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Abstract

Background: The explosive growth of microbiome research has yielded great quantities of data. These data
provide us with many answers, but raise just as many questions. 16S rDNA—the backbone of microbiome
analyses—allows us to assess a-diversity, 3-diversity, and microbe-microbe associations, which characterize the
overall properties of an ecosystem. However, we are still unable to use 16S rDNA data to directly assess the
microbe-microbe and microbe-environment interactions that determine the broader ecology of that system. Thus,
properties such as competition, cooperation, and nutrient conditions remain insufficiently analyzed. Here, we apply
predictive community metabolic models of microbes identified with 16S rDNA data to probe the ecology of
microbial communities.

Results: We developed a methodology for the large-scale assessment of microbial metabolic interactions (MMinte)
from 165 rDNA data. MMinte assesses the relative growth rates of interacting pairs of organisms within a community
metabolic network and whether that interaction has a positive or negative effect. Moreover, MMinte's simulations take
into account the nutritional environment, which plays a strong role in determining the metabolism of individual
microbes. We present two case studies that demonstrate the utility of this software. In the first, we show how diet
influences the nature of the microbe-microbe interactions. In the second, we use MMinte's modular feature set to
better understand how the growth of Desulfovibrio piger is affected by, and affects the growth of, other members in a
simplified gut community under metabolic conditions suggested to be determinant for their dynamics.

Conclusion: By applying metabolic models to commonly available sequence data, MMinte grants the user insight into
the metabolic relationships between microbes, highlighting important features that may relate to ecological stability,
susceptibility, and cross-feeding. These relationships are at the foundation of a wide range of ecological questions that
impact our ability to understand problems such as microbially-derived toxicity in colon cancer.
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Background

Advances in sequencing technology have culminated in
an explosion of 16S rDNA-based microbiome projects,
both small [1-3] and large [4—6]. The microbial ecosys-
tems characterized in these projects are the basis for
many critical life processes, from global nutrient cycles
[7, 8] to homeostasis in the human body [9-11]. The im-
portance of microbiome research is embodied in recent
calls for the formation of a worldwide microbiome con-
sortium [12]. The gut microbiome exemplifies a complex
system and contains trillions of interacting bacterial cells
[13]. It is not sufficient to treat bacterial taxa as inde-
pendent entities in a statistical framework of association
and diversity. Instead, ecological investigation requires
examining the biological interactions underlying the
complexities of our microbial communities [14].

Efforts to understand complex microbial communities
range from inference based on 16S rDNA sequences
[15] to the use of ‘omics technologies across multiple
time points [16]. A variety of software and tools for ana-
lyzing 16S rDNA data exist, and range from identifying
taxa [17, 18] and calculating diversity [19] to producing
microbe-microbe association networks [20] However,
none of these utilize 16S rDNA to understand the mech-
anistic basis of microbe-microbe interactions. Each
measure captures part of a complex picture, but none
captures the functional basis [21] for the microbial inter-
actions that make up a community—i.e., the building
blocks of the microbiome.

Bridging the gap between association and mechanism
in microbe-microbe interactions requires an approach
centered on mechanistic principles. One avenue to deci-
phering the role of a microbe in a community is through
the use of a predictive modeling approach [22, 23].
Metabolic models recapitulate the biological processes
of nutrient uptake and metabolite secretion [24], which
are at the basis of most microbial interactions. Compu-
tationally, the reconstruction of genome-scale metabolic
models [25, 26] has been automated through large-scale
computing efforts such as RAST [27] and ModelSEED
[28]. Tools such as COBRA Toolbox [29, 30] provide an
interface for manipulating and investigating metabolic
network models. Recently, community metabolic models
have been generated to explore the gut microbiome in
health and disease [31-34], but these efforts have been
driven largely by manual curation—a time consuming
and laborious practice [26]. Building on these past
research efforts, we explore an alternative path to gener-
ating predictive community metabolic models for large-
scale microbial communities.

