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Abstract

Background: The Random Forest (RF) algorithm for supervised machine learning is an ensemble learning method
widely used in science and many other fields. Its popularity has been increasing, but relatively few studies address
the parameter selection process: a critical step in model fitting. Due to numerous assertions regarding the
performance reliability of the default parameters, many RF models are fit using these values. However there

has not yet been a thorough examination of the parameter-sensitivity of RFs in computational genomic studies.
We address this gap here.

Results: We examined the effects of parameter selection on classification performance using the RF machine
learning algorithm on two biological datasets with distinct p/n ratios: sequencing summary statistics (low p/n)
and microarray-derived data (high p/n). Here, p, refers to the number of variables and, n, the number of samples.
Our findings demonstrate that parameterization is highly correlated with prediction accuracy and variable
importance measures (VIMs). Further, we demonstrate that different parameters are critical in tuning different
datasets, and that parameter-optimization significantly enhances upon the default parameters.

Conclusions: Parameter performance demonstrated wide variability on both low and high p/n data. Therefore,
there is significant benefit to be gained by model tuning RFs away from their default parameter settings.

Keywords: Machine-learning, Random forest, Parameterization, Computational biology, Ensemble methods,
Optimization, Microarray, SeqControl

Abbreviations: AUC, Area under the receiver operating characteristic curve; DFCI, Dana-Farber Cancer Institute;
HLM, Moffitt Cancer Center; HPCI, High performance computing interface; ICGC, International Cancer Genome

Consortium; ML, Machine learning; MSKCC, Memorial Sloan-Kettering Cancer Center; NSCLC, Non-small cell lung
cancer; OOB, Out-of-bag; RF, Random forest; RMSE, Root mean squared error; UM, University of Michigan Cancer
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Background

Machine learning (ML) techniques are widely used in
the analysis of high-throughput data to answer a broad
range of biological questions. Applications in the field of
medicine have transformed our wunderstanding of
complex genomic interactions and measurements [1].
ML has been successfully applied to biological disci-
plines including proteomics [2, 3], drug development [4,
5], DNA sequence analysis [6-8], cancer classification
[9-13], clinical decision making [14, 15], and biomarker
discovery [16, 17]. The versatility of ML algorithms to
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broad ranges of data and applications offers powerful,
yet generalizable solutions to biological questions.

Recently, the random forest (RF) algorithm [18] for
ML has achieved broad popularity. RF is a form of
ensemble learning and possesses several characteristics
that impart versatility. It can be applied to two-class or
multi-class prediction problems, model interactions
among variables, can take on a mixture of categorical
and continuous variables, provides variable importance
measures (VIMs), and has good predictive performance
even for data with more variables (p) than samples (#;
i.e. p > > n); potentially involving highly noisy and signifi-
cantly correlated variables [19, 20]. Due to their non-
parametric nature, RFs are fairly robust with relatively
straightforward applications for inexperienced users [21,
22]. Consequently, this algorithm has expanded to a
framework of models [23].
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To train a random forest model, a bootstrap [24] sam-
ple is drawn, with the number of samples specified by
the parameter sampsize [25]. By default, the bootstrap
sample has the same number of samples as the original
data: some samples are represented multiple times,
whereas others are absent, leading to approximately
37 % of samples being absent in any given tree. These
are referred to as the out-of-bag (OOB) samples [26].
Independent of the sampsize setting, after each sample is
drawn, a decision tree is created. In the most
commonly-used implementation, fully-grown or un-
pruned decision trees are created [18]. The number of
trees is denoted by the parameter 7, [21]. This collec-
tion of models is known as bootstrap aggregation or
bagging [27] and is commonly applied to high-variance
and low-bias learners such as trees [28, 29]. Since indi-
vidual trees are more prone to over-fitting than a collec-
tion of trees, an ensemble method has a significant
advantage [27, 29]; however, this is limited by the correl-
ation between the trees and can be mitigated by choos-
ing a number of randomly selected input variables at
each split of the tree. The number of random variables
used at each split is denoted by the parameter m1,,,. Of
this subset of randomly selected variables, the one that
forms the best split is selected [25, 30]. The best split is
selected on the basis of a specific objective function,
most typically maximization of the Gini coefficient or
total gain in purity. This produces the most homoge-
neous groups and lowest OOB error [21]. Several empir-
ical studies have shown the benefit of aggregating
multiple trees to create a strong learner whereas, inde-
pendently they would be considered unstable with lower
classification accuracy [27, 31-34].

Machine learning algorithms frequently require esti-
mation of model parameters and hyper-parameters,
commonly through grid-searching [35]. Surprisingly,
though, this is not common practice in the literature for
RFs, where default values are often used as it is widely
believed that this method is parameter-insensitive, or at
least robust to changes from default parameter settings
[36-38]. To test this assumption, we performed an
exhaustive analysis of the parameter-sensitivity of RFs in
two large, representative bioinformatics datasets. We
show that our top performing tuned models were able to
achieve greater prediction accuracies than the default
models for both datasets and that the performance of
the default parameterization is inconsistent. This empha-
sizes the value of per-dataset tuning of RF models.

