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Abstract

Background: Over the last ten years, there has been explosive development in methods for measuring gene
expression. These methods can identify thousands of genes altered between conditions, but understanding these
datasets and forming hypotheses based on them remains challenging. One way to analyze these datasets is to
associate ontologies (hierarchical, descriptive vocabularies with controlled relations between terms) with genes and
to look for enrichment of specific terms. Although Gene Ontology (GO) is available for Caenorhabditis elegans, it does
not include anatomical information.

Results: We have developed a tool for identifying enrichment of C. elegans tissues among gene sets and generated a
website GUI where users can access this tool. Since a common drawback to ontology enrichment analyses is its
verbosity, we developed a very simple filtering algorithm to reduce the ontology size by an order of magnitude.
We adjusted these filters and validated our tool using a set of 30 gold standards from Expression Cluster data in
WormBase. We show our tool can even discriminate between embryonic and larval tissues and can even identify
tissues down to the single-cell level. We used our tool to identify multiple neuronal tissues that are down-regulated
due to pathogen infection in C. elegans.

Conclusions: Our Tissue Enrichment Analysis (TEA) can be found within WormBase, and can be downloaded using
Python’s standard pip installer. It tests a slimmed-down C. elegans tissue ontology for enrichment of specific terms and
provides users with a text and graphic representation of the results.

Keywords: Gene ontology, Anatomy ontology, WormBase, RNA-seq, High-throughput biology

Background
RNA-seq and other high-throughput methods in biology
have the ability to identify thousands of genes that are
altered between conditions. These genes are often corre-
lated in their biological characteristics or functions, but
identifying these functions remains challenging. To inter-
pret these long lists of genes, biologists need to abstract
genes into concepts that are biologically relevant to form
hypotheses about what is happening in the system. One
such abstraction method relies on Gene Ontology (GO).
GO provides a controlled set of hierarchically ordered
terms [1, 2] that provide detailed descriptions about
the molecular, cellular or biochemical functions of any
gene. For a given gene list, existing software programs
can query whether a particular term is enriched [3–6].
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One area of biological significance that GO does not
include is anatomy. One way to address this shortcom-
ing is to use a ‘tissue ontology’ that provides a complete
anatomical description for an organism (e.g.‘tissue’, ‘organ’
or ‘specific cell’), in this case for C. elegans. Such an
ontology has been described previously for this organ-
ism [7]. Cells and tissues are physiologically relevant
units with broad, relatively well-understood functional-
ities amenable to hypothesis formation. The C. elegans
database, WormBase [8], maintains a curated list of gene
expression data from the literature. Here we provide a new
framework that analyzes a user-input list for enrichment
of specific cells and tissues.
Another problem frequently associated with GO enrich-

ment analysis is that it is often difficult to interpret due
to the large number of terms associated with a given gene
(which we refer to as ‘result verbosity’). DAVID, a com-
mon tool for GO enrichment analysis, clusters enriched
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terms into broad categories [9], whereas PANTHER
[3, 10] attempts to solve this issue by employing a manu-
ally reduced ontology, GOslim (pers. comm., H. Yu and P.
Thomas). To reduce verbosity, we have filtered our ontol-
ogy using a small set of well-defined criteria to remove
terms that do not contribute additional information. To
our knowledge, such filtering has not been performed in
an algorithmic fashion for a biological ontology before;
indeed, DAVID does not employ term trimming a pri-
ori of testing, but rather fuzzy clustering post testing
to reduce the number of ontology terms. Other prun-
ing methods do exist (see for example [11, 12]), but the
pruning is query-dependent or generates a brand new
‘brief ontology’ which satisfies a set of logic relation-
ships and has certain connectivity requirements. We do
not propose to regenerate a new ‘brief ontology’, but
instead we use our approach to select those nodes that
have sufficient annotated evidence for statistical testing.
We believe our trimming methodology strikes a good
balance between detailed tissue calling and conservative
testing.
We have developed a tool that tests a user-provided

list of genes for term enrichment using a nematode-
specific tissue ontology. This ontology, which is not a
module of Gene Ontology, is verbose. We select nodes
from the ontology for statistical testing using an algo-
rithmic approach, outlined below, that reduces multiple
hypothesis testing issues by limiting testing to terms that
are well-annotated. The results are provided to the user
in a GUI that includes a table of results and an auto-
matically generated bar-chart. This software addresses a
previously unmet need in the C. elegans community for
a tool that reliably and specifically links gene expression
with changes in specific cells, organs or tissues in the
worm.

