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Abstract

Background: Gene Expression Data (GED) analysis poses a great challenge to the scientific community that can be
framed into the Knowledge Discovery in Databases (KDD) and Data Mining (DM) paradigm. Biclustering has emerged
as the machine learning method of choice to solve this task, but its unsupervised nature makes result assessment
problematic. This is often addressed by means of Gene Set Enrichment Analysis (GSEA).

Results: We put forward a framework in which GED analysis is understood as an Exploratory Data Analysis (EDA)
process where we provide support for continuous human interaction with data aiming at improving the step of
hypothesis abduction and assessment. We focus on the adaptation to human cognition of data interpretation and
visualization of the output of EDA.
First, we give a proper theoretical background to bi-clustering using Lattice Theory and provide a set of analysis tools
revolving aroundK-Formal Concept Analysis (K-FCA), a lattice-theoretic unsupervised learning technique for
real-valued matrices.
By using different kinds of cost structures to quantify expression we obtain different sequences of hierarchical
bi-clusterings for gene under- and over-expression using thresholds. Consequently, we provide a method with
interleaved analysis steps and visualization devices so that the sequences of lattices for a particular experiment
summarize the researcher’s vision of the data. This also allows us to define measures of persistence and robustness of
biclusters to assess them.
Second, the resulting biclusters are used to index external omics databases—for instance, Gene Ontology (GO)—thus
offering a new way of accessing publicly available resources. This provides different flavors of gene set enrichment
against which to assess the biclusters, by obtaining their p-values according to the terminology of those resources.
We illustrate the exploration procedure on a real data example confirming results previously published.

Conclusions: The GED analysis problem gets transformed into the exploration of a sequence of lattices enabling the
visualization of the hierarchical structure of the biclusters with a certain degree of granularity. The ability of FCA-based
bi-clustering methods to index external databases such as GO allows us to obtain a quality measure of the biclusters,
to observe the evolution of a gene throughout the different biclusters it appears in, to look for relevant biclusters—by
observing their genes and what their persistence is—to infer, for instance, hypotheses on their function.
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Background
In the present framework to analyze Gene Expression
Data (GED)—be it on microarray expression profiles [1]
or the more recent and higher quality profiles obtained by
the so-called Next Generation Sequencing (NGS) [2–4]—
the data are eventually represented as a gene expres-
sion matrix X ∈ R

m×n with m rows representing genes
and n columns representing each an empirical sample or
condition.
Initially, clustering genes by gene expression similarity

was the technique of choice to try to induce what proteins
are being synthesized under what conditions in differ-
ent samples of cells. The inception of insights about gene
behavior are then facilitated by these groupings.
However, comparisons of different clustering algo-

rithms applied to gene expression [5–7] did not lead
to clear conclusions about their performance since the
results are highly depending on the data analyzed. The
unsupervised nature of GED analysis problem also pre-
vents a systematic evaluation of algorithms, since in most
situations there is no previously defined ground-truth.
Also, the idea of non-overlapping clusters or partitional

clusterings might not be adequate, since overlapping func-
tional relations between genes or similarities of conditions
are obscured in such clusterings. Further technical diffi-
culties are the need fora priori choosing a distancemetrics
and, for some popular methods like k-means [8] or self-
organizing maps (SOM) [9] an a priori knowledge of the
number of clusters.
Some of these problems can be solved by Exploratory

Data Analysis (EDA) [10], but basic clustering techniques
lack the interactivity and flexibility capabilities desirable
in a tool design for exploration. Hierarchical clustering
is an alternative for solving the exploratory difficulties
producing a dendrogram that not only identifies the clus-
ters but also the similarity between them, and allows a
certain overlap in the explored clusters, though not on
the finally chosen ones. Its lack of robustness is its main
drawback [11].
Another limitation of clustering is that the domain of

the analysis, i.e. whether to group genes or empirical sam-
ples, also needs to be decided a priori and either one or
the other may be applied. Bi-clustering [12], also known
as co-clustering or two-mode clustering, provides us with
the possibility of simultaneously performing both com-
bining genes and sample groupings. The intuition is that
the transcription of genes sampled under differing expres-
sion conditions can be modeled as the aggregation of the
effect of different biologically-plausible phenomena, hav-
ing their computational correlates in biclusters, pairs of
sets of indices into the genes and conditions in a gene
expression matrix. In the last few years, bi-clustering
has emerged as the unsupervised method of choice for
GED [1, 13, 14].