Results

Experimental design

To evaluate the sensitivity of RF models to
parameterization, we selected two datasets representative
of those commonly used in computational biology. The
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first studies quality-control metrics in next-generation
sequencing [6] and comprises 15 features (sequencing
quality metrics) with 720 training samples and 576
validation samples, and thus reflects low p/n ratio studies.
Each sample was classified as “good library” or “bad library”
based on information external to the 15 features, and our
models aimed to predict this binary response variable.

The second dataset reflected high p/n studies and
comprises three categorical clinical variables and 12,135
continuous mRNA abundances for Non-Small Cell Lung
Cancer (NSCLC) patients [13]. We trained models to
predict patient outcome, “no death” or “death”. There
were 255 samples in the training cohort.

For both datasets, we performed two model-fitting
steps (Fig. 1). First, we selected a broad and comprehen-
sive range of parameters (Additional file 1), and trained
a RF classification model for each combination, includ-
ing the default parameters. Models were trained on the
training dataset and validated on a fully independent
dataset. Performance was scored using the Area Under
the Receiver Operating Characteristic Curve (AUC) [38].
Second, we fit an RF regression model using the data
from the previous step: parameters were set as the co-
variates and AUC as the response. This allows us to
characterize the association between prediction accuracy
and parameterization. We randomly sampled 2/3 of
parameter sets for training and reserved the remainder
for validation. We aimed to predict the withheld AUC
scores and assessed performance using Spearman's Rank
Correlation Coefficient (p) and Lin's Concordance
Correlation Coefficient (p,.).

Prediction accuracy is a strong function of parameterization
in low p/n studies

We first evaluated the parameter sensitivity of RF pre-
diction accuracy in the low p/n dataset. We created
1,500 different sets of parameters and evaluated the per-
formance of each. Most models succeeded at this task
(Fig. 2), with a median AUC of 0.893 and 96 % of models
exceeding 0.80 AUC. However, the performance varied
dramatically, with a range of 0.6113-0.9996, suggesting
that some parameterizations greatly improve or hinder
prediction accuracy. The default parameterization (7.
=500, my., =3, sampsize=720 with replacement) per-
formed well, with an AUC of 0.9726 and ranked in the
top 12 % of all models (174/1,500; Additional file 2).
This clearly demonstrates that the default settings are
reasonable, but not optimal.

We asked if models were consistently struggling with
the same samples. We looked for samples in the
validation dataset where at least 50 % of models trained
with different parameter sets made incorrect predictions.
In total 73/576 (12.7 %) of validation samples were diffi-
cult to classify. These were strongly asymmetrically
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Fig. 1 Experimental Design. Classification-based model fitting began with a unique combination of Ny, My, and sampsize parameters in
conjunction with training data, illustrated by the gray boxes. Each learned random forest model was used to predict the class of the validation
data. Subsequently, AUC scores were calculated using the true class labels and these values were randomly subsetted into training and validation
groups using 2/3 and 1/3 of the samples, respectively. In the second model fitting step, we evaluated whether AUC could be predicted from
parameter sets alone. A RF regression model was fit using the parameters .., My, and sampsize as variables and AUC as the response, illustrated
by the blue boxes. Default settings were selected to train the RF regression models and AUC scores were predicted for the validation data. We
evaluated the results using Spearman's and Lin's correlation and determined the relative importance of each variable

distributed between the classes with 72/432 (17 %) “good
library” validation samples difficult to classify relative to
only 1/144 (1 %) “bad library” validation samples (p = 1.27 x
107% proportion-test). Interestingly though, the global error
rate was not dramatically different between these two
groups (20 % for “good library” vs. 14 % for “bad library”
samples).

Parameterization was strongly correlated to AUC score
(Fig. 2) in this dataset, but tightly focused on specific
parameters. The number of variables sampled per node
(myy) was strongly negatively correlated with AUC
(Pmtry = -0.895) and my,., < 3 resulted in higher classifica-
tion accuracy (mean AUC for m1,, <3 = 0.97; mean AUC
for my,>3=0.88 Welch Two Sample ¢-test). In
contrast, models were relatively robust to changes in the

Hiree and sampsize parameters (pzee = 0.053 and pgap-
size = 0.096; Spearman’s p).

To further explore the relationship between
parameterization and performance, we univariately
compared performance within each parameter (Additional
file 1), with Benjamini-Hochberg adjustment for multiple-
testing [39]. While sampsize values did not differ
significantly from each other, however, n,,, of 10 had
significantly lower AUCs (g <0.05) than other setting
(Additional files 3, 4 and 5). Similarly, as noted above
there was a near-linear relationship between increasing
My, and decreasing AUC in the validation cohort
(Additional file 6). These findings illustrated the strong in-
fluence of parameter selection on classification accuracy,
and that both linear and threshold effects can be observed.
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Fig. 2 Prediction accuracy is a strong function of parameterization in low p/n studies. Summary of low p/n predicted votes for each fitted
random forest model (n = 1500). An AUC plot is provided at the top indicating the relative performance of each model, represented by each
column. Each model was fitted from a unique combination of Niee (N=10), My, (N =1
outcomes (votes) for each sample or row (n = 576). Votes are provided in values from 0-1 with 0 representing a “bad library” and 1 representing
a "good library”. All columns are ordered in descending order of AUC scores and rows are ordered in descending order of the fraction of correct
votes for a given sample (total votes for the true sample class/all votes). All samples were subsetted according to the true class labels “good
library” and “bad library”, though the votes may not be reflective of this. Barplots for vote fractions are provided on the right of the main
heatmaps and the values for each parameter are provided at the bottom of the figure. The ny.. parameter is illustrated in blue, m,, in magenta
and sampsize in orange. Lighter hues represent lower values with darker hues indicating higher values. A scatterplot in the bottom right corner
illustrates a strong negative correlation between the my,, parameter with AUC scores (o =-0.89, p =0)

