. Mar 25,2013 -
User4 Which of them is doing me bad. People tell me it's my psychology but it's easy for them to talk they ain't never Jan 28, 2016 -
tasted prednisone.
Userd @psychicteeth | went to the casino yesterday for 1 minute and I'm still exhausted today 24 hours later! Jan 30, 2016 =
User5 @Merilizzie Prednisone did kill most of my gut microbes & worsened my malnutrition though. Feb 28, 2016 -
User6 | be confused as heck Jan 28, 2016 =
User6 Xanax for breakfast Feb 10, 2016 -
User7 That Xanax make me trip. Jan 28, 2016 =
User7 | had a bad dream. Jan 30, 2016 -
User8 I'm hungry as heck Feb 9, 2016 =
User8 eat a Xanax for the pain Feb 11, 2016 =
User9 Xanax before | freak out. Dec 31, 2015 -
User9 My tremors are awful today. Jan 12, 2016 -
2 3 Depression 4 Depression
User 2 4 Depression , ~Pain Pain
Clonazepa Pain cl Temporal ,,
onazepam . Distance 7 .
Confusional State 2 Confusional State /" Confusional State
User2 ‘ 2 .
14 .
Clonazepam — Anxiety i Anxiety Frequency, /2
- / .
User3 _-2- Exhaustion >~Exhaustion ! / 13 Anxiety
Clonazepam»~ Drowsiness » o
Drowsiness .
Exhaustion
Userd 5 _ Exhaustion - Drowsiness
Prednisone —= Exhaustion Prednisone, @ 2
User5 g . .
Malnutrition

Prednisone 0 Malnutrition

’ @ .
Confusional State 0 Maln.utrmon

Useré 13 )
Xanax — Confusional State ’ !
User7 137 1 13
2 .
Xanax “— Nightmares Xanax . Nghtmares 1 2 Nightmares
User8 0 Pain . 2 Hunger
Xanax = o 12 Hunger
2 Hunger Pai o
ain

Usero 12 N Tremors
Xanax -

a Tremors 12 Tremors

Fig. 3 lllustration of DEGry,ier cONstruction. DEGriwer is constructed from the drugs and side effects mentions in user tweet histories. 1. 18
example tweets from 9 individual users from our dataset (after experiential tweet filtering and entity extraction). The table includes anonymized
usernames, tweet text (nominally altered/censored where appropriate), date the tweet was posted, and the computed sentiment. Drug entities
extracted from the text are highlighted in blue and effects in red. 2. Individual user histories are used to construct a set of DEG, graphs. User
graphs contain all entities identified in a user history that were posted within a specified distance of an entity of the opposite class (20 days in
this case). A drug and a side effect have a connecting edge if they were mentioned within the window. Edges are weighted by temporal
distance (in days). 3. Edges are labeled according to the SIDER database as either adverse (green) or pseudo-non-adverse (grey). 4. Edges are
aggregated across all graphs forming the DEGryiwer Which contains all nodes and edges found in DEGs., graphs, temporal distance edge
weights are averaged if two DEGys., graphs contained the same edge. An additional edge weight reflects the number of DEGs, graphs
that contain the edge
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To compute the sentiment context of a given edge, we
apply sentiment analysis to all individual tweets contrib-
uting to the edge. The sentiment analysis function is
provided by the Stanford Sentiment Analysis package
[35] which performs a deep syntactic parse of the input
text resulting in a grammatical parse tree. A neural
network is then applied to recursively predict the senti-
ment of each node in the tree and node sentiments are
aggregated to arrive at the final sentiment assignment of
the text. Although this package was not designed specif-
ically for use on Twitter text, which contains notoriously
distinct language usage patterns, it was evaluated on
Twitter text in [36] and it showed strong performance.
This sentiment analysis package identifies a string of text
as Very Positive, Positive, Neutral, Negative, or Very
Negative which we assign the nominal values of 2, 1, 0,
-1, and -2 respectively. The analysis thus takes the form
Sfeentimens : tweet — {2, 1, 0,—1,-2} and the sentiment
context of an edge is a tuple (S, S.). Where Sq is the
average sentiment of the tweets that contribute to the
edge and mention drug d, shown in Eq. (5), where
tweets, is the set of tweets contributing to the edge and
containing the entity e.