Results
Generating a gene-tissue dictionary by specific node
selection
Reducing term redundancy through a similaritymetric
For our tool, we employ a previously generated cell and
tissue ontology for C. elegans [7], which is maintained
and curated by WormBase. This ontology contains thou-
sands of anatomiy terms, but not every term is equally
well-annotated. As a first step to generate our tissue
enrichment software, we wished to select tissue terms that
were reasonably well-annotated, yet specific enough to
provide insight and not redundant with other terms. For
example, nematodes have a number of neurons that are
placed symmetrically along the left/right body axis, and
are functionally similar. These left/right neuronal pairs
(which are sisters in the ontology) have almost identical
annotations, with at most one or two gene differences
between them, and therefore we cannot have statistical
confidence in differentiating between them. As a result,
testing these sister terms provides no additional informa-
tion compared with testing only the parent node to these
sisters. To identify redundancy, we defined two possible
similarity metrics (see “Methods” section and Fig. 1a) that
can be used to identify ontology sisters that have very high
similarity between them. Intuitively, a set of sisters can
be considered very similar if they share most gene anno-
tations. Within a given set of sisters, we can calculate a
similarity score for a single node by counting the number
of unique annotations it contains and dividing by the total
number of unique annotations in the sister set. Having
assigned to each sister a similarity score, we can identify
the average similarity score for this set of sisters, and if
this average value exceeds a threshold, these sisters are not
considered testable candidates. An alternative method is
check whether any of the scores exceeds a predetermined

a) b) c)

Fig. 1 Schematic representation of trimming filters for an acyclical ontology. a The parent node (green) contains at least as many annotations as the
union of the two sisters. These two sisters share annotations extensively, as expressed by the overlap in the Venn diagram, so they qualify for
removal. b Nodes with less than a threshold number of genes are trimmed (red) and discarded from the dictionary. Here, the example threshold is
25 genes. Nodes ε , ζ , η, shown in red are removed. c Parent nodes are removed recursively, starting from the root, if all their daughter nodes have
more than the threshold number of annotations. Nodes in grey (ε , ζ , η) were removed in the previous step. Nodes α,β shown in red are trimmed
because each one has a complete daughter set. Only nodes γ and δ will be used to generate the static dictionary
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threshold, and if so remove this sister set from the ontol-
ogy. We referred to these two scoring criteria as ‘avg’ and
‘any’ respectively.

Terminal branch terms and parent terms can be safely
removed in an algorithmic fashion
Another problem arises from the ontology being scarcely
populated. Many nodes have 0–10 annotations, which we
consider too few to accurately test. To solve this issue,
we implemented another straightforward node selection
strategy. For a given terminal node, we test whether the
node has more than a threshold number of annotations.
If it does not, the node is not used for statistical test-
ing. The next higher node in the branch is tested and
removed recursively until a node that satisfies the con-
dition is found. At that point, no more nodes can be
removed from that branch. This completion is guaranteed
by the structure of the ontology: parent nodes inherit all of
the annotations of all of their descendants, so the number
of annotated terms monotonically increases with increas-
ing term hierarchy (see Fig. 1b). In this way, we ensure
that our term dictionary includes only those tissues that
are considered sufficiently well annotated for statistical
purposes.
Additionally, we reasoned that for any parent node

if all its daughters were selected for testing, there was
no additional benefit to test the parent. We removed
parent nodes from the analysis if all their daughter
nodes passed the annotation threshold (see Fig. 1c). We
called this a ceiling filter. Applying these three filters
reduced the number of ontology terms by an order of
magnitude.