5) and sampsize parameters (n = 10) and their respectively

While the results to this point demonstrate both
that parameterization powerfully influences prediction
accuracy and that the default parameter settings are
sub-optimal. However they do not demonstrate if it is
possible to improve upon the defaults via parameter-
optimization studies. We therefore implemented 10-fold
and stratified 10-fold cross-validation using the parame-
ters in Additional file 1. The data was randomly divided
into 10 even folds, using 9/10 folds for training and the
last fold for validation. This step was repeated so that each
fold was used for validation once, so that the number of
samples in validation was equal to the number of samples
in the original training set (1 =720). All validation folds
were pooled to evaluate AUC and cross-validated models

were compared to non-cross-validated models using
Spearman's p and Lin's p. (Additional file 2).

Predicted classes for both 10-fold cross-validation and
stratified 10-fold cross-validation were weakly, but
statistically-significantly correlated to the predicted classes
for non-cross-validated results (Additional file 7a-b), and
strongly correlated to one another (Additional file 7c).

We found that cross-validation and stratified cross-
validation resulted in 97 % of models having an AUC of
1, including the defaults. We used an additional metric,
root mean squared error (RMSE) to break ties. The opti-
mal model in 10-fold cross-validation (rank =1, 74, =
500000, 1., =10, sampsize=720) had a RMSE of
0.00203, whereas the default model (rank =579) had a
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RMSE of 0.0273. The optimal model in stratified 10-fold
cross-validation (rank = 1, #. = 50, 11, = 14, sampsize
= 648) had a RMSE of 0.0119, whereas the default model
(rank = 319) had a RMSE of 0.0229. Overall, we found
that 39 % (578/1500) and 21 % (318/1500) of models
outperformed the untuned model (1, =500, m,., =3,
sampsize = 720), respectively. Twenty one percent (310/
1500) of these models shared the same parameter values
and were found to perform better than the default
settings in both cross-validated and non-cross-validated
results. We found the addition of a second metric,
RMSE wuseful in breaking ties and assessing model
performance for low p/n data.
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Prediction accuracy can be a strong function of
parameterization in high p/n studies

To contrast these data, we examined the effects of
parameterization on prediction accuracy for high p/n
data [13] (Additional file 1). We created 1,000 different
sets of parameters and evaluated the performance of
each (Additional file 8). Again, we saw that model per-
formance varied greatly with parameterization with a
median AUC of 0.533 and 2 % of models exceeding an
AUC of 0.60 (Fig. 3). However, the performance varied
dramatically, with a range of 0.4254—0.6337, suggesting
that some parameterizations could greatly improve or
hinder prediction accuracy. The default parameterization
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Fig. 3 Prediction accuracy is a strong function of parameterization in high p/n studies. Summary of the predicted votes for the combined validation
data for each fitted random forest model (n = 1000). A barplot for AUC scores is provided at the top indicating the relative performance of each
model, represented by each column. Each model was fitted from a unique combination of Ny (n = 10), my,, (n=10) and sampsize parameters (n = 10)
and their respectively outcomes (votes) for each sample or row (n = 186). Votes are provided in values from 0-1 with O representing a “no death”
event and 1 representing a “death” event. All columns are ordered in descending order of AUC scores and rows are ordered in descending order of
the fraction of correct votes for a given sample (total votes for the true sample class/all votes). All samples were subsetted according to the true class
labels “death” and “no death”, though the votes may not be reflective of this. On the right of the main heatmaps are respective barplots for vote
fractions and a heatmap of parameter values is present at the bottom of the figure. The ny.. parameter is illustrated in blue, my,, in magenta and
sampsize in orange. Lighter hues represent lower values with darker hues indicating higher values. To the right of this is a scatterplot illustrating
Spearman'’s correlations of each parameter with the AUC scores; positive correlations were observed for the parameters nye., My, and sampsize
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(Miree = 500, 114, = 110, sampsize = 255) performed well
relative to other models, with an AUC of 0.6098 and
ranked 10th. This demonstrates the near optimal per-
formance of the default settings.

We asked if models were consistently struggling with
the same samples. We looked for samples in the valid-
ation dataset where at least 50 % of models trained with
different parameter sets made incorrect predictions. In
total 89/186 (48 %) of validation samples were difficult
to classify. These were symmetrically distributed be-
tween the classes with 37/74 (50 %) “death” events diffi-
cult to classify compared to 52/112 (46 %) “no death”
samples (p =0.74; proportion-test). The error rate was
significantly different between these two groups (for “no
death” samples; p = 0; proportion-test).

