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Abstract

Background: Several recent studies have used the Minimum Dominating Set (MDS) model to identify driver nodes,
which provide the control of the underlying networks, in protein interaction networks. There may exist multiple MDS
configurations in a given network, thus it is difficult to determine which one represents the real set of driver nodes.
Because these previous studies only focus on static networks and ignore the contextual information on particular
tissues, their findings could be insufficient or even be misleading.

Results: In this study, we develop a Collective-Influence-corrected Minimum Dominating Set (CI-MDS) model which
takes into account the collective influence of proteins. By integrating molecular expression profiles and static protein
interactions, 16 tissue-specific networks are established as well. We then apply the CI-MDS model to each
tissue-specific network to detect MDS proteins. It generates almost the same MDSs when it is solved using different
optimization algorithms. In addition, we classify MDS proteins into Tissue-Specific MDS (TS-MDS) proteins and
HouseKeeping MDS (HK-MDS) proteins based on the number of tissues in which they are expressed and identified as
MDS proteins. Notably, we find that TS-MDS proteins and HK-MDS proteins have significantly different topological and
functional properties. HK-MDS proteins are more central in protein interaction networks, associated with more
functions, evolving more slowly and subjected to a greater number of post-translational modifications than TS-MDS
proteins. Unlike TS-MDS proteins, HK-MDS proteins significantly correspond to essential genes, ageing genes,
virus-targeted proteins, transcription factors and protein kinases. Moreover, we find that besides HK-MDS proteins,
many TS-MDS proteins are also linked to disease related genes, suggesting the tissue specificity of human diseases.
Furthermore, functional enrichment analysis reveals that HK-MDS proteins carry out universally necessary biological
processes and TS-MDS proteins usually involve in tissue-dependent functions.

Conclusions: Our study uncovers key features of TS-MDS proteins and HK-MDS proteins, and is a step forward
towards a better understanding of the controllability of human interactomes.
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Background

As chief actors within cells, proteins rarely act alone.
Diverse biological processes within cells are carried out by
molecular machines which are built from a set of phys-
ically interacting proteins [1, 2]. Proteins, together with
their interactions, can be modeled as a network, where
nodes represent proteins and links represent interactions
between proteins. Because of the interactions, perturba-
tions of a specific set of structural nodes can alter the state
of the entire network [3—10]. Therefore, identifying the
minimal set of driver proteins which can control the entire
network has become an important task in network biology
[6,11-13].

Recently, Liu et al. [3] developed a ground-breaking
method that identified a minimum set of driver nodes
by computing a maximum bipartite matching. However,
their method can only be applied to directed networks.
Nacher and Akutsu [14] developed an equivalent opti-
mization model from the perspective of Minimum Dom-
inating Set (MDS) to analyze undirected networks [15].
For convenience, we refer to their model as standard
MDS model. In a protein interaction network, an MDS
is defined as an optimized subset of proteins where each
Non-MDS (NMDS) protein is adjacent to an element
of MDS [6]. Several recent studies applied the stan-
dard MDS model to protein interaction networks and
found that MDS proteins were not only located in cen-
tral network positions but also enriched with important
biological functions and features [6, 11-13]. The topolog-
ical and functional significance of MDS proteins demon-
strate the importance of MDS model in providing new
views of structural controllability of protein interaction
networks.

There may exist multiple MDS configurations for a
given network [16]. The different optimization algorithms
used to solve the standard MDS model may produce quite
different configurations. Thus, it is difficult to determine
which one is the real set of nodes that can control the
entire network [12, 16]. Furthermore, previous studies
on network controllability just focus on static networks
without any information about where and when each
interaction occurs. Within a particular tissue, only a sub-
set of proteins can be expressed and only the interactions
between those expressed proteins can occur [17, 18]. Con-
sequently, results obtained from static networks without
information of tissue specificity could be insufficient and
even be misleading.

Several high-throughput experimental technologies
have been developed to map out which proteins are
expressed in particular tissues [19-26]. With the availabil-
ity of large-scale tissue expression data for human, tissue-
specific protein interaction networks can be constructed
by integrating molecular expression data with static pro-
tein interaction data [27-30]. Based on these constructed
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tissue-specific networks, several studies found that tissue-
specific proteins and housekeeping proteins had distinct
topological and functional properties [31-34]. Tissue-
specific networks have been used to identify drug-targets
[31], prioritize disease genes [35-37], and illustrate rela-
tionships among diseases [38]. To reveal the biological
significance of hub proteins in tissue-specific networks,
Kiran and Nagarajaram [39] classified hub proteins into
tissue-specific hubs and housekeeping hubs. Compari-
son between these two categories of hubs showed that
they exhibited distinct properties. These studies on the
construction and application of tissue-specific networks
motivate us to identify driver nodes in tissue-specific net-
works and to explore their topological and functional
significance.

In this study, we integrate diverse genome-scale data
to construct tissue-specific protein interaction networks.
In addition, we propose a Collective-Influence-corrected
MDS (CI-MDS) model by extending the standard MDS
model to capture heterogeneity in collective influence
[7, 8] of proteins. The proposed model can significantly
improve the overlap between the sets of MDS pro-
teins calculated by different optimization algorithms. We
apply the CI-MDS model to each tissue-specific net-
work to identify MDS proteins and then classify the
detected MDS proteins into Tissue-Specific MDS (TS-
MDS) proteins and HouseKeeping MDS (HK-MDS) pro-
teins. Experiment results show that TS-MDS proteins and
HK-MDS proteins have significantly different topological
and functional characteristics. Our study exposes distinct
properties of MDS proteins involved in tissue-specific
networks, suggesting that tissue specificity is impor-
tant in studying the controllability of protein interaction
networks.