The use of metabolic modeling to understand commu-
nity dynamics is a thriving area of study, as demon-
strated by the variety of tools being developed by
different groups [35-37]. NetCooperate, for instance,
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uses a network-based approach to calculate a Metabolic
Complementarity Index [38] to predict the metabolic
potential for interactions between pairs of organisms
[39]. In addition, Zelezniak et al. [40] wuses the
constraint-based approach to metabolic modeling to
infer the types of interactions occurring between species
observed to co-occur in nature based on the metabolites
predicted to be utilized or secreted by those species.

MMinte (pronounced /‘minti/) is an integrated pipeline
that allows users to explore the pairwise interactions
(positive or negative) that occur in a microbial network.
From an association network and 16S rDNA sequence
data, MMinte identifies corresponding genomes, recon-
structs metabolic models, estimates growth under specific
metabolic conditions, analyzes pairwise interactions, as-
signs interaction types [41] to network links, and gener-
ates the corresponding network of interactions. Our
application is composed of a set of seven individual func-
tionalities, known as widgets, that run sequentially, and
each widget may also be run as an independent module.
We provide a simple example of a mock microbial com-
munity. This example can be used for the user to better
understand the workflow of MMinte, and make sure
MMinte is working as expected by typing ‘Yes’ when
asked whether she/he would like to run the example. In
addition, we present two case studies from the gut micro-
biome that illustrate how MMinte can be used to predict
ecological features of a microbial community based on
metabolic maps of bacterial species. In doing so, MMinte
provides a valuable tool for generating well-defined mech-
anistic hypotheses for further exploration.

Implementation

MMinte consists of minimally overlapping functions that
come together to perform a single task. In designing it,
our goal was to facilitate code re-use by focusing on
modularity, allowing the user to streamline the parts
presented here for other purposes. Indeed, we do not
view MMinte as a single-purpose code, but as a set of
widgets that can be repurposed for multiple queries, ran-
ging from testing interactions between a set pair of spe-
cies to reconstructing a community metabolic network.
The user is required to provide a file with a measure of
association between OTUs in Widget 1 that will define
the pairwise interaction that will be analyzed. However,
if the user wants to simulate all pairwise analyses be-
tween a list of sequences independently of a pre-
assumed association, the user can start such an analysis
in Widget 2.

The web browser interface creates a point-and-click
experience that allows the user to perform complex ana-
lysis on large data sets without programming expertise.
For those seeking more control or to implement their
own pipelines using MMinte widgets, MMinte functions
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can also be run in a command-line environment. Be-
cause all of the code is provided to the user, it can be
changed to fit a particular need. Finally, MMinte is
under continuous development, it is publicly available
on Github (www.github.com/mendessoares/MMinte) for
use by the community, and the authors welcome contri-
butions to further its development.

A full run of MMinte generates a predicted network of
microbe-microbe interactions for a microbial commu-
nity using a sequence of seven widgets that progressively
analyze 16S rDNA sequences, then genomes, metabolic
models, and finally community metabolic networks. The
analysis can be run uninterrupted, and all intermediate
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files are stored. The seven widgets that constitute
MMinte are depicted in Fig. 1.

Widget 1: Reduces data for the downstream analysis

The purpose of this step is to remove operational taxo-
nomic units (OTUs) that will not be used in future ana-
lyses, based on an existing list of OTU associations. For
plotting of the network in Widget 7, MMinte first cre-
ates a network based on the information on the file list-
ing the associations between pairs of OTUs to be
analyzed. If pairs of OTUs are not listed in the file as
having some level of association, no edges between them
are represented. This network is then used as the basis

>1 original_id=BiomeQC21xN702xD503_8488;size=45118;
TGAGGAATATTGGTCAATGGGCGATGGCCTGAACCAGCCAAGTAGCGTGAAGH
>2 original_id=BiomeQC21xN702xD503_33351;size=36734;
TGAGGAATATTGGTCAATGGACGAGAGTCTGAACCAGCCAAGTAGCGTGAAGH