Parameterization was strongly correlated to AUC in
this dataset, with contribution from all parameters. We
observed that m,,, (p=0.238, p=212 x 1071 Spear-
man’s correlation) was the most correlated, followed by
Hyee (p=0.222, p=1.39 x 107'% Spearman’s correlation)
and sampsize (p=0.207, p=3.73 x 107"; Spearman’s
correlation).

To further explore the relationship between
parameterization and performance, we univariately
compared performance within each parameter (Additional
file 1), with Benjamini-Hochberg adjustment for multiple-
testing [39]. We observed that larger 7,,., values resulted
in higher prediction accuracy and reduced performance
variability compared to lower values (g<107°), with no
significant difference observed between values 7y, >
10,000 (Additional files 9 and 10). Similar results were ob-
served for sampsize and m,,., (Additional files 11 and 12)
where there was a near-linear relationship between in-
creasing parameter values and AUC in the validation
cohort. Additionally, no significant differences were ob-
served in AUC for sampsize > 153 and m,,, > 110. The my,,,
value here is notable since it was used as the default, pro-
viding some support to previous claims that the default
performs well. These findings illustrated the strong influ-
ence of parameter selection on classification accuracy, and
that both linear and threshold effects can be observed.

Parameters can be used to predict performance

Having shown that model performance is strongly influ-
enced by 7., My, and sampsize, we next asked how
strongly these three parameters could predict AUC
directly. We assessed variable importance using the Gini
VIM, where larger values indicate a variable is more
important for accurate classification. We were able to
predict AUCs using this metric that closely reflects those
of the true data for low p/n data (Additional file 13a;
p=092, p=129 x 1072%, p.=0.89; Spearman's p and
Lin's p.). We observed that ., demonstrated the high-
est Gini VIM for low p/n data (Additional file 13b).
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Similar results were observed for the high p/n data,
where prediction accuracy was a strong function of par-
ameter selection across all validation sets (Additional file
l4a; p=048, p=542 x 107, p.=0.33; Spearman’s p
and Lin's p.). Interestingly, the parameters demonstrated
relatively balanced importance measures with sampsize
demonstrating the highest Gini VIM and #;,., with the
lowest (Additional file 14b).

Importance ranks can be sensitive to parameter changes
Finally, we asked if parameterization change could alter
the identification of importance variables (which are fre-
quently used in feature-selection approaches, for ex-
ample) [23, 36]. We focused on the low p/n data, and
trained models using the settings in Additional file 1 and
ranked permutation VIM for each quality metric from
1-15, with 1 representing the most important variable.
Permutation VIM is the mean decrease in classification
accuracy after a random variable is removed from model
fitting. Larger values suggest a variable has more dis-
criminative power [40, 41].

Variables differed in their sensitivity to parameter
changes when evaluating variable importance (Fig. 4).
The variable “Average reads/starts” was robust against
parameter changes and was considered the most import-
ant in 94 % of all samples, whereas “Clusters” exempli-
fied strong parameter sensitivity and was positively
correlated to m1,,.,. On the other hand, “% bases =50 %”
was found to have higher VIMs with lower 1,,, values.

Our order for variable importance deviated from that
of the original study [6], where “% bases >8x” was re-
ported as the most discriminative variable. We examined
how variable importance changed with differing 7.,
values (# = 10) while holding 1,,, and sampsize constant
(M, =3, sampsize ="720; Additional file 15) and ob-
served that larger 7, values led to more stable VIMs.

Discussion

There are two common assumptions regarding RF
models. The first is that the default parameters lead to
good performance [37, 38] and the second is that the al-
gorithm is robust to parameter changes [19, 21, 42]. To
help quantify the wide-spread nature of these assump-
tions we manually reviewed all papers published in BMC
Bioinformatics between January 1, 2015 and November
21, 2015 (Additional file 16). We looked for papers that
referenced the canonical RF paper [18] during this
~11 month period. Of the 16 papers that implemented
RFs, exactly half performed a parameterization study to
optimize parameters, and only 5/16 papers reported the
final parameter setting used. That is, about half of RF-
studies could benefit from improved parameterization
and another third from improved reporting. This high-
lights clearly the gap between machine learning theory
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and practice, and gaps in methods reporting that are not
being caught by peer-review.

Parameterization is difficult and its absence from the
model fitting process may be due to limited experience,
a lack of readily available heuristics or limited resources
[43]. Consequently, these factors lead to the inappropri-
ate selection of parameters or lack thereof, directly
influencing learning [44]. We sought to determine the
effects of parameterization on classification accuracy and
variable importance measures. Our findings suggested

data-dependent parameter sensitivities ultimately influ-
ence classification accuracy and VIMs for binary classifi-
cation problems. Our findings may not extend to
regression analyses or multi-class problems, where the
relationship between the variables and response is much
more complex.