Results

Construction of tissue-specific networks

We collect high-quality binary interactions for human
from the High-quality INTeractomes (HINT) database
[40]. The resulting network, which consists of 56,695
interactions between 12,539 proteins, is referred to as
global interaction network (Fig. 1). In parallel, we con-
sider tissue-specific expression profiles in the MyProtein-
Net database [29] which are collected from three major
resources: (1) the Genomics Institute of the Novartis
Research Foundation (GNF) dataset based on profiling
using DNA microarrays [20], (2) the Human Protein Atlas
(HPA) dataset based on protein immunohistochemistry
measurements [24], (3) the Illumina Body Map 2.0 dataset
based on RNA-seq measurements [41]. The three datasets
contain expression profiles across 79, 66 and 16 human
tissues, and here we only consider the 16 main tissues
which are shared by the three datasets [27, 29]. For each
expression data, determining whether a gene is expressed
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Fig. 1 The construction of tissue-specific networks and the classification of MDS proteins. Following the method of [42], molecular expression
profiles across 16 human tissues are obtained by consolidating three types of data (GNF [20], HPA [24] and RNA-seq [41]). In parallel, high-quality
binary interactions for H. sapiens are collected from the HINT database [40]. Tissue-specific networks are constructed by removing proteins that are
not expressed in the corresponding tissues from the global network. Then the CI-MDS model is applied to each tissue-specific network and proteins
are classified into MDS proteins and Non-MDS (NMDS) proteins. MDS proteins are further categorized into HouseKeeping MDS (HK-MDS) proteins
and Tissue-Specific MDS (TS-MDS) proteins based on the number of tissues in which they are expressed and identified as MDS proteins

in a tissue is done using stringent thresholds (see
“Methods” for details). A gene is considered to be
expressed in a tissue if it is found to be expressed in that
tissue according to at least one expression data.

We integrate tissue-specific expression profiles and
global interaction network to construct tissue-specific
networks following the method of node removal [36, 42]
(Fig. 1). Specially, a tissue-specific network is constructed
by removing proteins that are not expressed in the tis-
sue from the global network. That is, each tissue-specific
network only contain interactions between proteins that
are expressed in this tissue simultaneously. We imple-
ment this method using the MyProteinNet database [29]
which is developed for building tissue-specific networks
by filtering a global interactome in terms of tissue-
specific expression data. In our experiments, we use the

default expression thresholds provided in MyProteinNet.
To remove isolated interactions that significantly affect
the identified driver nodes, we only consider the largest
connected component of each tissue-specific network.
The constructed tissue-specific networks are available in
Additional file 1.

We find that 42,290 interactions involving 9834 pro-
teins can occur in at least one of the 16 main tissues, and
each tissue-specific network covers only a part of pro-
teins (66.51 — 89.06 %) and interactions (61.45 — 88.41 %)
(Table 1). We also observe a bi-modal distribution of
expressed proteins across tissues (Fig. 2): 65.9 % of pro-
teins are expressed in 14 — 16 tissues (housekeeping pro-
teins), and 10.7 % of proteins are expressed in 1 — 3 tissues
(tissue-specific proteins), which is in agreement with pre-
vious observations [42]. Several studies have performed
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Table 1 Statistics of tissue-specific networks and their corresponding MDS proteins
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No. (pct) of interactions

No. (pct) of MDS proteins

Skeletal muscle

7,032 (7151 %

26,813 (63.40 %)
33,982 (80.35 %)
34,223 (80.92 %)
32,839 (77.65 %)
32,641 (77.18 %)
31471 (7442 %)
33,888 3 %)
28,553 (67.52 %)

1,170(17.33 %
1,370 (16.76 %
1,394 (16.92 %

8(16.82 %
1,335 (16.95 %
1,303 (16.99 %
1,384 (16.96 %
1,250 (17.49 %

Tissue No. (pct) of proteins
Adipose 6,751 (68.65 %)
Adrenal 8,172 (83.10 %)
Brain 8,239 (83.78 %)
Breast 7,836 (79.68 %)
Colon 7,875 (80.08 %)
Heart 7,669 (77.98 %)
Kidney 8,162 (83.00 %)
Liver 7,148 (72.69 %)
Lung 9 (84.59 %)
Lymph node 8,036 (81.72 %)
Ovary 7,839 (79.71 %)
Prostate 8,162 (83.00 %)
( )
Testis 8,758 (89.06 %)
Thyroid 8,098 (82.35 %)
White blood cells 6,541 (66.51 %)

( )
( )
( )
( )
( )
( )
(80 )
( )
( )
( )
( )
( )
( )
( )
( )
( )

35,240 (83.33 %) 2(16.97 %
33,804 (79.93 %) 1,361 (16.94 %
32,450 (76.73 %) 11(16.72 %
34,349 (81.22 %) 1,370 (16.79 %
28,151 (66.57 %) 3(17.25%
37,388 (8841 %) 1,455 (16.61 %
34,024 (80.45 %) 1,358 (16.77 %
25,986 (61.45 %) 1,131 (17.29 %

a comprehensive analysis of housekeeping proteins and
tissue-specific proteins [31, 32, 34, 42]. Thus, we do not
repeat the analysis below.

Determination of MDS proteins in tissue-specific networks
In a protein interaction network, we define a Minimum
Dominating Set (MDS) as the smallest subset of pro-
teins from which each Non-MDS (NMDS) protein can
be reached by one interaction (Fig. 3) (see “Methods”).
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Fig. 2 The distribution of proteins, interactions and MDS proteins
across 16 tissues. For proteins and interactions, the x-axis denotes the
number of tissue in which they are expressed; for MDS proteins, the
x-axis denotes the number of tissue in which they are identified as
MDS proteins. The y-axis denotes the frequency. The distribution of
proteins, interactions and MDS proteins by the number of tissues in
which they are expressed (or selected as MDS proteins) is bi-modal,
with most of them being globally (14 - 16 tissues) or tissue-specific
(1 = 3 tissues)

In other words, each NMDS protein must be connected
to at least one MDS protein. As mentioned in [12, 16],
there may exist more than one MDS configuration in a
given network (Fig. 3). Therefore, different results may
be generated by using different optimization algorithms
to solve the standard MDS model [6, 14]. To overcome
this problem, we develop a Collective-Influence-corrected
Minimum Dominating Set (CI-MDS) model by taking
into account the collective influence of proteins (see
“Methods”). We apply the standard MDS model and the
CI-MDS model on each tissue-specific network to detect
tissue-dependent MDS proteins. We solve the two models
by using two different optimization methods: “lp_solve”
[43] and “intlinprog” [44]. There is a distance parameter £
in the proposed CI-MDS model. To investigate the effect
of ¢, we try several different values (e.g., £ = 0,1,2,3).
The standard MDS model produces quite different MDSs
by using different optimization algorithms, but the CI-
MDS model (with £ > 1) generates almost the same MDSs
(Additional file 2).