ZtWEEtEtweetse f sentiment (tW eet )
|tweets,|

S(e) = (5)

The second element of the semantic context that we
consider is the topic context. We do this through Latent
Dirichlet Allocation (LDA) topic modelling which
models a document as a distribution over a set of topics,
P(0), and a topic as a distribution of words, P(w|6). LDA
describes a generative process of document formation,
where the words in a document are generated in two
steps: First, a topic is chosen from the topic distribution
P(0 = z), where z is the topic. Next, a word w is chosen
from the word distributions of topic z, P(w|0=2).
Accordingly, the word distributions in a document are
prescribed in Eq. (6),

P(w|0) = Y _P(wlz)P(2]6). (6)

This formalism lets us place entities within the context
of topics being discussed on Twitter. We use the LDA
optimization method described in [37] which is based
on an online variational Bayes algorithm with P(6) and
P(w|6) computed over all tweets containing drug or
effect references. We define the topic vector of a tweet
O,,cer to be a k-vector whose indices sum to 1, where & is
the number of topics. k is an experimental parameter we
have set to 20 for our experiments. The entity topic
context is the average vector of all tweets containing the
entity, Eq. (7),
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theetaweetse tweet

|tweets,|

cle) =

(7)

Enriching DEGryjtter With DEGg;qe,

Both DEGryer and DEGg;,,, capture important, yet po-
tentially distinct aspects of drug effect relationships. To
incorporate this information in a single representation,
we combine the features as follows. Let features(DEGs;.
der » €dge) denote the function which given an edge gen-
erates the aforementioned topological features from
DEGg; e, Similarly, let features(DEGr,iyer , edge) gener-
ate the features from the DEGry, 4., including both topo-
logical and semantic context features. We define the
enriched feature set as the union of DEGg;,;,., and DEG.
witrer features, as described in Eq. (8)

enriched_features(edge) = (( featuresDEGs;ge, , edge)
u features(DEG Tyiyer , €dge))

(8)

Adverse drug effect discovery
DEGg;,., serves as a comprehensive representation of
the known ADEs (we will see in Results section that
DEGrTyiser represents a smaller subset of the known
ADEs). As such, we use the DEGg;,., to hypothesize the
existence of unrepresented ADEs by enumerating all
possible edges E, =D xS where D and S is the sets of
drugs and effects in DEGy,,,, respectively. The edges
already present in DEGyg;,,, are removed from E, creat-
ing the set of all possible hypothetical edges E, = E, \ E
where E; is the set of edges in DEGg;,,.,. Each edge in Ej,
is individually inserted in to DEGg;,., and then classified.
After classifying the hypothetical edges, we look for
evidence in the Twitter-stream of the edges that were
classified as adverse. We used the Twitter query API to
perform a search of the Twitter-streams for users who
mention both the drug and the side effect within a 20-
day window. We query the API for 100 tweets that men-
tion the drug and then request the 400 most recent
tweets from each user. The medical entities are extracted
from the tweet text to identify the hypothesized ADE in
question.

Results

In this section, we assess the role of the individual de-
sign steps in the construction of the DEGg;,,,, the DEGT.
witrer and the enriched DEGy, iz We also examine the
results of our ADE hypothesis generation method. We
begin by observing the network characteristics of DEGg;.
4er and investigating the ability of our topological fea-
tures to capture the difference between adverse and
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pseudo-non-adverse edges. Next we look at the con-
struction of DEG .- and account for the effects of the
experimental parameters on its network properties. We
then evaluate the overall efficacy of our method’s ability
to identify ADEs in the two DEGs and we measure the
performance gains of our approach over previously pub-
lished methods. Additionally, we identify several ADEs
through our hypothesis generation method that are not
present in the SIDER database, yet of which evidence is
found both on Twitter and in the medical literature.

DEGg;qe, characteristics

The topological features described above were chosen
for their ability to describe the relationship between a
drug and a side effect based on measurements of their
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pharmacological neighborhood. Inherent in this formu-
lation is the hypothesis that the distributions of these
features vary between the sets of adverse and non-
adverse edges. Because SIDER only provides examples of
adverse edges, we generate a set of pseudo-non-adverse
examples by randomly drawing edges in DEGg;,,, that
are not listed as adverse in SIDER. We generate a set of
pseudo-non-adverse edges equal in size to the number
of adverse edges in SIDER, yielding 139,756 pseudo-
negative adverse edges for a total of 279,512 edges.