We observed that the default parameters have the
potential to perform well, however results across all tests
indicated that parameter tuning enabled higher model
performance. The majority of high performing parameter
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combinations did not coincide with general patterns
observed in the pattern selection process i.e., in most
samples higher parameter values led to greater classifica-
tion accuracy and the top performing parameters had
lower values. Such models may have performed well due
to random chance or were over-fit. These results
emphasize the importance of parameter tuning and how
one cannot rely on any arbitrary parameter set to perform
well. This also suggests that existing publications imple-
menting untuned models may improve classification ac-
curacy through model tuning. To reduce computation
time and work for parameter selection, we applied a RF
regression model, which predicted model performance
more accurately than the more expensive 10-fold cross-
validation and stratified 10-fold cross-validation. The RF
regression model was also better at discriminating poor
performing parameter sets from high performing param-
eter sets.

To our knowledge, this is the first computational
genomic study that addresses parameter sensitivities
using a comprehensive range of values for two unique
biological data types. In particular, we observed that the
low p/n data was sensitive to changes in ., and the
high p/n data demonstrated a synergism between all
three parameters. Additionally, not all variables exhibited
robust behaviour towards parameter changes when
determining VIMs (e.g., “Clusters” and “% bases > 50x”).
These findings challenge the assumption that RFs are
relatively robust. Parameters that did not a play key role
independently had an observable and significant syner-
gism when constructing RF regression models with
interaction terms (from section Parameters can be used
to predict performance).

We also noted that our variable importance ranks did
not coincide with [6]. This was largely explained by the
bias in feature importance for the RF algorithm. Variables
that were highly correlated to truly influential variables or
have more categories will be over-selected by the algo-
rithm and do not reflect the true relative contribution of a
variable in a classification or regression problem [20].
Chong et al. [6] implemented an alternate algorithm,
“cforest”, from the R package “party” to generate unbiased
VIMs. One area for future research is to investigate the
sensitivity of parameter changes in the “cforest” algorithm.

Moreover, characteristics of the data, such as, p > >n
and minor class imbalances were observed. The numer-
ous variables in the high p/n data constrained the selec-
tion range of m,. parameters, potentially confounding
the results. In such samples, 71, = p. This was not the
sample for the low p/n data, where we were able to test
all possible values of m1.,. This limitation may also be
viewed as beneficial since the number of randomly se-
lected variables at each split is constrained and therefore,
limits tree correlation within a forest.
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An additional data characteristic limiting the classifica-
tion accuracy in RF could be class imbalance [45, 46].
The unequal number of classes in a dataset is technically
considered class imbalance, however, in the scientific
community, class imbalance corresponds to data with
significant to extreme disproportional class numbers,
such as, 100:1 or 10,000:1 [47]. These types of “imbal-
anced data” were not considered here. Furthermore, the
minor classes “bad library” and “death” in the small p/n
data and high p/n data respectively, had a higher classifi-
cation accuracy suggesting, in some instances, the
heterogeneity of a sample is more influential on classifi-
cation accuracy. We also aimed to mitigate class imbal-
ance effects through stratified sampling and by using the
AUC performance metric. Alternate methods such as,
cost sensitive learning [48] and artificially balancing the
data through down sampling the majority class [49], over
sampling the minority class [50], or both [51] have been
shown to deal with class imbalance effectively. Artificial
balancing ensures that class priors are equal in tree clas-
sifiers and that the minority class is included in the
bootstrap sample. On the other hand, cost sensitive
learning incurs a greater cost for misclassified minority
samples over majority samples. Minor class imbalances
were not observed to be an issue in this study, however,
data should be analysed with caution in highly imbal-
anced studies.

Conclusions

We analysed the effects of parameterization using ex-
haustive selection methods and showed that tuning can
be successfully applied to a non-parametric machine
learning algorithm to improve prediction accuracy.
Although we only examined two different genomic data-
sets, we observed that parameter sensitivities are data-
specific, necessitating per-dataset tuning. Our findings
illustrate this through discordant correlations between
parameters and performance scores for low p/n and high
p/n data. The model fitting process is a fundamental
step in machine learning and careless parameter selec-
tion can lead to sub-optimal models and potentially
missed findings.

Methods

Datasets

We explored parameterization of RFs on two datasets.
The first was a sequencing-derived dataset (low p/n
data) [6] and the second was a microarray-derived data-
set (high p/n data) [13], reflecting low and high p/n data,
respectively.

The low p/n data (15 variables with 1,296 samples) con-
tained 15 quality metrics describing overall coverage,
coverage distribution, basewise coverage and basewise
quality of 53 whole genomes. The data was derived for the
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International Cancer Genome Consortium (ICGC) project
to predict the amount of sequencing that is required to
reach a given coverage depth for 1/8 lane samples [6]. The
outcome column was a list of binary values (0 for “bad li-
brary” or 1 for “good library”) indicating whether the tar-
get coverage depth was reached (30x for normal, 50x for
tumour). The data was split into training and validation
sets, as described by the low p/n paper [6] and contained
720 and 576 samples, respectively.