To investigate the effect of distant parameter ¢, we com-
pute the overlap between MDSs identified by the CI-MDS
model with different values of £. We find that the over-
lap between the resulting MDSs is large (Additional file 3),
which indicates that the CI-MDS model is not very sensi-
tive to the choice of £. In the following experiments, we set
¢ = 1 for the following reasons: (1) the collective influence
with £ > 1 has aricher topological content than the square
of reduced degree (¢ = 0) [7], which can be validated by
the higher overlap between MDSs calculated using differ-
ent optimization methods for £ > 1 (Additional file 2);
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Fig. 3 A graphical example that illustrates the CI-MDS model. A minimum dominating set (MDS) is defined as an optimized subset of proteins (red
nodes) from which each remaining (i.e., NMDS) protein (white nodes) can be reached by at least one interaction. For the given toy network, there
exists three different MDS configurations : (a) {3, 4}, (b) {3, 5} and (c) {3, 6}. Therefore, it is difficult to determine which one is the real set of controller
nodes according to the standard MDS model. To overcome this problem, we introduce a CI-MDS model which takes into account the collective
influence of proteins. Here we compute the collective influence of each protein with £ = 1
higher than those of proteins 5 and 6. According to the CI-MDS model, proteins {3, 4} are determined as an optimal MDS because its members have
the highest collective influence among all the three possible MDS configurations

(above the nodes). The collective influence of protein 4 is

(2) £ cannot be too large because the boundary of the
network can be reached for large ¢, diminishing collective
influence of nodes [7, 8]; (3) when £ = 1,2, 3, the overlap
between resulting MDSs is large (Additional file 3). In the
following text, unless otherwise stated, we mean that MDS
proteins are those identified by the CI-MDS model with
=1

Table 1 presents the number (and percentage) of MDS
proteins determined in each tissue-specific network. We
find that about 17 % of proteins can dominate the entire
network for each tissue. We also observe the distribu-
tion of MDS proteins across tissues is bi-modal (Fig. 2):
38.5 % of MDS proteins are formed in 14 — 16 tissues,
and 27.6 % of MDS proteins are formed in 1 — 3 tissues.

Determination of housekeeping and tissue-specific MDS
proteins

Proteins in tissue-specific networks can be categorized
into MDS proteins and NMDS proteins (Fig. 1). A pro-
tein is considered to be an MDS protein if it is iden-
tified as an MDS protein in at least one tissue-specific
network, and it is considered to be a NMDS protein
otherwise. Of the 9,834 total proteins, 2,265 are MDS
proteins. Proteins are further grouped into six distinct
classes in terms of the number of tissues in which they
are expressed and selected as MDS proteins: (1) House-
Keeping MDS (HK-MDS): proteins that are expressed in
at least 14 tissues and also identified as MDS proteins in
at least 14 tissues; (2) Tissue-Specific MDS (TS-MDS):
proteins that are expressed in at most 3 tissues and also
selected as MDS proteins in those tissues; (3) Remaining
MDS: MDS proteins which are neither HK-MDS proteins
nor TS-MDS proteins; (4) HouseKeeping Non-MDS (HK-
NMDS): NMDS proteins expressed in at least 14 tissues;
(5) Tissue-Specific Non-MDS (TS-NMDS): NMDS pro-
teins expressed in at most 3 tissues; (6) Remaining NMDS:
NMDS proteins which are neither HK-NMDS proteins

nor TS-NMDS proteins. Among the 2,265 MDS proteins,
872 are HK-MDS proteins and 125 are TS-MDS pro-
teins (Additional file 4). Among the 7,569 NMDS proteins,
4,771 are HK-NMDS proteins and 865 are TS-NMDS pro-
teins. Comparative analysis of TS-MDS, HK-MDS and
Remaining MDS proteins reveals that TS-MDS proteins
and HK-MDS proteins exhibit different properties, as dis-
cussed below, while Remaining MDS proteins perform as
a trade-off between TS-MDS proteins and HK-MDS pro-
teins. Thus, we mainly focus on comparative analysis of
HK-MDS proteins and TS-MDS proteins.

HK-MDS proteins are more central than TS-MDS proteins in
the interactomes

The centrality-lethality rule demonstrates that there exists
a strong correlation between node’s topological central-
ity and its functional importance in a protein interaction
network [11, 45]. We wonder whether there is signif-
icant difference between topological centralities of dif-
ferent types of proteins. Three node centralities (degree
[46], collective influence [7] and betweenness [47]) are
considered. Degree centrality counts the number of inter-
acting partners of the protein, and proteins with high
degree are likely to be essential [46]. Collective influ-
ence is the product of the protein’s reduced degree and
the sum of the reduced degrees of its interacting neigh-
bors (¢ = 1) [7]. Proteins with high collective influence
are likely to be driver nodes in the network. Between-
ness centrality counts the number of shortest paths from
all proteins to all others proteins that pass through the
protein [47]. A node with high betweenness has a large
influence over the “information transfer” [48] and can
act as important connectors in the network [49]. The
three centralities for each protein are calculated using the
global network in this study. From Fig. 4, we find that the
degree, collective influence and betweenness of MDS pro-
teins are significantly higher than those of NMDS proteins
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(Kolmogrov-Smirnov test, Additional file 5). Furthermore,
HK-MDS proteins are significantly more topologically
central than TS-MDS proteins (Additional file 5).