Filtering greatly reduces the number of nodes used for
analysis
By itself, each of these filters can reduce the number of
nodes employed for analysis, but applying the filters in
different orders removes different numbers of nodes (not
all the filters are commutative). We chose to always exe-
cute annotation and similarity thresholding first, followed
by the ceiling filter. For validation (see below) we made
a number of different dictionaries. The original ontology
has almost 6,000 terms of which 1675 have at least 5 gene
annotations. After filtering, dictionary sizes ranged from
21 to a maximum of 460 terms, which shows the number
of terms in a scarcely annotated ontology can be reduced
by an order of magnitude through the application of a
few simple filters (see Table 1). These filters were used to
compile a static dictionary that we employ for all analyses
(see “Validation of the algorithm and optimizing param-
eter selection” section for details). Our trimming pipeline
is applied as part of each new WormBase release. This
ensures that the ontology database we are using remains
up-to-date with regards to both addition or removal of

Table 1 Parameter specifications and number of tissues for all
dictionaries

Annotation cutoff Similarity threshold Method No. of terms
in dictionary

25 0.9 any 460

25 0.9 avg 461

25 0.95 any 466

25 0.95 avg 468

25 1 any 476

25 1 avg 476

33 0.9 any 261

33 0.9 avg 255

33 0.95 any 261

33 0.95 avg 262

33 1 any 247

33 1 avg 247

50 0.9 any 83

50 0.9 avg 77

50 0.95 any 82

50 0.95 avg 81

50 1 any 70

50 1 avg 70

100 0.9 any 45

100 0.9 avg 35

100 0.95 any 42

100 0.95 avg 36

100 1 any 21

100 1 avg 21

The ‘Method’ column refers to the trimming criterion for the similarity metric. We
used two such criteria, ‘any’ and ‘avg’.‘any’: For a given sister set, if any sister had a
similarity exceeding the corresponding threshold, all sisters were removed from the
final dictionary. ‘avg’: For a given sister set, if the average similarity across all the
sisters in the set was greater than the corresponding threshold, all sisters were
removed from the final dictionary

specific terms as well as with regard to gene expression
annotations.

Tissue enrichment testing via a hypergeometric model
Having built a static dictionary, we generated a Python
script that implements a significance testing algorithm
based on the hypergeometric model. Briefly, the hyper-
geometric model tests the probability of observing ni
occurences of a tissue i in a list of size M if there are mi
labels for that tissue in a dictionary of total size N that
are drawn without replacement. Mathematically, this is
expressed as:

P(ni|N ,mi,M) =
(mi
ni

)(M−mi
N−ni

)

(N
ni
) . (1)
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Although a user will input gene IDs, we test the num-
ber of ocurrences of a term within the gene list, so a
single gene can contribute to multiple terms. Due to the
discrete nature of the hypergeometric distribution, this
algorithm can generate artifacts when the list is small. To
avoid spurious results, a tissue is never considered signifi-
cant if there are no annotations for it in the user-provided
list.
Once the p-values for each term have been calculated,

we apply a standard FDR correction using a Benjamini-
Hochberg step-up algorithm [13]. FDR corrected p-values
are called q-values. Genes that have a q-value less than
a given alpha are considered significant. Our default set-
ting is an alpha of 0.1, which is a standard threshold
broadly agreed upon by the scientific community (see for
example [14–16]). This threshold cannot be altered in the
web GUI, but is user tunable through our command-line
implementation.
Users input a gene list using any valid gene name for

C. elegans. These names are processed into standard
WormBase gene IDs (WBGene IDs). The program returns
a table containing all the enriched terms and associated
information such as number of terms in gene list and
expected number of terms. Finally, the program can also
return a bar chart of the enrichment fold change for the
fifteen tissues with the lowest measured q-values. The
bars in the graph are sorted in ascending order of q-
value and then in descending order of fold-change. Bars
are colored for ease of viewing, and color does not con-
vey information. Our software is implemented in an easy
to use GUI (see Fig. 2; alternatively, users can interface
with TEA via python, see Additional file 1). Anatomy
terms are displayed in human-readable format followed
by their unique ontology ID (WBbt ID). In summary,
each time the ontology annotations are updated, a new
trimmed ontology is generated using our filters; in paral-
lel, users can submit their gene lists through WormBase
for testing, with results output in a number of formats
(see Fig. 3).