The high p/n data contained gene expression data for
442 lung adenocarcinomas and basic clinical covariates
(stage, age and sex) to predict lung cancer patient out-
come (0 for “no death” or 1 for “death”). The data were
collected from six contributing institutions and grouped
into four subsets based on the laboratory where processed
(University of Michigan Cancer Center (UM), Moffitt
Cancer Center (HLM), Memorial Sloan-Kettering Cancer
Center (MSKCC), and Dana-Farber Cancer Institute
(DECI)). All facilities processed the data using the same
robust and reproducible protocol.

The first two datasets, UM and HLM, were grouped
together to form the training set (12,138 variables with
255 samples), while the MSKCC data (104 samples) and
DFCI data (82 samples) formed the validation set (186
samples).

Parameter selection

The my,,, parameter values were selected using factor
levels of the default value. Since the nature of this super-
vised learning problem is that of classification and not
regression, the default value of m1,,, is the square root of
the number of variables or features in the data 18 Vp,
whereas, in regression the default is p/3. The study by
[21] reported m1,,, as the most sensitive parameter with
values of m,, factor=1/2 (1/2. 18 \p), My factor =1
(18 p) and My, factor =2 (2¢18Vp) showing good
performance. Given this information and the number of
variables in the data, one to all variables were selected as
My, values for the SeqControl dataset (p=1-15), the
My values 1, 5, 11, 22, 55, 110, 220, 550, 1100, 2200
were selected for the NSCLC data (p=12,138). The
NSCLC values were obtained by selecting factor levels
(1/100, 1/20, 1/10, 1/2, 1, 2, 5, 10, 20), multiplying them
with p and taking the largest integer preceding a speci-
fied number i.e., for a value of 3.4, 3 was used.

The values for 7n,,, were selected similarly to those for
My, We imposed factor levels to the default value and
took the product to create the 7,,, values. The factor
levels were 1/50, 1/10, 1/5, 4/10, 1, 2, 20, 100, 200 and
1000. The final n,,, values were 10, 50, 100, 200, 500,
1000, le4, 5e4, 1e5, 5e5. The selected ;.. values were
the same for both datasets.

The final parameter sampsize, had the same factor
levels for both datasets and was a sequence of values
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from 0.1-1, increasing by increments of 0.1. To obtain
the final sampsize values, we multiplied the total number
of samples in training by the sampsize factor levels and
took the smallest integer proceeding a number i.e., for a
value of 3.4, 4 was used.

Selected parameters were used to train models with
the function “randomForest” using sampling with re-
placement. The data was partitioned according to the
original papers, as described above. In the SeqControl
data experiment, we aimed to predict whether the target
of sequencing depth coverage was achieved using 1/8
lane (1 for “good library”, 0 for “bad library”). In the
NSCLC data experiment, we aimed to predict patient
outcome (1 for “death”, 0 for “no death”). A table of
complete parameter settings for the SeqControl data and
NSCLC data can be found in Additional file 1.

Model training

The data were trained using the function “randomFor-
est” from the R package “randomForest” (v4.6-10) [21,
52]. A series of RFs were trained on each dataset using a
unique combination of the three parameters: 7., 714y
and sampsize. For the SeqControl data, we used 15 m1,,,
values, 10 74, values, and 10 sampsize values. These
values and numbers differed slightly in the NSCLC
training: 10 m1,,, values, 10 #,., values, and 10 sampsize
values. A resulting total of 1500 and 1000 unique com-
bination were obtained for model fitting on the SeqCon-
trol data and NSCLC data, respectively.

After training, each model was then validated on inde-
pendent validation data to obtain class probabilities
(votes). The votes and true class labels were then used
to estimate model performance by calculating the AUC
score.

Performance prediction using parameters as variables

In order to determine whether model performance could
be predicted, we performed regression using RF, on a sub-
set of parameters and their respective AUC scores. AUC
scores were calculated by comparing the predicted votes
from each model to the true classifications. We initially
attempted this from a linear model approach, however,
classification accuracy was low due to overfitting. After
subsetting 2/3 of the data into training and 1/3 for valid-
ation, we performed model tuning and selected the model
with the lowest mean squared error. Tuning was con-
ducted using a grid of parameters (Additional file 17) and
5-fold cross validation. We then applied the optimal set-
tings (#yee = 200, My, =2, sampsize =200) to train a RF
model. The response for our model was AUC score and
the variables were #,,, m,,, and sampsize. The expression
for the model formula included the terms in an additive
and interaction format ie., sampsize + My, + Ny + SAMp-
SIZE€* Mgy, + SAMPSIZE Niyee + Npree” Mipry + SAMPSIZE Niyoe” My,
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After training and validating the models, we were able to
assess performance using the following metrics, Spear-
man's p, Spearman's p-value (P) and Lin's p.. Lastly,
importance values were found for each variable (7;ee, 724y
or sampsize) in the form of Gini VIM.

Model selection using 10-fold cross-validation and
stratified 10-fold cross-validation

Ten-fold cross-validation was used to estimate the
generalization error of each unique RF model (n = 1500)
for the SeqControl data. This method of cross-validation
has been suggested to perform better than the more ex-
pensive leave-one-out cross-validation [53]. The data
was subsetted into 10 even folds, with nine groups se-
lected for training and the last reserved for validation.
This process was iterated until each fold was used in the
validation stage once, so that the number of samples in
validation was equal to the number of samples in the
original training set (1 = 720).