To examine the edge properties of each class of edges,
histograms of the three most distinguishing features are
plotted in Fig. 4 (1-3), revealing distinct distributions
between classes. While there is some overlap between
the two classes for each feature, this observation builds

. Common Neighborhood Size
as X0 - - —_— - =
Pseudo Non Adverse
! 1 [ Adverse

35

w

25

Number of Edges

2500

500 1000

Common Neighborhood Size

1500 2000

ot Preferential Attachment
3 [ Pseudo Non Adverse
25! [ Adverse

Number of Edges

Preferential Attachment

Fig. 4 DEGg;q., feature distributions. The DEGsqe, topological feature distributions for Common Neighbor Size, Jaccard Coefficient, and
Preferential Attachment (parts 1,2 and 3). In each case, the shape is distinct between the adverse and pseudo-non-adverse edges. Part 4 shows all
features projected to the three most explanatory PCA components. As with individual features, each class takes a distinct shape
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[ Adverse
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confidence in both the existence of topological differ-
ences between edge classes and our model’s ability to
numerically represent it. We further obtain an aggregate
view of the entire feature space through a lower dimen-
sional projection using principal component analysis
which is presented in Fig. 4 (4). Here we have a three
dimensional rendering based on the first three compo-
nents. The trend from the histograms continues and we
see distinct distributions, albeit with some overlap,
between classes of edges.

Adverse drug effect classification in DEGg;qe,

We cast the ADE identification problem as a supervised
learning task that requires a binary classification model
to identify edges as either adverse or non-adverse based
on the topological features derived from DEGys;y.,. The
set of adverse and pseudo-non-adverse edges that com-
pose DEGg;,,, create a set of 279,512 edges evenly
balanced between the two types. This set is randomly
split into two sets of equal size, which composes our
training and test sets. 10-fold cross validation is
performed on the training set for parameter tuning. A
classifier is then trained on the training set and its per-
formance is measured on the test set. Results from these
evaluations are provided in the Results section.

DEGritter cONstruction

Two important steps are involved in the construction of
the DEGryiyer pre-processing/tweet-filtering, and esti-
mation of an appropriate time window parameter value.
To evaluate our method’s ability to filter out non-
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experiential tweets, we sample 1500 tweets from the
Twitter Streaming API that contain drug or effect men-
tions. These tweets are manually annotated as experien-
tial or non-experiential and the textual features are
extracted as described in Table 1 above. This data set is
split into a training and a test set, containing 60 % and
40 % of the tweets respectively. Classification is per-
formed with a Random Forests classifier (10 trees) and
performance is evaluated with 10-fold cross validation
on the training set. A classifier is then trained on the en-
tire training set and its performance is evaluated on the
test set. Three standard measures of performance are
calculated, precision, recall and FI. Our method shows
strong performance of >.85 on all measures in the test
set. See Fig. 5, left. Encouraged by these results, we apply
this classifier to remove irrelevant, non-experiential
tweets from our dataset.

The construction of DEGq,.- out of the cleaned
dataset is governed by one experimental parameter ¢,
which is the size of the time window used to filter out
drug-effect mentions that exceed a temporal distance,
measured in days. To determine the proper value, we
look at its effect on the percentage of adverse edges in
the DEG. We expect that as ¢ grows too large, the
percentage of adverse edges will at some point begin to
drop because the loosening inclusion parameter will
allow more spurious edges. In the limit, the ratio would
settle to a value specific to the dataset being sampled.
Figure 5, right, shows plots of the total edges and
adverse edges (top), and of the percentage of total edges
that are adverse (bottom) as ¢ increases. The percentage