Validation of the algorithm and optimizing parameter
selection
We wanted to select a dictionary that included enough
terms to be specific beyond the most basic C. elegans
tissues, yet would minimize the number of spurious
results and which had a good dynamic range in terms
of enrichment fold-change. Larger tissues are correlated
with better annotation, so increasing term specificity is
associated with losses in statistical power. To help us
select an appropriate dictionary and validate our tool, we
used a set of 30 gold standards based on microarray and
RNA-seq literature which are believed to be enriched in
specific tissues [17–24]. These data sets are annotated
gene lists derived from the corresponding Expression

Cluster data in WormBase. Some of these studies have
been used to annotate gene expression, and so they did
not constitute an independent testing set. To correct
this flaw, we built a clean dictionary that specifically
excluded all annotation evidence that came from these
studies.
As a first attempt to select a dictionary, we generated

all possible combinations of dictionaries with minimal
annotations of 10, 25, 33, 50 and 100 genes and simi-
larity cutoffs of 0.9, 0.95 and 1, using ‘avg’ or ‘any’ sim-
ilarity thresholding methods (see Table 1). The number
of remaining ontology terms was inversely correlated to
the minimum annotation cutoff, and was largely insensi-
tive to the similarity threshold in the range we explored.
Next, we analyzed all 30 datasets using each dictionary.
Because of the large number of results, instead of ana-
lyzing each set of terms individually, we measured the
average q-value for significantly enriched terms in each
dataset without regard for the perceived accuracy of the
terms that tested significant. We found that the simi-
larity threshold mattered relatively little for any dictio-
nary. We also noticed that the ‘any’ thresholding method
resulted in tighter histograms with a mode closer to
0. For this reason, we chose the ‘any’ method for dic-
tionary generation. The average q-value increased with
decreasing annotation cut-off (see Fig. 4), which reflects
the decreasing statistical power associated with fewer
annotations per term, but we remained agnostic as to
how significant is the trade-off between power and term
specificity. Based on these observations, we ruled out
the dictionary with the 100 gene annotation cut-off: it
had the fewest terms and its q-values were not low
enough in our opinion to compensate for the trade-off in
specificity.
To select between dictionaries generated between 50, 33

and 25 annotation cut-offs, and also to ensure the terms
that are selected as enriched by our algorithm are reason-
able, we looked in detail at the enrichment analysis results.
Most results were comparable and expected. For some
sets, all dictionaries performed well. For example, in our
‘all neuron enriched sets’ [18, 20] all terms were neuron-
related regardless of the dictionary used (see Table 2). On
the other hand, for a set enriched for germline precur-
sor expression in the embryo [18], the 50 cutoff dictionary
was only able to identify ‘oocyte WBbt:006797’, which is
not a germline precursor although it is germline related;
whereas the two smaller dictionaries singled out actual
germline precursor cells—at the 33 cutoff, our tool iden-
tified the larval germline precursor cells ‘Z2’ and ‘Z3’
as enriched, and at the 25 gene cutoff the embryonic
germline precursor terms ‘P4’,‘P3’ and ‘P2’ were identified
in addition to ‘Z2’ and ‘Z3’. We also queried an intes-
tine precursor set [18]. Notably, this gene set yielded no
enrichment when using the 25 cutoff dictionary, nor when
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Fig. 2 Screenshot of results from the web GUI. After inputting a gene-list, the user is provided with the results. An HTML table is output with
hyperlinks to the ontology terms. A publication-ready graph is provided below, which can be saved by dragging to the desktop. The graph is
colored for better visualization; color is not intended to convey information. The graph and the table show anatomy terms in human-readable
format, followed by their unique WBbt ID. Finally, lists of the genes used and discarded for the analysis are also presented
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Fig. 3 TEA Workflow. The complete ontology is annotated continuously by WormBase curators. After each update, the ontology is processed to
remove uninformative terms, and the remaining terms are used for statistical testing. Users can select a gene list and input it into our tool using our
WormBase portal. The gene list is tested for enrichment using the trimmed ontology, and results are output in tabular and graphic formats for analysis