The above was repeated for stratified 10-fold cross-
validation with an even distribution of the minority class
among each fold. A total of 72 samples appeared in each
fold with approximately 14 samples of the minority class
and 58 of the majority class. AUC scores were used to
estimate accuracy and correlations were calculated be-
tween non-cross-validation, 10-fold cross-validation and
stratified 10-fold cross-validation results. A table com-
paring the above three methods is in Additional file 2.

Ranking variable importance

Additional information pertaining to variable importance
was collected from training and validating the SeqCon-
trol models using permutation VIM [54]. Permutation
VIM can be interpreted as the mean decrease in accur-
acy of a RF due to the removal of a variable. The magni-
tude of the value is directly proportional to the relative
contribution of a particular variable in classifying
samples, that is, the greater the decrease or drop in ac-
curacy, the more a feature is correlated to the response.

The model for the SeqControl data had additional set-
tings that were implemented, such as “importance”,
“locallmp”, “proximity” and “keep.inbag”. These argu-
ments were all set to “TRUE” to keep results relatively
consistent with the original paper [6].

Due to the exhaustive parameter selection method of
grid searching, we parallelized jobs using Perl High Per-
formance Computing Interface (HPCI) [55] and paralle-
lized jobs further by using the R package, “foreach”
(v1.4.2) [56].

Statistical model evaluation

We evaluated the performance of models using several
statistical measures in the R statistical environment
(v3.1.3) [57]. For classification accuracy, we calculated
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the AUC using the predicted votes and the true class
labels with the function “auc” from the package pROC
(v1.8) [58]. For non-parametric tests comparing the
parameter performance in classification, we used the
function “cor” from the base “stats” package (v3.2.0) [57]
to calculate Spearman's p and to find the correlation
coefficient between the AUC scores and the parameter
of interest. Spearman's p, Spearman's p-value and the
equation for Lin's p, from the paper [59] were used to
determine the correlation between true and predicted
AUC values in performance prediction. All p-values
were adjusted using the function “p.adjust” from the
base “stats” package (v3.2.0), using the Benjamini-
Hochberg procedure.

Data visualization

Figures were generated in the programming language
LaTeX and in the R statistical environment (v3.1.3) using
custom R scripts for the “lattice” (v0.2-31) [60] and
“latticeExtra” (v0.6-26) [61] packages.

Additional files

<
Additional file 1: RF parameter settings. RF parameter settings for low

p/n data (SeqControl; p=15) and high p/n data (NSCLC; p=12,138).
(CSV 515 bytes)

Additional file 2: AUC results for low p/n data. Low p/n results for
prediction accuracy using AUC as the performance metric for non-cross-
validation results, 10-fold cross-validation and stratified 10-fold cross-
validation. Ranks indicate the relative performance of different models
with lower ranks representing higher performing models i.e, a rank of 1
is the best model. The default settings (nyee = 500, My, = 3, sampsize = 720)
are found on row 1502 of the table. (CSV 116 kb)

Additional file 3: Pairwise t-test results for sampsize intra-parameter
groups for the low p/n data. All p-values were adjusted using a
Benjamini-Hochberg procedure. There were no groups that differed
significantly from each other. (TXT 333 bytes)

Additional file 4: Pairwise t-test results for ny.. intra-parameter groups
for the low p/n data. All p-values were adjusted using a Benjamini-
Hochberg procedure. The only ny.. value found to differ from every other
Niree group was 10. (TXT 456 bytes)

Additional file 5: Intra-parameter values display variation in low p/n
studies. We evaluated the parameters sampsize, Nye. and my, by
performing pairwise t-tests with a Benjamini-Hochberg adjustment. AUC
scores were grouped by parameter values as indicated by a unique
colour (orange for sampsize, blue for nye. and pink for my,), resulting in
10 groups for sampsize (n = 150), 10 groups for Nyee (N =150) and 15
groups for my,, (n =100). A horizontal line is present in each plot,
indicating the median of the lowest parameter value. Parameter values
for sampsize were not found to differ significantly from each other,
whereas, N = 10 differed significantly from every other group and all
my,, values demonstrated a difference with at least one other group.
These findings suggest that lower ny.. values were associated with lower
classification accuracy, with an opposite trend observed in the my,,
parameter, where higher values were negatively correlated with classification
accuracy. (TIFF 1373 kb)

Additional file 6: Pairwise t-test results for m;,, intra-parameter groups
for the low p/n data. All p-values were adjusted using a Benjamini-
Hochberg procedure. Each sampsize group was found to differ from at

least 12 other groups. (TXT 2 kb)
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Additional file 7: Performance results are correlated between non-cross-
validation results, 10-fold cross-validation and stratified 10-fold cross-
validation. Correlations between non-cross-validation and cross-validation
results of fitted random forest models to perform feature selection. (a) Non-
cross-validation results were correlated to 10-fold cross-validation results
(0=0084, p <001, p.=39 x 107%. (b) Non-cross-validation results were
also correlated to stratified 10-fold cross-validation results (0 =0.1, p < 107
0c=29x107%. () A very strong correlation was observed between strati-
fied 10-fold cross-validation and 10-fold cross-validation (o =0.65, p < 10779,
pc=063) with minimum AUCs of 0.9967 and 0.9952, respectively and 97 %
of models overlapping at an AUC of 1. (TIFF 5780 kb)