HK-MDS proteins perform more biological functions than
TS-MDS proteins

Multifunctional proteins often interact with distinct sets
of partners to carry out different biological functions
[50-53]. Therefore, they may play important roles in
cells. We wonder whether different types of proteins are
involved in different number of biological functions. For
each protein, the number of associated Gene Ontology
(GO) terms is calculated by exploring GO annotations
[54]. Here we only consider direct GO annotations. All
the three domains (Biological Process (BP), Cellular Com-
ponent (CC) and Molecular Function (MF)) are consid-
ered. From Fig. 5, we observe that MDS proteins are
significantly associated with more functions than NMDS
proteins (Kolmogrov-Smirnov test, Additional file 6).
Moveover, HK-MDS proteins carry out more biological
roles than TS-MDS proteins. Similar results are observed
when we consider both direct GO annotations and all
parent terms (Additional files 6 and 7).

[

n
a
T

n @
=] o

T T

L

=

TS-NMDS

Number of BP terms
> o
T T

o
T

TS-MDS HK-MDS  HK-NMDS

(&)
I_
2
EhEss
3

(=3

NN W
o o o
T T T

L

Number of CC terms
&
T

- o
e I !
10 [ ' T b
1 T
ot T, ! £
MDS NMDS  TS-MDS  TS-NMDS HK-MDS HK-NMDS
c T
60 ! 1
I
w gl I J
£ 50 - |
] | |
Bl 4
I
2 l -
S 30 | | T
£ af . T
€ I
=1 T
= = =B
15 ‘ = = ]
MDS NMDS  TS-MDS  TS-NMDS HK-MDS  HK-NMDS

Fig. 5 Distribution of the number of associated (a) biological process,
(b) cellular component and (c) molecular function terms of different
types of proteins. The distribution is represented by box plots (/ine =
median). In each figure, outliers have been masked for clarity. Only

direct GO annotations are taken into account

HK-MDS proteins evolve more slowly than TS-MDS proteins
Evolutionary rates of genes are affected by their essential-
ity and expression patterns [55], and are negatively cor-
related with their importance [56]. Previous studies have
shown that proteins with many interactions are under
evolutionary pressure compared with proteins with a few
interactions [57]. Therefore, we would like to investigate
the evolutionary rates of different types of proteins. The
evolutionary rates of proteins are estimated by employing
their dN/dS values obtained from the Ensembl database
[58]. MDS proteins, in general, are significantly evolving
at slower rates than NMDS proteins (Fig. 6a, Additional
file 8). Among MDS proteins, HK-MDS proteins evolve
significantly more slowly than TS-MDS proteins.

HK-MDS proteins have more post-translational
modification sites than TS-MDS proteins
Post-Translational Modification (PTM), which mostly
occurs on functional domains of proteins, can affect pro-
tein conformational and functional specificities [59, 60].
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Proteins with high PTMs tend to occupy central positions
in the interactions network [60]. Therefore, we wonder
whether the distribution of the number of PTM sites of
different types of proteins significantly differ. We retrieve
the number of PTM sites of proteins from the dbPTM
database [61]. Compared with NMDS proteins, MDS
proteins have a greater number of PTM sites (Fig. 6b,
Additional file 8). Moreover, we find that HK-MDS pro-
teins are subjected to a greater number of PTM sites than
TS-MDS proteins.

HK-MDS proteins are significantly enriched with essential
genes

Essential genes are genes that are indispensable for the
survival of the organisms [62], therefore they can be con-
sidered as one type of human biologically central genes.
To reveal the biological significance of different types of
MDS proteins, we wonder whether these proteins are sig-
nificantly enriched with essential genes. Out of the 2,501
essential genes obtained from the Database of Essential
Genes (DEG) [62], 1,911 are found in our considered inter-
action network. Fisher’s exact test is applied to evaluate
the statistical significance. We observe that essential genes
are significantly enriched in MDS proteins and HK-MDS
proteins (p-value < 0.05) (Table 2). Among the total of
2,265 MDS proteins, 638 (28.2 %) are essential genes;
while there are 283 (32.5 %) essential genes among 872
HK-MDS proteins. This indicates HK-MDS proteins are
more likely to be essential than MDS proteins. In addi-
tion, TS-MDS proteins are not significantly enriched with
essential genes.
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HK-MDS proteins are significantly enriched with ageing
genes

Ageing genes which relate to longevity are biologically
central in the process of ageing [63]. To show the
biological significance of different types of MDS pro-
teins, we investigate whether ageing genes are signifi-
cantly enriched in the sets of identified MDS proteins.
After retrieving 298 ageing genes from the Aging Gene
(GenAge) Database [63], we find that there are 267 age-
ing genes in our considered interaction network. We apply
Fisher’s exact test to evaluate the statistical significance
and find that ageing-related genes are indeed significantly
enriched in the set of MDS proteins and the set of HK-
MDS proteins (Table 2). On the other hand, ageing genes
do not significantly appear in the set of TS-MDS proteins.

HK-MDS proteins are significantly enriched with
virus-targeted proteins

Human viruses seize host proteins to control a host
cell and cause some diseases [64], suggesting that virus-
targeted proteins play functionally central roles in the
cells. Therefore, we expect that proteins targeted by
viruses may significantly appear in MDS proteins. Out of
2,420 human virus-targeted proteins obtained from the
VirusMentha database [65], 1,934 are found in the inter-
action network. Applying Fisher’s exact test, we find that
virus-targeted proteins are significantly enriched in the
set of MDS proteins and the set of HK-MDS proteins
(Table 2). We also observe that TS-MDS proteins do not
significantly enriched with virus-targeted proteins.