Widget 1 — Rep. OTUs + Association Table = Working Rep. OTUs

>1 original_id=BiomeQC21xN702xD503_8488;size=45118;
TGAGGAATATTGGTCAATGGGCGATGGCCTGAACCAGCCAAGTAGCGTGAAG!
>2 original_id=BiomeQC21xN702xD503_33351;size=36734;
TGAGGAATATTGGTCAATGGACGAGAGTCTGAACCAGCCAAGTAGCGTGAAG!
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Fig. 1 Schematic of the MMinte pipeline. Each green rectangle represents one widget. Widget 1 takes two files, a network of associations between
operational taxonomic units (OTUs) and a FASTA file containing the 16S rDNA sequences from a microbiome study, and reduces the latter data set to
include only the sequences for OTUs present in the network. Widget 2 identifies the sequences provided and assigns them a genome ID. The percent
similarity between the query OTU and the 16S sequence of the genome to which it was matched is stored in a file to be used by Widget 7. Widget 3
calls the ModelSEED service [28] with the list of genome IDs produced by Widget 2, which reconstructs species metabolic models that are exported to
the user's local machine. Widget 4 then uses these species models to create metabolic models for two-species communities. Widget 5 estimates the
growth rate of each species in the community under defined metabolic conditions, which can be changed by the user. Widget 6 assesses the types of
interaction (mutualism, parasitism, commensalism, competition, amensalism, or neutralism) occurring between the pairs of species in a community
based on the effect that each species has on the growth of another. Widget 7 takes the initial information about the topology of the network, the
information about the percent similarity between OTUs and the closest genomes, and the types of interactions and plots an interaction network in
which the color of the links represents the type of interaction (positive, green; negative, red; no interaction, grey)
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for the depiction of the kind of interactions that are pre-
dicted to occur between the OTUs (see description of
Widget 7).

Inputs

(1) 16S rDNA sequences of all representative OTUs (as
one might obtain from, for instance, QIIME [42] or
mothur [43]) and (2) an association table between pairs
of OTUs.

Output
16S rDNA sequences of OTUs.

Widget 2: Matches 16S rDNA signatures with
corresponding genomes

Using BLAST, the 16S rDNA sequences are matched
with 16S rDNA sequences from publicly available,
complete genomes in NCBI [44]. Importantly, we output
a table of percent similarities between OTU- and
genome-derived 16S rDNA sequences. If two matches
with the same score are found, the first listed is used for
further analysis. This information is used to limit poten-
tial sources of error from imperfect OTU-genome pair-
ings and to color code nodes in the final network
(Widget 7).

Input
16S rDNA sequences of OTUs.

Output
(1) Genome IDs and (2) percent similarity table.

Widget 3: Obtains metabolic models

This widget uses the web based ModelSEED [28] frame-
work to reconstruct and gap-fill metabolic models under
Argonne LB media conditions for a list of genomes.

Input
Genome IDs.

Output
Single-species metabolic models.

Widget 4: Merges models

Using COBRApy [45], this function creates metabolic
models of two-species communities from a list of pairs
of species [33, 46]. The list can be provided by the user
or created by MMinte. The merging of the models fol-
lows the approach used by [46] for the creation of multi-
species stoichiometric models. This approach introduces
a fictitious compartment that represents the extracellular
environment shared by both species, and adds reactions
allowing metabolites that are imported or secreted by
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each individual species to be transformed into commu-
nity metabolites.

Input

(1) Species-species associations (optional) and (2) single-
species metabolic models in the Systems Biology
Markup Language (SBML) format.

Output
Two-species metabolic models.