using the 50 cutoff dictionary. However, the 33 cutoff
dictionary identified the E lineage, which is the intestinal
precursor lineage in C. elegans, as enriched. Both of these
results capture specific aspects of C. elegans that are well
known to developmental biologists.
Not all queries worked equally well. For example, a

number of intestinal sets [18, 21] were not enriched
in intestine-related terms in any dictionary, but were
enriched for pharynx and hypodermis. We were surprised
that intestinal gene sets performed poorly, since the
intestine is a relatively well-annotated tissue.

Fig. 4 Kernel density estimates (KDE) for 30 gold standard datasets.
We ran TEA on 30 datasets we believed to be enriched in particular
tissues and pooled all the results to observe the distribution of
q-values. The mode of the distribution for dictionaries with annotation
cut-offs of 100 and 50 genes are very similar; however, when the
cut-off is lowered to 25 genes, the mode of the distribution shifts to
the left, potentially signalling a decrease in measurement power

We assessed the internal agreement of our tool by using
independent gene sets that we expected to be enriched
in the same tissues. We used two pan-neuronal sets
[18, 20]; two PVD sets [18, 24]; and two GABAergic sets
[18, 19]. Overall, the tool has good internal agreement. On
most sets, the same terms were enriched, although order
was somewhat variable (see Fig. 5), and most high-scoring
terms were preserved between sets. All comparisons can
be found online in our Github repository (see Availabil-
ity of data and materials). The complete list of gene sets
and results can also be found in Additional files 2, 3 and
4. Overall, the dictionary generated by a 33 gene annota-
tion cutoff with 0.95 redundancy threshold using the ‘any’
criterion performed best, with a good balance between
specificity, verbosity and accuracy, so we selected this
parameter set to generate our static dictionary. As of this
publication, the testable dictionary contains 261 terms.

Applying the tool
We applied our tool to the RNA-seq datasets developed
by Engelmann et al. [25] to gain further understanding
of their underlying biology. Engelmann et al. exposed
young adult worms to 5 different pathogenic bacteria or
fungi for 24 h, after which mRNA was extracted from
the worms for sequencing. We ran TEA on the genes
Engelmann et al. identified as up- or down-regulated.
Initially we noticed that genes that are down-regulated
tend to be twice as better annotated on average than
genes that were up-regulated, suggesting that our under-
standing of the worm immune system is scarce, in spite
of important advances made over the last decade. Up-
regulated tissues, when detected, almost always included
the hypodermis and excretory duct. Three of the five sam-
ples showed enrichment of neuronal tissues or neuronal
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Table 2 Comparison of results for a GABAergic neuronal-enriched gene set from Watson [20] showing that results are similar
regardless of annotation cutoff

Tissue Q value33 Q value50 Enrichment fold change33 Enrichment fold change50

Nerve ring WBbt:0006749 0.005 0.0015 2.7 2.7

Nervous system WBbt:0005735 0.005 0.0015 1.4 1.4

Dorsal nerve cord WBbt:0006750 0.005 0.0015 3.8 3.8

Retrovesicular ganglion WBbt:0005656 0.011 0.0034 5 5

Ventral nerve cord WBbt:0005829 - 0.022 - 2.4

We ran the same gene list on a dictionary with a minimum annotation cutoff of 50, similarity threshold of 0.95 and similarity method ‘any’ versus another with a minimum
annotation cutoff of 33, similarity threshold of 0.95 and similarity method ‘any’. In the table, columns are labeled with their significance value (Q-value) or enrichment fold
change followed by a hyphen and a number which indicates which the cutoff for the dictionary that was used for testing. Not all tissues are present in either dictionary.
Hyphens denote not-applicable values, which occurs when a particular tissue is not present in both dictionaries