For instance, the authors of the Iterative Signature Algo-
rithm (ISA) [15, 16] posited the existence of transcrip-
tion modules—these being the coupled sets of conditions
and genes— whereby the expression level of a particular
gene g in a condition c is an aggregation of the dis-
cretized activities of all the transcription modules g and c
belong to:

Xgc =
(
PAT

)
gc

=
p∑

k=1
PgkAck (1)

where k ∈ {1, . . . , p} ranges over the possible transcrip-
tion modules or factors, P ∈ {0, 1}m×p is a matrix each of
whose columns P·k ∈ {0, 1}m is a promoter vector describ-
ing if transcription factor k activates each gene and A ∈
{0, 1}n×p is a matrix each of whose columns A·k ∈ {0, 1}n
is a vector describing whether the transcription factor k
is active in condition c. Both of these kinds of vectors are
sparse: ISA first discretizes the gene-expression matrix X
into I by means of gene- and condition-relative thresholds
ϕg and ϕc, respectively, and then carries out the biclus-
ter analysis. Note, also, the relationship of such models to
Non-negative Matrix Factorization (NMF).
A prevalent phenomenon in gene expression measure-

ment is that due to experimental variation, thermody-
namical fluctuations and other uncontrolled conditions,
measurements are quite noisy, and often include a num-
ber of outliers, the advantages of NGS over conventional
microarrays in this respect notwithstanding. For this rea-
son, the generative multiplicative model for K biclusters
used in e.g. FABIA [14] includes an error model. The
generic form of this model is:

X =
p∑

k=1
λkzTk + � (2)

where the λk are the prototype gene expression vectors
containing zeros for genes not participating in the biclus-
ter, zk are the vectors containing zeros for conditions not
participating in the bicluster, and � is an error matrix,
to be minimized. The bicluster itself adopts the form of
a subblock of the matrix whose rows and columns are
approximately proportional, as measured by their scalar
product.
A desirable feature in these models is to allow biclus-

ter overlapping to reflect the fact that a particular gene
can participate in different biological processes (modules,
functions) for different conditions.
It was already noticed in [17] that overlapping allows

the possibility of some biclusters being “included” within
others and used a hierarchical depiction of this order to
suggest the unfolding of finer and finer structure with the
evolution of a threshold parameters.
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Regardless of the bi-clustering method adopted, mea-
surement variability, the dual roles of genes and condi-
tions and the sheer number of relations and factors to
be considered hinder the human analyst’s intuition to be
brought to bear in the process of GED analysis. Therefore,
it might profit from Human-Computer Interaction (HCI)
for Knowledge Discovery in Databases and Data Mining
(KDD&DM) [18].
KDD&DM is a conceptual framework including a set

of desiderata, tools and practices for the analysis of
data, that encourages complementing traditional Confir-
matory Data Analysis (CDA) with human interaction to
perfect the step of hypothesis abduction. For this pur-
pose, the interpretation and visualization of data and the
results of the data mining process have to be adapted
to human cognition. Examples of such effort can be
found in [19] where visualization requirements based on
domain experts’ interviews are enumerated, or [16] where
exploratory analysis in the guise of a hierarchical dia-
gram of models is depicted and co-indexed with other
exploratory plots, like heatmaps.
Exploratory Data Analysis (EDA) is the proper statisti-

cal framework to carry out KDD&DM. Though gaining
momentum in several fields, this paradigm—to be con-
trasted to CDA—shows a number of challenges as applied
to the analysis of GED: having a trustworthy technique
to measure gene expression, supporting the induction
process, and evaluating the result of induction. Further
insights into this issue will be reviewed in Discussion.
Formal Concept Analysis (FCA, [20]) can be concep-