Widget 5: Runs flux balance analysis

This step estimates the growth rates for each species
under defined nutrient conditions, in isolation and in
the presence of another species, by running a flux bal-
ance analysis in COBRApy [45, 47] and follows the pro-
cedures of [33]; the algorithm simultaneously maximizes
for the biomass objective function of both microbes to
estimate the growth rate of each species when in the
presence of another organism. The algorithm then si-
lences all reactions of one species while maximizing the
biomass objective function of the remaining species to
estimate the growth rate of each species individually.
This Widget uses a diet file that can be found in the Di-
ets folder. The diet file contains the reactions that deter-
mine the availability of 380 metabolites. These are the
metabolites present in all the diet files in ModelSEED
[28]. In theory, any metabolite can be added to the file
and the user is encouraged to do so for metabolites of
interest. In the “Complete” diet, the 380 metabolites are
available to support the species growth with a flux of im-
port of each metabolite in to the extracellular compart-
ment of 100 mmol/gDW/hr. In “Variant 1” (Complete/
10), the flux is ten times slower, and in “Variant 2”
(Complete/100), the flux is 100 times slower. The user
has the option to specify the nutrient conditions to re-
flect the specific conditions of the environment being
studied.

Inputs
(1) Two-species metabolic models and (2) choice of
metabolic conditions to be used from media file (pro-

vided in the supportFiles folder, default choice
= “complete”).
Output

Growth-rate predictions.

Widget 6: Evaluates metabolic interactions

Using previously calculated growth rates, this function
quantifies the effect of pairwise interactions and assigns
an interaction type to each pair, following Heinken and
Thiele [33]. The interactions are determined by their ef-
fect on the growth rates of the species when compared
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to their growth in isolation. When the change in
growth rate is over 10%, we consider that an inter-
action is occurring. The direction is considered nega-
tive or positive to the focal species depending on
whether the species is predicted to grow slower or
faster in a community, respectively. Positive interac-
tions are the ones where at least one species benefits
from the interactions and no species suffers from it
(mutualism: + +; commensalism: + 0). Negative inter-
action are interactions where at least one species suf-
fers negative from the interactions (parasitism: + —;
amensalsm: - 0; competition: - -). Neutralism repre-
sents no interactions between the species (0 0).

Input
Growth-rate predictions.

Output
Quantitative effect of interaction and interaction type
predicted.
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Widget 7: Draws community metabolic network

This function generates a color-coded interaction net-
work using the D3.js [48] visualization platform,
based on the associations provided to Widget 1. Links
are colored according to the type of interaction pre-
dicted by MMinte (Widget 6). The shading of a node
reflects the percent similarity between OTUs and ge-
nomes (Widget 2).

Input

(1) Association table between pairs of OTUs, (2) percent
similarity table, and (3) quantitative effect of interaction
and interaction type predicted.

Output
Metabolic interaction network (see Fig. 2).

Results and discussion

Usage

Below we present two case studies that exemplify how
MMinte can be used to predict microbial interactions
under user defined metabolic conditions. The user can

Number of

Type of

Diet . . . . Full network Detail on network
interaction interactions
Complete Positive 252 R
Negative 323 N . i
Al 1 SEN\
No 179 > 2 v
Interaction e
Complete/10 Positive 58 -,
Negative 651 N .
IR .
No 45 -
interaction

Fig. 2 Network and number of the different types of interaction for operational taxonomic units in Case Study 1 under “Complete” and “Complete/10”
metabolic conditions. There are 380 metabolites in the “Complete” metabolic conditions and they exist as highly available. The metabolic condition
"Complete/10" contains the same metabolites as “Complete” but at 10 times lower availability. Please see file Diettxt for a complete list of the
metabolites, and their availabilities represented as uptake metabolic fluxes. It can be seen from the figure that a 10 fold reduction in metabolite
availability resulted in a significant decrease in the number of positive interactions predicted to occur between the members of this community, with
parallel increase in the number of negative interactions. MMinte first creates a network based on the information on the file listing the associations
between pairs of OTUs to be analyzed. If pairs of OTUs are not listed in the file as having some level of association, no edges between them are
represented. This network is then used as the basis for the depiction of the kind of interactions that are predicted to occur between the OTUs. In the
network, the shading of the nodes indicates how close the match between the sequence of the OTU is to the sequence of the genome assigned to it.
This can be seen in the details from the full networks plotted. The darker the node, the higher the similarity. The length and thickness of the links
reflect the association values on the initial file provided by the user. The shorter and thicker the line, the higher the association value. The color of the
links reflect the kind of interaction. The red, green and grey represent whether the interaction between the two species is predicted to be negative,
positive or no interaction is predicted, respectively
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choose to run the default example representing a mock
community created by the authors as a test for the per-
formance of the software. All files used in these exam-
ples, and a full tutorial on how to perform these
analyses, can be found in the Additional file 1: Table S1
and in the project folder at github.com/mendessoares/
MMinte.