precursor tissues among the down-regulated genes. As
an independent verification, we also performed GO anal-
ysis using PANTHER on the down-regulated genes for
D. coniospora. These results also showed enrichment in
terms associated with neurons (see Fig. 6). A possible
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Fig. 5 Independently derived gene sets show similar results when
tested with the same dictionary. Set 1) GABAergic gene set from
Watson [20]. Set 2) GABAergic gene set from Spencer [18].
Arrowheads highlight identical terms between both analyses. All
terms refer to neurons or neuronal tissues and are GABA-associated.
Dictionary with cutoff: 33; threshold: 0.95; method: ‘any’

explanation for this neuronal association might be that
the infected worms are sick and the neurons are begin-
ning to shut down; an alternative hypothesis would be that
the worm is down-regulating specific neuronal pathways
as a behavioral response against the pathogen. Indeed,
several studies [26, 27] have provided evidence that C. ele-
gans uses chemosensory neurons to identify pathogens.
Our results highlight the involvement of variousC. elegans
neuronal tissues in pathogen defense.

Discussion
We have presented a tissue enrichment analysis tool
that employs a standard hypergeometric model to test
the C. elegans tissue ontology. We use a hypergeo-
metric function to test a user-provided gene list for
enrichment of anatomical terms in C. elegans. Our
hope is that the physiological relevance of anatomi-
cal terms will enable researchers to make hypotheses
about high-dimensionality data. Specifically, we believe an
enriched term may broadly suggest one of two hypothe-
ses: if a list is enriched in a particular anatomical
region, that anatomical region is affected by the exper-
imental treatment; alternatively, the anatomical regions
that are enriched reflect biologically relevant interac-
tions between tissues. We believe the first hypothesis
is a reasonable one to make in the case of whole-
worm RNA-seq data for example, whereas the sec-
ond hypothesis may be more plausible in cases where
a researcher already knows what tissues a particular
gene list came from, as may be the case in single-cell
RNA-seq.
Our tool relies on an annotation dictionary that is con-

tinuously updated primarily with data from single gene
qualitative analyses, does not require retraining and does
not require ranked genes. To our knowledge, this is the
first tool that tests tissue enrichment in C. elegans via
the hypergeometric method, but similar projects exist for
humans and zebrafish [28, 29], highlighting the relevance
of our tool for high-dimensionality biology. Chikina et al.
[30] have previously reported a tissue enrichment model
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Fig. 6 D. coniospora gene enrichment analysis and tissue enrichment analysis results. We compared and contrasted the results from a gene
enrichment analysis program, pantherDB, with TEA by analyzing genes that were significantly down-regulated when C. elegans was exposed to
D. coniospora in a previously published dataset by Engelmann et al. [25] with both tools. a pantherDB screenshot of results, sorted by p-value. Only
top hits shown. b TEA results, sorted by q-value (lowest on top) and fold-change. Both pantherDB and TEA identify terms associated with neurons
(red square). The two analyses provide complementary, not redundant, information

for C. elegans based on a Support Vector Machine classi-
fier that has been trained onmicroarray studies. SVMs are
powerful tools, but they require continuous retraining as
more tissue expression data becomes available. Moreover,
classifiers require that data be rank-ordered by some met-
ric, something which is not possible for certain studies.
Furthermore, this tissue enrichment tool provides users
with enrichment results for only 6 large tissues. In con-
trast, our tool routinely tests a much larger number of
terms, and we have shown it can even accurately iden-
tify enrichment of embryonic precursor lineages for select
data sets.

We have also presented the first, to our knowledge,
ontology term filtering algorithm applied to biomedical
ontologies. This algorithm, which is very easy to execute,
identifies terms that have specificity and statistical power
for hypothesis testing. Due to the nature of all ontologies
as hierarchical, acyclical graphs with term inheritance,
term annotations are correlated along any given branch.
This correlation reduces the benefits of including all terms
for statistical analysis: for any given term along a branch,
if that term passes significance, there is a high probabil-
ity that many other terms along that branch will also pass
significance. If the branch is enriched by random chance,
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error propagation along a branch means that many more
false positives will follow. Thus, a researchermight bemis-
led by the number of terms of correlated function and
assign importance to this finding; the fact that the branch-
ing structure of GO amplifies false positive signals is a
powerful argument for either reducing branch length or
branch intracorrelation, or both. On the other hand, if
a term is actually enriched, we argue that there is little
benefit to presenting the user with additional terms along
that branch. Instead, a user will benefit most from testing
sparsely along the tree at a suitable specificity for hypoth-
esis formation. Related terms of the same level should
only be tested when there is sufficient annotation to dif-
ferentiate, with statistical confidence, whether one term is
enriched above the other. Our algorithm reduces branch
length by identifying and removing nodes that are insuf-
ficiently annotated and parents that are likely to include
sparse information.
We endeavoured to benchmark our tool well, but our