0.95

M Cross Validation M Test Set

°
S
a

precision recall f1

where this value stabilizes and begins to slowly decline

Experiential Tweet Filtering sk

Number of Edges in DEGy,4- by Window Size

Total Edges

Adverse Edges

5 10 0 20 a0 as E

34% r

0.25 32 % 0_

Fig. 5 Tweet filtering and DEGry,ier cONstruction characteristics. Left, Performance evaluation results for experiential tweet filtering. Blue shows
average 10-fold cross-validated results on the training set with error bars indicating one standard deviation above and below the mean. Orange
is the result on the test set. Right, top shows growth rate of DEGriwer as the window size, t, increases (x axis). Y axis is number of edges. The
number of adverse edges is shown in orange. Right, bottom shows the percentage of total edges that are adverse. The arrow indicates t = 20
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adverse edges is relatively stable between t=1 and ¢ =
20, hovering around 34 % with a maximum at ¢=10.
However, at t=20, the percentage stabilizes and
steadily drops as ¢ increases. Accordingly, we set the
value to £=20 days. The set of nodes in DEGrzyse, iS
unsurprisingly a subset of those in DEGg;,,, because
of the generally non-technical scope of the language
and less precise usage found in Twitter posts. Ac-
cordingly, the DEGr, ., contains 363 unique effects,
264 unique drugs and a total of 2780 edges.

It is worth noting at this point that if the ADE
identification methods [23-26], requiring the drug
and effect(s) to occur in the same tweet are employed
instead, then the size of the dataset is severely dimin-
ished; only 44 edges are retained in DEGryiye, — a
number far too small to conduct analysis with. The
proposed method, by contrast, allows accounting for
significantly more data.

DEGg;4e, edge classification performance

Classification of the adverse, pseudo-non-adverse edges
in the DEGg;,., was performed with the Random Forests
ensemble classifier (10 trees). The 279,512 DEGg;ze,
edges set was randomly partitioned into a training and
test set of 139,756 edges each. The standard perform-
ance measurements of precision, recall and FI are re-
corded with results shown in Fig. 6. Evaluation on the
training and test sets both showed very strong perform-
ance, indicating that our DEG model for ADE represen-
tation captures significant properties of drug and side
effect relationships and that the distinctions between
adverse and pseudo-non-adverse relationships are
captured in these properties.
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DEGritter and enriched DEGricer €dge classification
performance

Previous research had considered only the topological
features of the DEGryy- To measure the performance
gains of our method over previous research, we evaluate
classification performance on topological features alone
and then incrementally add our novel features to the
model and measure performance gains at each step.
In total, four feature sets are evaluated: 1) Topo-
logical (baseline), 2) Topological and Sentiment fea-
tures, 3) Topological, Sentiment, and Topic features,
and 4) Topological, Sentiment, Topic, and DEGg;y,,
Enriched features.

A training set of 1,390 randomly chosen edges in
DEG7yiser (half of the entire set) was used for cross
validation and parameter tuning. The remaining edges
composed the test set. Figure 7 summarizes the results.
The baseline model demonstrated good performance on
our dataset with an FI value of .74 in the test set.
Including the sentiment context in the model provided
minor improvement in both precision and recall values
in both the training and test sets. This led to an
increased F1 score in both sets. The inclusion of the
topic model features provides a significant gain in preci-
sion, with an improvement [6 %] over the baseline in
both the training and test sets. However, it provides neg-
ligible effects on the recall values. Enriching the features
set further with the topological features from DEGyg;,,,
shows gains in recall with an increase [7 %] over the
sentiment and topic feature sets. These evaluations show
that the best performing model is the DEGg;,,, enriched
model with sentiment and topic context features with an
FI score of .81 in the test set with a gain [7 %] over the
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0.896

0.891

0.886
Precision

DEGg;,., Edge Classification

M Cross Validation

Recall F1

Fig. 6 Performance evaluation of DEGs;q., edge classification. Mean 10 fold cross validation results shown in blue with error bars indicating one
standard deviation above and below the mean. Performance on the test set are shown in orange
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Cross Validation Test
HTopological MTopological+Sentiment ™ Topological + sentiments + topics Enriched HTopological MTopological+sentiment Topological+sentiment+topics Enriched

0.95 0.95

0.85 I I I I 0.85

0.75 I I 0.75

0.65 0.65

0.55 0.55

0.45 0.45

0.35 0.35

0.25 g 0.25

Precision Recall F1 Precision Recall F1
Topo Topo + Sent [Topo+ sent + topics |enriched [Topo [Topo + Sent__[Topo + sent+ topics |enriched