Case study 1

With just two user-provided files, one containing corre-
lations between pairs of OTUs and the other representa-
tive sequences from a microbiome study, MMinte
creates an association network in which the color of the
links represents the types of predicted interactions be-
tween pairs of OTUs in a microbial community.

In Case Study 1, we use data from the Human Micro-
biome Project (HMP) to demonstrate MMinte’s potential
for exploratory research studies that focus on the dy-
namics of host-associated microbial communities. The
HMP is a multi-institutional collaboration that allowed
the description of the microbial diversity of several sites
of the human body in healthy individuals. The study was
reviewed by each participating institution’s Institutional
Review Boards. Full information can be found in [5]. To
demonstrate how users can take advantage of this tre-
mendous resource, the data used in this example are a
subset of what is available on the HMP page (http://
hmpdacc.org/HMQCP/, uncompressed files from
rep_set_vl3.fna.gz and otu_table_v13.txt.gz) [4, 5],
allowing users to rerun the analysis in a straightforward
and fast way, while taking advantage of publicly available
data. We subset the full data file, out_table v13.txt, from
the HMP database and calculated the Pearson correla-
tions for the OTUs across samples using the R statistical
package [49]. The reduced dataset contains 659 associa-
tions for 308 OTUs representing 176 species.

The problem The number of positive and negative in-
teractions in a community influences its level of stability
and consequently its resistance to invasion by pathogens
[50]. With MMinte, we can run our analysis in a variety
of metabolic conditions and quantify the number of
positive and negative interactions predicted for each.
This will generate hypotheses regarding the metabolic
conditions likely to favor stability of the system.

The results We ran the full MMinte pipeline by clicking
the “run all” tab on MMinte’s introductory page and
providing two files, corrs.txt (which contains the associa-
tions between OTUs) and segs.txt (which contains rep-
resentative sequences) using the default setting of
“complete” for the metabolite availability condition,
which represents a condition with 380 metabolites avail-
able in large amounts. MMinte predicted 252 positive
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and 323 negative interactions between pairs of OTUs in
addition to 179 pairs lacking any type of of interaction
(Fig. 2, left panel). We then reran Widget 5 with differ-
ent metabolite availability conditions. Figure 2 (right
panel) shows the same correlation network with a me-
tabolite availability that is 10 times lower, resulting in
different predicted interactions (58 positive and 651
negative interactions between OTUs and 45 pairs lacking
any interaction). This result is consistent with the pre-
diction that lower nutrient availability will favor more
competition between organisms.

The results of this analysis highlight some possible
characteristics of the community that could not be in-
ferred solely from association data. For instance, assum-
ing stability, and thus protection against pathogen
invasion, is greater in communities with more competi-
tive interactions [50], then the metabolic conditions that
lead to the predicted network shown in Fig. 2 (right
panel) are likely to promote more stability. In addition,
if we assume that stronger positive correlation values be-
tween pairs of species indicate positive interactions [51],
the network of interactions observed under metabolic
conditions equivalent to the ones listed under
“complete” are more reflective of the real system than
the alternative metabolic conditions tested. These are
just two examples of the window microbe-microbe inter-
actions—the building blocks of community network-
s—provide for understanding their ecology.