analysis cannot address problems related to spurious term
enrichment. Although we were unable to determine false-
positive and false-negative rates, we do not believe this
should deter scientists from using our tool. Rather, we
encourage researchers to use our tool as a guide, integrat-
ing evidence from multiple sources to inform the most
likely hypotheses. As with any other tool based on sta-
tistical sampling, our analysis is most vulnerable to bias
in the data set. For example, expression reports are neg-
atively biased against germline expression because of the
difficulties associated with expressing transgenes in this
tissue [31]. As time passes, we are certain the accuracy and
power of this tool will improve thanks to the continuing
efforts of the worm research community; indeed, with-
out the community reports of tissue expression in the first
place, this tool would not be possible.

Conclusions
We have built a tissue enrichment tool that employs a tis-
sue ontology previously developed by WormBase. We use
a simple algorithm to identify the best ontology terms for
statistical testing and in this way minimize multiple test-
ing problems. Our tool is available within WormBase or
can be downloaded for offline use via ‘pip install’.

Methods
Fetching annotation terms
We used WormBase-curated gene expression data,
which includes annotated descriptions of spatial-temporal
expression patterns of genes, to build our dictionary. Gene
lists per anatomy term were extracted from a Solr doc-
ument store of gene expression data from the WS252
database provided by WormBase [8]. We used the Solr
document store because it provided a convenient access to
expression data that included inferred annotations. That

is, for each anatomy term, the expression gene list includes
genes that were directly annotated to the term, as well as
those that were annotated to the term’s descendant terms
(if there were any). Descendant terms were those con-
nected with the focus term by is_a/part_of relationship
chains defined in the anatomy term ontology hierarchy.

Filtering nodes
Defining a similaritymetric
To identify redundant sisters, we defined the following
similarity metric:

si = |gi|
| ⋃k

i=0 gi|
(2)

Where si is the similarity for a tissue i with k sisters; gi
refers to the set of tissues associated with tissue i and |g|
refers to the cardinality of set g. For a given set of sisters,
we called them redundant if they exceeded a given simi-
larity threshold. We envisioned two possible criteria and
built different dictionaries using each one. Under a thresh-
old criteron ‘any’ with parameter S between (0, 1), a given
set of sisters j was considered redundant if the condition

si,j > S (3)

was true for any sister i in set j. Under a threshold cri-
terion ‘avg’ with parameter S, a given set of sisters j was
considered redundant if the condition

E[ si]j > S (4)

was true for the set of sisters j (see Fig. 1a).
Since nodes can have multiple parents (and therefore

multiple sister sets), a complete set of similarity scores was
calculated before trimming the ontology, and nodes were
removed from the ontology if they exceeded the similarity
threshold at least once in any comparison.

Implementation
All scripts were written in Python 3.5. Our software relies
on the pandas, NumPy, Seaborn and SciPy modules to
perform all statistical testing and data handling [32–34].

Additional files

Additional file 1: TEA Tutorial. Tutorial for users interested in using our
software within a python script. (PDF 161 kb)

Additional file 2: Folder Structure for SI files 3 and 4. A file detailing the
folder structure of the zipped folders 3 and 4. (PDF 138 kb)

Additional file 3: Golden Gene Sets. A list of all the genes used for our
benchmarking process. (ZIP 74 kb)

Additional file 4: Results. A folder containing a complete version of the
results we generated for this paper. (ZIP 1597 kb)
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