HK-MDS proteins are significantly enriched with
transcription factors

Transcription factors are important proteins that gov-
ern the expression of their underlying target genes [66].
Assuming that MDS proteins may significantly contribute
to control process, we expect that transcription factors
may be significantly enriched in the sets of MDS pro-
teins. In particular, we collect 222 transcription factors
from the TRANSFAC database [67], and find that 156 pro-
teins belong to our considered interaction network. From
Table 2, we observe that transcription factors are indeed
significantly enriched in MDS proteins and HK-MDS pro-
teins (Fisher’s exact test). On the other hand, TS-MDS
proteins are not significantly enriched with transcription
factors.

HK-MDS proteins are significantly enriched with protein
kinases

Protein kinases that control the level of phosphorylation
of their substrates play central roles in cellular signalling,
metabolism, cellular transport, and many other cellu-
lar pathways [68]. To indicate functional significance of
MDS proteins, we hypothesize that such sets may be
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Table 2 Biological centrality of different types of MDS proteins
MDS (2,265) TS-MDS (125) HK-MDS (872)

Biologically central proteins (No.) No (pct) of BC p-value No (pct) of BC p-value No (pct) of BC p-value
Essential genes (1,911) 638 (28.2 %) 54E-31 23 (184 %) 9.1E-01 283 (32.5 %) 1.0E-21
Ageing genes (267) 140 (6.2 %) 5.0E-26 4(3.2%) 5.8E-01 83 (9.5 %) 8.7E-26
Virus-targeted proteins (1,934) 646 (28.5 %) 1.2E-31 21 (16.8 %) 5.0E-01 327 (37.5%) 6.4E-38
Transcription factors (156) 64 (2.8 %) 4.3E-07 4 (3.2 %) 1.4E-01 38 (4.4 %) 5.4E-09
Protein kinases (392) 146 (6.4 %) 1.2E-10 324 %) 4.9E-01 62 (7.1 %) 6.8E-06
Disease-related genes (2,022) 594 (26.2 %) T.1E-13 45 (36.0 %) 7.5E-05 223 (25.6 %) 1.9E-04
Cancer-related genes (791) 234(10.3 %) 8.4E-06 17 (13.6 %) 2.9E-02 76 (8.7 %) 4.3E-01

significantly enriched with proteins that govern phospho-
rylation. Out of 516 human protein kinases from the Reg-
ulatory Network in Protein Phosphorylation (RegPhos)
database [69], 392 are found in our considered interaction
network. We find that protein kinases significantly appear
in MDS proteins and HK-MDS proteins (Table 2, Fisher’s
exact test). We also observe that TS-MDS proteins are less
likely to be kinases.

Both TS-MDS proteins and HK-MDS proteins are
significantly enriched with disease-related genes

Proteins that govern diseases have special biological roles
in the cells [70], suggesting that MDS proteins may be sig-
nificantly enriched with protein associated with diseases.
Out of 3,182 disease-related genes retrieved from the
Online Mendelian Inheritance in Man (OMIM) database
[71], 2,022 belong to the interaction network which we
consider. Applying Fisher’s exact test, we find that all the
three types of MDS proteins are significantly enriched
with disease-related genes (Table 2). Furthermore, TS-
MDS proteins are more likely to be associated with dis-
eases than HK-MDS proteins. This may be partly due
to tissue-specific manifestation of hereditary diseases
[18, 42]. The reason why HK-MDS proteins are also sig-
nificantly enriched with disease-related genes may be
attributed to the fact that most of disease-related genes
are widely expressed across tissues [42].

TS-MDS proteins are significantly enriched with
cancer-related genes

Cancer-related genes play a crucial roles in the develop-
ment and progression of cancer. Therefore, it is interested
to analyze whether cancer-related genes are significantly
enriched in the sets of MDS proteins. We collect 1,448
cancer-related genes from the Genome-Wide Association
Studies (GWAS) Catalo database [72], and there are 791
cancer-related genes in our considered interaction net-
work. According to Fisher’s exact test, we observe that the
set of MDS proteins and the set of TS-MDS proteins are
significantly enriched with cancer-related genes, while the
cancer-related genes do not significantly appear in the set

of HK-MDS proteins. This observation is in accord with
the common knowledge that tumors are originated from
specific organs [73].

Functional enrichment analysis of TS-MDS proteins and
HK-MDS proteins

To compare the biological significance of TS-MDS pro-
teins and HK-MDS proteins, their enrichment in GO
terms are computed using DAVID [74]. The three
domains, namely, biological process, cellular component,
and molecular function are considered. We assume that a
set of proteins is significantly associated with a GO term
if the p-value is lower than 0.05.