Case study 2

In the following example, we use data from Rey et al.
[52], who investigated the growth of the sulfate-reducing
bacterium Desulfovibrio piger in the guts of gnotobiotic
mice, in the presence of eight other bacterial species and
under different nutritional conditions. D. piger is the
most commonly found sulfate-reducing bacterium in
healthy adults, and is thought to shape the responses of
the gut microbiota to dietary changes [52]. However,
relatively little is still known about the niche this species
occupies and how it may influence the metabolism of
the other microbial species found in the gut [52].

The problem The interactions between D. piger and
other members of the gut microbial community have
been shown to influence the level of H,S in the gut.
However, D. piger has a variety of potential metabolic
pathways, only some of which will lead to the produc-
tion of H,S. The role of interactions in determining the
metabolic niche of D. piger in the gut is both important
and not fully understood. Using MMinte, we explored
the types of interactions that are predicted to occur be-
tween nine different species of microbes that co-occur
in the human gut and whose interactions are believed to
be metabolically based [52, 53]. We created a set of
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metabolic conditions where we varied the availability of
oxygen, chondroitin sulfate, and fructose. These repre-
sent some of the metabolites that were manipulated in
the experiments of Rey et al. [52].

Results We started by providing a list of species IDs to
Widget 3 (D. piger: model 411464.8, Bacteroides thetaio-
taomicron: model 226186.12, Bacteroides caccae: model
411901.7, Bacteroides ovatus: model 28116.7, Eubacter-
ium rectale: model 657318.4, Marvinbryantia formatexi-
gens: model 478749.5, Collinsella aerofaciens: model
411903.6, Escherichia coli: model 83333.113, and Clos-
tridium symbiosium: model 742740.3). After reconstruct-
ing the individual species metabolic models and creating
two-species communities (Widget 4), we predicted spe-
cies growth rates in the presence and absence of another
species in the community by running Widget 5 under 17
different metabolic conditions, listed in Additional file 1:
Table S1. To parallel our analysis in Case Study 1, we
also calculated the number of positive and negative in-
teractions under metabolic conditions containing 380
metabolites with different availabilities.

A look at the predicted growth rate of D. piger in the
presence and absence of other species in the community
shows that this species is likely to benefit from the pres-
ence of each of the other species in the community
under “Complete” metabolic conditions. D. piger is con-
sistently predicted to grow under aerobic conditions, but
under anaerobic conditions, growth is only predicted to
occur if either B. ovatus, B. thetatiotaomicron, B. caccae,
C. symbiosium, or E. coli are present. Thus, using the
models reconstructed using ModelSEED, MMinte pre-
dicts an obligate association between D. piger and these
species in anaerobic environments (Additional file 1:
Table S1). Interestingly, D. piger impaired the growth of
most species it was paired with under all conditions ex-
cept “Complete” (Additional file 1: Table S1). Exceptions
were E. coli and E. rectale; the magnitude of the effect of
D. piger on their growth depended on the flux co-
nditions for oxygen, chondroitin sulfate, and sulfate
(Additional file 1: Table S1). Even though our analysis
only focused on variations in three metabolites, the re-
sults provide some insight into the niches that these spe-
cies may occupy and how they are predicted to interact
under a variety of metabolic conditions.

Overall, the number of each type of interaction chan-
ged depending on metabolite availability, but not linearly
(Fig. 3). For instance, with a 10-fold decrease in metab-
olite availability, the number of predicted parasitic inter-
actions increased—but with a further 10-fold decrease in
metabolite availability, the number of predicted parasitic
interactions then decreased. This suggests that alterna-
tive metabolic pathways may be invoked depending on
the amount of particular metabolites and not necessarily
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on their presence or absence, affecting how different or-
ganisms interact with each other. These results are in
concordance with the observation that the nutrient con-
ditions that organisms experience are predicted to have
marked effects on the kinds of interactions they have
(Fig. 3).