Precision .768 +.036 .809 +.046 .831+.051) .854+.050[ [Precision 791 .806 .858 .849
Recall .700 +.060 .707 +£.048 .718 + .052| .804 +.047| |Recall .699 .719 713 .782
F1 .733 +.040 .753 +.044 .768 +.042| .833+.028| [F1 742 .760 779 .814
Fig. 7 Performance evaluation results for DEGryiwer as New features are added to the model. Left: Mean 10-fold cross validation results with errors
bars indicating +/- 1 standard deviation. Actual values in table below Right: Performance results on the test set. Performance on the test set
steadily increases with the expanding feature set. Biggest gains are achieved when adding topic context and enriching the DEGryiter With
features from DEGgger

J

baseline model. This result illustrates several points. Not
only does the content of the discussions around medical
entities on Twitter help differentiate the relationship,
this content can be approximated through sentiment
analysis and topic modelling. Additionally, these results
point to the value of the DEG model’s ability to transfer
information between DEGs through edge matching.

Discovering unrepresented ADEs

DEGgs;4., was used to hypothesize ADEs that were not
present in the SIDER database. Here we investigate
whether the inherent topology of the DEG can imply the
presence of unrepresented information. SIDER is mined
from FDA package inserts, however, for various reasons,
the data in SIDER may not reflect the current state of
ADE knowledge. By enumerating and classifying edges
in DEGgge; then mining Twitter feeds and medical
literature for supporting evidence, we found several
unrepresented ADEs. Table 2 shows the ADE’s that were
hypothesized by DEGg,,,, along with the text from

Table 2 ADEs Discovered through DEG Analysis

Twitter posts indicating both the drug and effect. Both
tweets were posted by the same user within the 20 day
window. Additionally, a reference from the medical
literature is provided that confirms awareness of the
ADE in the medical community.

This process of hypothesis and evidence gathering has
two potential uses. First, it can be used to help identify
gaps in SIDER as well as other side effect databases and
assist in filling them in with reports from the medical
literature. Second, it can be used to hypothesize un-
known ADE:s for further investigation.

Synopsis and findings

The experiments in this section support the effectiveness
of representing drug and drug-induced effects using the
proposed network-based DEG representation. This
conclusion follows from the success in differentiating
the adverse and pseudo-non-adverse edges found in the
two datasets under investigation. The classification
performance was better on the DEGg;,,,, likely because it

Drug Effect Ref Drug Tweet Effect Tweet

Pravastatin  Eczema [38] Sertraline and Propranolol in the morning low dose Propranolol then theres the Clobetasol Propionate
throughout the day Trazodone, Loxapine and pravastatin at night for my Eczema.

Atenolol Cramps [39] I'm only way to changing my BP medication. The Atenolol | have been  I'm just here trying to deal with cramps
taking hasn't been effective enough. | was in hospital last weekend. while watching Jesus documentaries on TV.

Vlyvanse Alopecia [40] Starting to take Vyvanse again tomorrow Heck yeah | went bald

(Balding)
Digoxin Exhaustion [41] digoxin why u gotta be so complicated? Why am | so exhausted 24/7 I'm so over
this ughhhhh
Tamoxifen  Stroke [42] | learned about tamoxifen and strokes after my aunt died of a massive [see Drug tweet]

bleed after unnecessary long tamoxifen treatment. Nurse told me!

Table 2 This table contains ADEs that were implied by the topology of DEGg;qe,. Evidence for each of these ADEs was found both in the Twitter-stream as well as
in medical literature. Twitter text is provided with the medical entities in bold (text is nominally altered/censored where appropriate). This process of ADE hypoth-
esis has potential use in helping fill gaps in the databases like SIDER, when evidence from the literature is present. It may also be used to hypothesize new and
unreported ADEs for further investigation
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is built from a relatively clean and curated data source.
The noisy environment of Twitter that was used to build
DEGryiyer did indeed impact performance adversely.
However, we found that by enhancing the model with
features native to Twitter and unavailable to SIDER,
namely the semantic context, we were able to im-
prove the model’s performance. Additionally, the con-
sistent DEG structure employed by both DEGyg;,,, and
DEG1yiser allowed for an information enrichment of
DEGyiser through edge matching. Thus, we observed
the best performance of the DEGr7,,;., model when it
included the semantic context features as well as
information enrichment.

We also found that through our DEG approach, it is
possible to hypothesize ADEs that are implied by the
DEG structure by enumerating the possible edges and
classifying them individually. That we were able to find
instances of several of these hypothesized ADEs in the
Twitter-stream and medical literature underscores both
the efficacy of our DEG model and the value of Twitter
as a resource for ADE identification.