Our GO term enrichment analysis regarding biological
process reveals that TS-MDS proteins are mainly involved
in tissue-specific processes such as cell-cell signaling,
blood circulation, neuron projection development, and
feeding behavior, while that HK-MDS proteins are mainly
involved in core processes critical for normal cellular
functioning such as regulation, protein transport, protein
modification, protein localization, complex assembly, and
phosphorylation (Table 3, Additional file 9). When consid-
ering cellular component, TS-MDS proteins are enriched
with GO terms related to plasma membrane, synapse,
cell junction, and extracellular region, while HK-MDS
proteins are enriched with GO terms related to cytosol,
nuclear lumen, organelle lumen, nucleoplasm, transcrip-
tion factor complex, nucleolus, chromosome, vesicle,
and endomembrane system. For the molecular func-
tion domain, we find that TS-MDS proteins are primar-
ily enriched in sequence-specific DNA binding, enzyme
inhibitor activity, estrogen receptor activity, endopepti-
dase inhibitor activity, gated channel activity, and calcium
ion binding, whereas HK-MDS proteins are primarily
enriched in transcription factor binding, identical pro-
tein binding, enzyme binding, small conjugating protein
ligase activity, protein C-terminus binding, and protein
kinase activity. These findings indicate that TS-MDS pro-
teins are mainly responsible for tissue specific functions
and HK-MDS proteins are mainly involved in core cellular
machineries.
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Table 3 GO term enrichments for TS-MDS proteins and HK-MDS proteins
TS-MDS HK-MDS
Domains GO terms p-value GO terms p-value
BP Cell-cell signaling 3.7E-05 Regulation of apoptosis 24E-18
Circulatory system process 4.8E-04 Regulation of programmed cell death 5.0E-18
Blood circulation 4.8E-04 Regulation of cell death 6.5E-18
Neuron projection development 6.5E-04 Protein transport 2.6E-17
Cell motion 8.2E-04 Protein modification by small protein conjugation 29E-17
CcC Plasma membrane part 2.9E-04 Cytosol 1.4E-44
Synapse 1.1E-03 Nuclear lumen 1.8E-40
Cell junction 1.38-03 Organelle lumen 4.0E-38
Intrinsic to plasma membrane 2.6E-03 Membrane-enclosed lumen 3.0E-37
Integral to plasma membrane 5.0E-03 Intracellular organelle lumen 1.1E-36
MF Sequence-specific DNA binding 5.1E-04 Transcription factor binding 1.7E-21
Transcription activator activity 3.3E-03 Identical protein binding 2.8E-20
Enzyme inhibitor activity 3.8E-03 Enzyme binding 2.2E-15
Transcription coactivator activity 5.1E-03 Small conjugating protein ligase activity 43E-14
Transcription factor activity 1.2E-02 Protein C-terminus binding 1.1E-12
Discussion needs much more CPU time. Zhang et al. [12] proposed

The determination of driver nodes that allow the control
of underlying networks has attracted considerable atten-
tion in recent years. In particular, the MDS model has
been applied to protein interaction networks to identify
biologically central proteins. However, previous studies
mainly focus on static protein interaction networks which
lack tissue specificity, therefore their results may be inad-
equate. To overcome this shortcoming, we develop a cor-
rected MDS model which picks up the MDS of which
the members have the highest collective influence among
all possible MDS configurations. We also construct 16
tissue-specific networks by integrating molecular expres-
sion profiles and static protein interaction maps. Then
the developed new model is applied to the constructed
tissue-specific networks to determine tissue dependent
MDS proteins which are classified as TS-MDS proteins
and HK-MDS proteins. We find that these two types of
MDS proteins have different topological and functional
properties, which shows the importance of tissue speci-
ficity for the study of the control of molecular interaction
networks.

Several studies have, in fact, drawn attention to the
problem of identifying real sets of driver proteins from
multiple possible MDS configurations [12, 16]. Nacher
and Akutsu [16] classified the nodes depending on the
condition whether a node is part of all (critical), some
but not all (intermittent), or does not participate in any
(redundant) possible MDS. However, to obtain the clas-
sification of nodes, we need to solve the MDS model
|V] times, where |V| is the number of nodes. There-
fore, compared with computing an MDS, their method

a Centrality-Corrected Minimum Dominating Set (CC-
MDS) model which takes into account the degree and
betweenness centralities of proteins. However, there is a
weighting parameter in their model, and the authors sug-
gested using a grid search method to determine param-
eter value. In doing so, we need to solve the CI-MDS
model K times, where K is the number of considered
values of weighting parameter. Unlike the two previ-
ously mentioned methods, our model only needs to solve
the MDS model two times. Firstly, we need to solve
the standard MDS model (Eq. 1) to compute the dom-
ination number (Eq. 2). Then, we need to solve the
CI-MDS model (Eq. 4) to compute the MDS of which
the members have the highest collective influence. In
addition, the collective influence considered in the CI-
MDS model is more effective in identifying powerful
influencers than the degree and betweenness centrali-
ties considered in the CC-MDS model [7]. In particular,
collective influence can uncover low-degree nodes sur-
rounded by hierarchical coronas of high-degree nodes
which may be neglected by the degree and between-
ness centralities. Therefore, compared with the CC-MDS
model, the CI-MDS model can discover more low degree
proteins that play a major broker role in the network
and have significantly functional roles. Note that the
distant parameter £ in the CI-MDS model is different
from the weighting parameter in the CC-MDS model.
All possible values of distant parameter can produce
valid MDS; while the weighting parameter needs to be
tuned carefully to make sure the resulting set is a valid
MDS.
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Due to the development of high-throughput techniques
such as yeast two-hybrid and co-immunoprecipitation
[75, 76], a large number of physical interactions between
proteins have been generated. Nevertheless, these interac-
tions have rarely been characterized in the context of tis-
sues because high-throughput interaction measurements
are largely infeasible in solid tissues. While tissue-specific
interactions are limited, molecular expression profiles
across tissues have been rapidly accumulated [19-26].
Therefore, a data-driven approach can be used to identify
tissue-specific interactions by integrating static physical
interactions and tissue-specific expression profiles. There
are two types of methods that convert a static interac-
tion network into tissue-specific networks [36]: (1) node
removal method which removes proteins which are not
expressed in that tissue from the static network; (2) edge
reweight method which modifies the edge weights to
reflect the probability that the corresponding interactions
occur in that tissue. In this study, we focus on the node
removal method because the MDS model can only be
applied to unweighted networks. The tissue-specific net-
works constructed using node removal method would
depend on the stringent thresholds used to determine
whether a protein is expressed in a tissue. Different
thresholds may produce different networks. Here we set
the thresholds following the method of [29, 42] and do
not discuss how the thresholds influence the resulting
networks.