General discussion MMinte bridges the gap between
association and mechanism in microbe-microbe interac-
tions by assessing the metabolic influence that two mi-
crobes have on each other. Our predictive modeling
approach involves reconstructing the pairwise metabolic
community models that make up the basic unit of inter-
action within a community. More specifically, MMinte
advances microbiome research by assigning functional
interactions instead of simply calculating associations or
correlations based on abundance [51]. This allows us to
capture the effect of metabolite exchange on the interac-
tions of an entire microbial community across different
nutrient conditions, thus providing an important link to
the overall drivers of environmental dynamics.

The metabolic interactions that MMinte identifies can
be used to understand the broader ecological features of
a biological system. Dynamic ecological features such as
stability and robustness are linked to competitive-
cooperative interactions and the nature of the positive-
negative feedback loops they engender [50]. For ex-
ample, it has been widely posited that negative interac-
tions self-regulate and stabilize fluctuations within a
community [54, 55]. In Case Study 1, MMinte showed
that out of 754 total associations detected among a sub-
set of human microbiome species, 33.4% were predicted
to be positive and 42.8% negative under “Complete”
metabolic conditions. The rest (23.7%) were predicted to
not represent significant metabolic interactions between
the species. When fasting conditions are modeled by
decreasing the availability of metabolites by an order
of magnitude, MMinte predicts that 7.7% of interac-
tions will be positive, 86.3% will be negative, and in
6% of the cases, no interactions will occur. This find-
ing intuitively matches the expectation that competi-
tion increases in a community with limited nutrient
availability [56]. MMinte enables users to grasp these
important ecological interactions and better under-
stand the role of competition and cooperation in
community stability [57, 58].

Case Study 2 highlights the modular nature of MMinte
and the ability of the user to explore the effect that
changes in the availability of a particular metabolite may
have on the interactions between organisms. The results
give us an important window into the role of the envir-
onment, specifically the presence or absence of oxygen,
chondroitin sulfate, and sulfate, on the interactions be-
tween D. piger and other organisms commonly found in
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35

25

Number of interactions
15

Complete

Complete/10
Metabolic Condition

Fig. 3 Number of each type of interaction predicted to occur between pairs of the nine bacterial species (Desulfovibrio piger, Bacteroides
thetaiotaomicron, Bacteroides caccae, Bacteroides ovatus, Eubacterium rectale, Marvinbryantia formatexigens, Collinsella aerofaciens, Escherichia coli,
and Clostridium symbiosium) inoculated into the guts of gnotobiotic mice under different metabolic conditions in [52] and used in Case Study 2.
The metabolic conditions simulated in MMinte were “Complete”, “Complete/10” and “Complete/100". There are 380 metabolites in the “Complete”
metabolic conditions and they exist as highly available. The metabolic condition “Complete/10" contains the same metabolites as “Complete” but at
10 times lower availability and “Complete/100" contains the same metabolites as “Complete” but at 100 times lower availability. Please see file Diet.txt
for a complete list of the metabolites, and their availabilities represented as uptake metabolic fluxes. The effect of being in a community on the
growth rate of each species (positive +, negative -, or no effect 0) determines the kind of interaction occurring. The interactions are defined as:
mutualism: + +; parasitism: + —; commensalism: + 0; competition: — — amensalism: — 0; neutralism or no interaction: 0 0)

Neutralism
Amensalism
= Competition
= Commensalism
= Parasitism
= Mutualism

Complete/100

the gut. In vivo experiments have shown that mice colo-
nized solely with D. piger have significantly increased
levels of H,S, which is a genotoxic metabolite that may be
involved in the development of colorectal cancer [59, 60],
compared to mice colonized with a consortium containing
the other eight species analyzed here. Understanding the
metabolite conditions favoring the dominance of the other
species over D. piger can help inform dietary interventions
aimed at reducing the abundance of this species in the
gastrointestinal tract.