Discussion

The results from our experiments show that by observ-
ing temporally related drug and effect terms we are able
to extract signal from the twitter stream. This signal, by
its nature, represents effects that are correlative, rather
than positing causal relationship. It is true that Twitter
users makes explicit statements such as “Advil gave me
a horrible rash” where they ascribe a putative causal
relationship between the drug and effect. However, with-
out rigorous biological investigations of the mechanisms
of drug action, including clinical trials, an actual causal
relationship cannot be established.

Social media is also a notoriously noisy data source
and the provenance of this noise should be recognized
and carefully considered both in the design of methods
and analysis of data. The most immediate source of
noise in our work is the fact that not all drug and effect
terms are expressed in the first person perspective, that
is, as the personal experience of the user. For example,
the text “My husband was prescribed Lipitor” does de-
scribe an experience, but not the experience of the user.
This only becomes a problem when there is a mismatch
between the contexts of the drug and effect terms. It
should be noted that even when a drug and an effect are
mentioned in the same tweet, they may have different
contexts. For example, the text “My husband is loud
when he drinks alcohol and he is giving me a headache.”
To estimate the significance of this effect, we sampled
3,077 tweets from the 37,000 tweets used to construct
the DEGriser- These tweets were manually labeled as ei-
ther first person experiences or not first person experi-
ences. We found that a strong majority of the tweets did
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express first person experiences at 77 %. Note that this
number constitutes a lower bound on the number of
relevant tweets because a tweet involving a third-person
reference such as “My husband took Celexa and is now
experiencing exhaustion” contains a valid drug — effect
relationship yet it is not a first person experience. In
future work, it will be beneficial to design an additional
tweet filter that can deconvolute the two cases poten-
tially focusing on proper noun and pronoun use.

An additional source of bias in using social media for
ADE analysis is that the set of drugs and side effects is
limited to what users can articulate. User language is
often less precise, less rigorous in usage, and less de-
scriptive than language used in more formal settings
resulting in a smaller overall set of drugs and side effects
and an intrinsic bias. The limited coverage of drugs and
effects found on Twitter is precisely the reason that we
sought to augment it with the more complete and
refined data found in the SIDER database. Even with the
incorporation of SIDER data into the model, the fact
remains that many ADEs may simply not be represented
in Twitter streams. Figure 8 shows the relative size of
DEGg;4e, and DEG,,,y, indicating the lack of coverage
of drug and effect data on Twitter. It would certainly be
a worthwhile endeavor in future work to perform a
thorough evaluation of the drugs and effects found on
Twitter and other social media platforms.

2000 DEG Contents

6000
5000
4000
3000
2000

1000

effects drugs

B DEG_Twitter M DEG_Sider

Fig. 8 Number of unigue drugs and unique effects in DEGryitter
and DEGS\der
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Conclusions

In this paper, we have described a framework based on
graph-theoretic modeling of drug-effect relationships
drawn from various data sources. We applied this frame-
work to two sources: SIDER, which is explicit in its
purpose of containing these relationships, and Twitter,
whose wide range of content has been shown to contain
these relationships. The DEG model is general enough
to accommodate these diverse data sources, yet rigorous
enough to provide a strong mechanism for classification.
We built classification models based on DEGg;,,, and
DEGr,i4er both showed strong performance. The DEG
model also allows for the incorporation of domain spe-
cific information into the model, such as the semantic
context provided by Twitter, which gave significant per-
formance boosts when added to the model. Moreover,
the information enrichment ability inherent in the DEG
structure allowed DEGry,i.r to benefit from the
strengths of DEGg; -

Our results further underscore the value real-time
information exchange platforms like Twitter’s bring to
the field of pharmacovigilance. With a relatively straight-
forward preprocessing pipeline of tweet filtering and
information extraction using freely available tools, a set
of drugs and side effects can be extracted from the
otherwise noisy stream of Twitter posts. We used the
proposed DEG model to predict ADEs that were missing
from the SIDER database, and in several cases, we were
able to find evidence of these predicted ADEs in the
Twitter-stream with further corroboration in the medical
literature. This result highlights the potential and value
of our method as a tool in the hunt for unknown ADEs.
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