Previous studies on tissue-specific networks mainly
focus on comparing topological and functional fea-
tures of tissue-specific proteins and housekeeping pro-
teins. The tissue interactomes have also been applied
to shed light on disease mechanisms. However, to the
best of our knowledge, this study is a pioneer work
that determines driver proteins in tissue-specific net-
works. Analogous to the definitions of tissue-specific
proteins and housekeeping proteins [32], there are dif-
ferent criteria to define TS-MDS proteins and HK-
MDS proteins. Following the method of Barshir et al.
[42] which defines proteins expressed in 14 — 16 tis-
sues as housekeeping proteins and proteins expressed in
1 — 3 tissues as tissue-specific proteins, we define pro-
teins which are stated and identified as MDS proteins
in at least 14 tissues as HK-MDS proteins and pro-
teins which are expressed and selected as MDS proteins
in at most 3 tissues as TS-MDS proteins. Compara-
tive analysis reveals that the two types of MDS proteins
exhibit significantly different functional characteristics. It
is important to note that comparative experiment results
may change with respect to the classification criteria.
However, similar to the comparative analysis of tissue-
specific proteins and housekeeping proteins, it would be
expected that the comparative results would not change
significantly.
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Conclusions

In this study, we construct 16 tissue-specific protein
interaction networks by integrating tissue-specific expres-
sion profiles and static protein interactions. We also
develop an extension of the standard Minimum Domi-
nating Set (MDS) model and apply it to the constructed
tissue-specific networks to identify MDS proteins (The
detected MDS proteins are graphically visualized in
Additional file 10). The identified MDS proteins are clas-
sified into tissue-specific MDS proteins and housekeep-
ing MDS proteins. Through a comprehensive analysis,
we find that the two types of MDS proteins exhibit
significantly different topological and functional proper-
ties. These results suggest that tissue-specific networks
will facilitate the discovery of driver proteins in human
interactomes.

Methods

Datasets

Protein interaction network

Human binary protein interactions are extracted from
the High-quality INTeractomes (HINT) database (ver-
sion: 23 June 2015) [40]. Interactions in this database can
be categorized into binary interactions and co-complex
associations. Here we only consider binary interactions
that represent direct physical contacts between pro-
teins [77]. These interactions are collected from several
databases and low-quality interactions are removed. Pro-
teins are mapped to HUGO Gene Nomenclature Commit-
tee (HGNC) symbol identifiers [78], and proteins without
known gene symbols are removed. The complete network
consists of 56,695 interactions between 12,539 proteins.

Expression data

We use three expression profiles which are also used by
Barshir et al. [42] to determine which interactions can
occur in a particular tissue. A gene is considered to be
expressed in a tissue if its expression value exceeds a strin-
gent threshold. For detail, refer to [42]. In this study, we
use the data provided in the MyProteinNet database [29].

Gene Ontology

Gene Ontology (GO) annotations of human proteins are
obtained from the GO database (version: 20 August 2015)
[54]. All the three domains (Biological Process (BP), Cel-
lular Component (CC) and Molecular Function (MF)) are
considered. Annotations with evidence code IEA, ND and
NAS are excluded. We also do not consider annotations
with NOT qualifier.

Evolutionary rate

We characterize the evolution rates of human proteins
by calculating their dN/dS ratios. The synonymous and
non-synonymous substitution rates between human and
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mouse are obtained from Ensembl (www.ensembl.org/
biomart/martview/) (version: 19 August 2015) [58, 79].

Protein post-translation modifications

We retrieve the data for human Post-Translational Mod-
ifications (PTMs) from the dbPTM database (version: 23
August 2015) [61]. For each protein, the number of PTM
sites are calculated.

Essential genes

A total of 2,501 human essential genes are collected
from the Database of Essential Genes (DEG) (version: 19
August 2015) [62]. These data are retrieved from two
studies that identify human essential genes using compar-
ative genomics analysis [80, 81].

Aging genes

We collect 298 human ageing genes that are related to age-
ing from the Ageing Gene (GenAge) Database (version: 19
August 2015) [63].

Disease-associated genes

We retrieve 3,182 disease-related genes from the Online
Mendelian Inheritance in Man (OMIM) database (ver-
sion: 19 August 2015) [71]. In the “morbidmap” file, we
do not consider disorders with symbols “[ ]’} “?’; “(1)’; “(2)’,
“(4)"

Cancer-related genes

We collect cancer-related genes from the Genome-Wide
Association Studies (GWAS) Catalo database (version: 15
July 2016) [72]. Single-nucleotide polymorphism (SNP)-
cancer associations with p-value less than 10~ are con-
sidered, and the corresponding genes reported by authors
are regarded as cancer-related genes. A total of 1,448
cancer-related genes are obtained.

Virus-targeted proteins

We obtain virus-host (human) protein interactions from
the VirusMentha database (version: 19 August 2015) [65].
Proteins that interact with at least one virus protein are
considered as virus-targeted proteins. A total of 2,420
virus-targeted proteins are obtained.

Transcription factors

We collect 222 human transcription factors from the
TRANSFAC database [67] as provided by the MSigDB
database [82] (version: 11 November 2014).

Protein kinases
We obtain 516 protein kinases in human from the Reg-
ulatory Network in Protein Phosphorylation (RegPhos)
database (version: 2.0) [69].

For all datasets, we convert gene ID to HGNC gene sym-
bols using BioMart [79], and we only consider proteins
with known gene symbols in the experiments.
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Minimum dominating set model
A set S C V of nodes in a network G = (V,E) is con-
sidered to be a Dominating Set (DS) if every node v € V
is either an element of S or adjacent to an element of S
[6, 14]. In other words, a DS is a subset of nodes from
which all the remaining (e.g., non-DS) nodes can be
reached by one step. A Minimum Dominating Set (MDS)
is the smallest DS for a given network (Fig. 3). To deter-
mine an MDS, each node v is assigned with a binary
integer variable x,, where x, = 1 represents node v
is an element of MDS and x, = 0 otherwise. Mathe-
matically, a DS needs to satisfy the following constraints
%y + X uen) ¥u = 1 for every node v, where N(v) is the
set of neighbors of node v. Then the determination of an
MDS that contains the fewest members among all DSs can
be modeled as the following binary integer-programming
problem:

minimize ey % )

subject to x, + ZueN(V) x,>1 forallveV.