Constraint-based metabolic models were first used to
explore the mechanistic bases of interactions between a
sulfate-reduced and a methanogen [61, 62]. In this work,
the authors created dual-species stoichiometric models
that comprised the central metabolism of the bacteria
Desulfovibrio vulgaris and Methanococcus maripaludis.
The model accurately predicted the ratio of the two spe-
cies during cell growth and the flux of several metabo-
lites, thus demonstrating the utility of this modeling

approach to understand the mechanistic bases of inter-
actions [61]. Furthermore, the potential associated with
using constraint-based analysis to better understand spe-
cies interactions and explore the properties of communi-
ties with more than two species has been shown in
previous studies. For instance, Zelezniak et al. [40] were
able to infer the types of interactions occurring between
species observed to co-occur in nature. The authors re-
constructed the GEMs for 261 species from 1297 com-
munities, and for each community calculated the
metabolic resource overlap and the metabolic interaction
potential by counting the minimal number of compo-
nents required for the growth of all members consider-
ing that they all interacted with each other or that no
interactions occurred. The use of a “species metabolic
interaction analysis” (SMETANA) score, which estimates
the strength of metabolic coupling in the community,
then allowed them to have an estimate of the degree of
dependency on exchanged metabolites as a proxy for
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interaction strength. They found that whereas resource
competition is apparent in all communities due to habi-
tat filtering, mutualistic interactions are prominent in
co-occurring subcommunities. MMinte allows users to
perform similar large-scale assessments of pairwise mi-
crobial metabolic interactions under a variety of meta-
bolic environments for their community of interest. The
results of the analysis can then be used to explore how
the interactions between the species affect community
features.

Like all algorithms, MMinte has potential limitations.
For example, the predictions created by MMinte are
only as accurate as the metabolic models used. These
metabolic models are linked from 16S in a multi-step
process that involves identification of genomes and
metabolic network reconstruction using ModelSEED
[28]. This automatic reconstruction approach may still
be unable to create models with the same quality as
those improved by manual curation, and some metabolic
capabilities unique to a particular species may not be
represented. However, automatic reconstruction allows
the creation of a large number of models that reflect a
large proportion of the metabolic capabilities of the or-
ganisms under study. Furthermore, improved algorithms
are being developed that will reconstruct models that
more accurately reflect the full metabolic potential of in-
dividual species. Missing data in the genome database or
in the biochemical database are also both potential
sources of error. Conversely, as databases rapidly grow,
so will the accuracy of MMinte’s predictions. Another
limitation that needs to be acknowledged is that, at this
stage, our approach fails to integrate the effect that other
species in a community may have on the type and
strength of interactions between two particular organ-
isms, as is known to occur [37]. Even so, MMinte helps
the user minimize the potential for over-interpretation
by visually displaying the percent similarity between 16S
rDNA provided by the user and the genomic data,

Conclusions

MMinte is a tool that predicts the type of interactions
occurring between organisms in a complex microbial
community under defined metabolite conditions based
on the metabolic models of each species. A full run takes
data of an association network and 16S rDNA se-
quences, identifies the genomes, reconstructs metabolic
models, and estimates the effect of being in a two-
species community for each species under user defined
metabolic conditions. The predicted interactions are
then plotted in an interaction network. Additionally, the
widgets that make up MMinte can be run independently
allowing the user to perform specific tasks and bypass
some of the steps of the analysis. We have incorporated
the design principles of clear modularity, usability, and
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open access into the development of MMinte. In our
view, part of the value of MMinte to the development of
predictive community metabolic modeling is the poten-
tial for integration into other analytical platforms. We
view the ability to build on existing development efforts
as critical to expanding systems biology tools to wider
and broader scales of ecology and data [14]. MMinte is
thus a fundamental tool for exploring a large number of
interactions, allowing researchers to move beyond the
use of statistical measures of association into biologically
relevant analysis of interactions between the species in a
microbiome.

Additional file

[ Additional file 1: Table S1. (XLSX 78 kb) ]
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