Additional file 8: AUC results for high p/n data. Validation results for all
high p/n models (n = 1000) using the MSKCC data, DFCI data, and
combined MSKCC and DFCI data. The AUC results and ranks are provided
for each combination of nyee, My, and sampsize parameters. Lower ranks
represent higher model performance with 1 representing the most
accurate model and 1000 representing the worst performing model.
Logical columns are present to indicate whether a parameter set
performed better than the default or well across all validation sets. Model
performance was defined as good if the parameter set resulted in an
AUC of > 0.6 across all validation sets. The default settings (n¢ee = 500,
My, =110, sampsize = 255) are found on row 596 of the table. (CSV 28 kb)

Additional file 9: Intra-parameter values display variation for high p/n
studies (combined validation data). The parameters sampsize, Nyee and
my, were analysed by performing pairwise t-tests with a Benjamini-
Hochberg adjustment. AUC scores were grouped by parameter values as
indicated by colour (orange for sampsize, blue for nye. and pink for my,).
In general, lower intra-parameter values for sampsize, e, and my, were
found to differ significantly from higher intra-parameter values, with
higher parameter values exhibiting a positive correlation with AUC.

(TIFF 1207 kb)

Additional file 10: Pairwise t-test results for n... intra-parameter groups
for the combined NSCLC validation data. All p-values were adjusted using
a Benjamini-Hochberg procedure. Lower ny.. groups were found to differ
from higher nye. parameter groups for example, Nyee 10 from Nyee 10,000
—500,000. (TXT 1019 bytes)

Additional file 11: Pairwise t-test results for m;,, intra-parameter groups
for the combined NSCLC validation data. All p-values were adjusted using
a Benjamini-Hochberg procedure. In general lower my,, values were
found to differ significantly from higher m;,, values for example, m,, 1
from my,, 110 —2200. (TXT 1009 bytes)

Additional file 12: Pairwise t-test results for sampsize intra-parameter
groups for the combined NSCLC validation data. All p-values were
adjusted using a Benjamini-Hochberg procedure. Significant differences
were observed between large and small sampsize values, in particular,
sampsize 26 from sampsize 102 — 255; sampsize 51 from sampsize 128 — 255;
sampsize 77 from sampsize 128 — 255, etc. (TXT 1 kb)

Additional file 13: AUC performance can be predicted for low p/n data
using parameters as variables. Prediction accuracy (AUC) using the
random forest classifier for low p/n data with Gini importance measures.
(a) The model for the SeqControl data shows a strong correlation
between predicted and observed AUC scores (o =092, p < 10°%) and a
Lin's concordance correlation coefficient (o) value of 0.89. (b) The Gini
importance measures for the low p/n AUC values show that my,, is the
most informative variable followed by ny.. and sampsize. (TIFF 80 kb)

Additional file 14: AUC performance can be predicted for high p/n
data using parameters as variables. Prediction accuracy using the random
forest classifier for high p/n validation data with Gini importance measures.
(a) The combined validation data demonstrated a strong correlation
between the predicted and observed AUC values (o =048, p < 107% and a
pc value of 0.33. (b) The relative order of Gini importance for the combined
data was sampsize followed by my,, and lastly, nye.. (TIFF 68 kb)

Additional file 15: Variable importance ranks according to ntree value.
The ranks for the default parameters with unique ny.. values as column
heads and sequencing quality metrics as row heads. The ranks stabilize at
Nyee = 10,000. Using this criteria, the variable identified as the most
important was “Average reads/starts” in 40 % of samples, whereas, (6]
identified "% bases = 8x" as the most important variable using the cforest

algorithm. Below Ny 1,000, “% bases 2 8x" was ranked as the most
important variable in 40 % of samples. Although greater ny.. values may
lead to more consistent rankings for variable importance, these values
may become more biased through sampling with replacement methods
[20]. (CSV 667 bytes)

Additional file 16: Random forest usage in papers. A summary table of
papers referencing random forest over a seven month period (January 1
to November 4) from BMC Bioinformatics. Information was recorded
whether the paper uses a RF algorithm, and if so, whether they
parameterized and report the tuned parameters. Eleven of sixteen papers
use the RF algorithm and less than half of samples performed model
tuning. An even fewer number of papers reported the optimized values
[62-87]. (CSV 434 bytes)

Additional file 17: Parameter grid for predicting performance. A
summary table of parameters that were used to perform model tuning
for predicting AUC using a subset of parameters, Nyee, My, and sampsize.
A total of 162 parameters were used in model tuning and the optimal
parameters (Nye. = 200, My, = 2, sampsize = 200) were selected to fit the
final model. (CSV 124 bytes)
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