This binary integer-programming problem is NP-
complete, and the branch-and-bound algorithm is widely
used to solve it [6, 83]. Here, we implement the algorithm
using two softwares: library “lp_solve” of the MATLAB
program language [43] and function “intlinprog” which is
available in the Optimization ToolBox of MATLAB ver-
sion R2014b [44]. We refer to this model as standard MDS
model.

The domination number y(G) of a network G is the
number of nodes in an MDS. After obtaining an MDS
by solving problem (1), we can calculate the domination
number as follows:

y(G) =) x. (2)

veV

Collective influence

Collective Influence (CI) is a newly developed centrality to
quantify nodes’ influence in a network [7]. The collective
influence of a node v is defined as the product of the node’s
reduced degree (the number of neighbors minus one) and
the sum of the reduced degrees of all nodes at distant £
from it:

CLw) =@, —1) Y

uedBall(v,0)

(du - 1) ) (3)

where d,, is the degree of node v and 9Ball (v, £) represents
the set of nodes that are £ hops away from node v. Col-
lective influence quantifies how many other nodes can be
reached from a given node. Therefore, we can assume that
nodes with high collective influence play a crucial role in
the entire network [8].

The collective-influence algorithm has a free parame-
ter £ which needs to be determined. When ¢ = 0, the
collective influence of a node is equal to the square of
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its reduced degree, and it will perform in a similar way
to degree centrality. To improve the performance, the
authors [7] suggest choosing a non-zero but not too large
£. This is because that if £ is too large the boundaries of
the network will be reached and the collective influence of
all nodes approaches zero.

Collective-influence-corrected minimum dominating set
model

As mentioned in [12, 16], there may exist more than
one optimal solution to the binary optimization problem
(1) for a given network. Therefore, quite different MDS
configurations may be produced using different optimiza-
tion methods, and it is difficult to determine which one
represents the real set of driver nodes.

To overcome this problem, we take into account the col-
lective influence of nodes. Because nodes with higher col-
lective influence are more likely to be drivers than nodes
with low collective influence [7, 8], we would like to pick
up the MDS of which the members have highest collec-
tive influence among all the MDS configurations (Fig. 3).
We develop a Collective-Influence-corrected Minimum
Dominating Set (CI-MDS) model as follows:

maximize Y,y Cli(V) - %,
x,€{0,1}

subject to ®y + Y enydu = 1 forallveV,
Y ovev v =Y (G),
(4)

where CI;(v) is the collect influence of node v (Eq. 3) and
y(G) is the domination number of graph G (Eq. 2). The
constraint x, + Y, cn@,) ¥« > 1 ensures that the set is a
DS, and the constraint ) ., %, = y(G) ensures that the
size of the set is equal to the domination number. There-
fore, these two constraint ensure that the set is an MDS.
The objective function ), .\, CI¢(v) - %, is used to identify
nodes of highest collective influence.

Equation (4) is also a binary integer-programming prob-
lem, and can be solved using library “Ip_solve” and func-
tion “intlinprog”. Before implementing the CI-MDS model
(4), we need to determine an MDS using the standard
MDS model (Eq. 1) and calculate the domination number
¥ (G) using Eq. (2). Because of collective influence term in
the objective function, there is a free parameter £ in the
CI-MDS model. We discuss the effect and choice of £ in
the “Results” section.

Definitions of tissue-specific and housekeeping MDS
proteins

We construct 16 tissue-specific networks by combining
three expression data (GNF, HPA and RNA-seq) with the
global protein interaction network (Fig. 1). In particu-
lar, the global network is converted into a tissue-specific
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network by retaining only those interactions whose inter-
acting partners are found to be expressed in that tissue
according to at least one expression data. Then the CI-
MDS model is applied to each tissue-specific network to
determine tissue dependent MDS proteins. These identi-
fied MDS proteins are classified based on the number of
tissues in which they are expressed and identified as MDS
proteins (Fig. 1). Proteins that are expressed and iden-
tified as MDS proteins in at most 3 tissues are defined
as Tissue-Specific MDS (TS-MDS) proteins. Proteins that
are expressed and selected as MDS proteins in at least
14 tissues are defined as HouseKeeping MDS (HK-MDS)
proteins.

Biological functional enrichment analysis

We use DAVID for GO functional enrichment analysis of

the sets of TS-MDS proteins and HK-MDS proteins [74].
All statistical tests employed in this study are imple-

mented using MATLAB.

Additional files

Additional file 1: Constructed tissue-specific protein interaction networks
in 16 tissues. (XLSX 7067 kb)

Additional file 2: Overlap between MDSs computed using “lp_solve” and
“intlinprog”. (XLSX 11 kb)

Additional file 3: Overlap between MDSs determined by the CI-MDS
model with different distance parameter £. (XLSX 14 kb)

Additional file 4: Different types of MDS proteins identified from
tissue-specific networks. (XLSX 229 kb)

Additional file 5: Significance of the difference on node centralities
between different types of proteins. (XLSX 10 kb)

Additional file 6: Significance of the difference on the number of
associated GO terms between different types of proteins. (XLSX 10 kb)

Additional file 7: Distribution of the number of associated (A) biological
process, (B) cellular component and (C) molecular function terms of
different types of proteins. The distribution is represented by box plots (line
= median). In each figure, outliers have been masked for clarity. Both direct
GO annotations and all parent terms are taken into account. (EPS 2014 kb)

Additional file 8: Significance of the difference on evolutionary rates and
the number of PTM sites between different types of proteins. (XLSX 9 kb)
Additional file 9: GO term enrichments for TS-MDS proteins and HK-MDS
proteins. (XLSX 124 kb)

Additional file 10: MDS proteins (blue diamond nodes) and their

associations with their neighbors for all 16 tissues. This is a Cytoscape file
which can be opened using Cytoscape (version: 3.2.0). (CYS 18348 kb)
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