tualized as an unsupervised, non-partitional hierarchical
co-clustering algorithm for binary input tables based in
lattice theory. Application of these techniques for GED
can be found for instance in [21] that shows a method to
identify biomarkers in breast cancer, in [22] where it is
employed to find a list of genes for inclusion into a par-
tially known basic gene network, in [23] that describes
two different but mathematically equivalent FCA meth-
ods to cluster genes or in [24] for consensus clustering of
multi-experiment expression data.
FCA supports EDA both at a theoretical level, by con-

ceptualizing exploration as an embedding in landscapes
of knowledge [25, 26], and practically, by providing visual,
interactive diagram exploration tools that depict and
describe the relation between genes and conditions in a
condensed, yet highly intuitive form.
Unfortunately, FCA is ill-adapted to dealing with GED

numerical data. Rather, it has to use a preprocessing tech-
nique, scaling, whereby numerical data tables are trans-
formed into binary ones.
In this paper, we demonstrate an exploratory method

for GED based on K-Formal Concept Analysis (K-FCA,
[27]), a generalization of FCA where entries in data tables
may be non-binary numbers taking values in a scale K

designed to convey statistical information between genes
and conditions, in the form of a lattice of bi-clusters.
This data-driven method does not require previous

knowledge of the distribution of the data, nor is it neces-
sary to define any distancemetrics or give an estimation of
the number of clusters, and it provides a browsable repre-
sentation of the hierarchy of overlapping biclusters in the
form of a lattice at each chosen level of resolution.
The proposal is well-founded and completes the “land-

scapes of knowledge” metaphor providing a sound basis
for EDA over non-boolean data with FCA that enables
exploring the data at different resolutions [28]. As we
sweep over those resolutions, the output is a sequence
of gene expression lattices, where the researcher can see
how clusters evolve, enabling a more detailed and less
rigid understanding of the behavior some genes may share
under different conditions. To improve this understand-
ing, the gene lattices are used as an indexing mechanism
onto external ontologies, thus providing a flavor of Gene
Set Enrichment.
In this way, we introduce an expressive bi-clustering

algorithm—K-FCA—coupled with its natural visualiza-
tion method—a sequence of order diagrams or lattices—
adapted for GED analysis in a suitable EDA frame-
work, intended as an aid for decision and research by
experts.
We also provide for open access WebGeneKFCA [29],

the prototype tool employed for the analysis, at http://
webgenekfca.com. As explained in Interfacing with gene
ontologies, to support the exploratory process, the tool
offers a brief description for each gene selected from the
biclusters. This description has references to the NCBI
gene database1 to ease the access to the latest online
description of that gene. There are also references to each
of the Gene Ontologies2 the gene belongs to, with one
link to each ontology description including p-values (see
Exploration: gene set analysis). Finally WebGeneKFCA
shows whether the gene is known to belong to a pathway
and provides a link to the KEGG pathway database3.
To illustrate the analysis we advocate we have car-

ried out the analysis of some public GED and will argue
for the consistency of our results with those of the
paper originally describing them. The particular exam-
ple of this paper can be found at https://webgenekfca.
com/webgenekfca/datamatrices/7 where the reader can
interactively explore the output lattices at different levels.

Methods
A Formal Concept Analysis primer
FCA [20] is an unsupervised biclustering algorithm for
binary data based in lattice theory [30] that, apart from
providing the desired biclusters of gene and condition sets
establishes a partial order in them, usually represented as
a lattice diagram.

http://webgenekfca.com
http://webgenekfca.com
https://webgenekfca.com/webgenekfca/datamatrices/7
https://webgenekfca.com/webgenekfca/datamatrices/7
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Assume for the moment that GED are collected in a
boolean matrix I ∈ B

m×n of m genes (or objects in FCA
parlance) with n possible samples or conditions (called
attributes in FCA) where an object can have or not a given
attribute. The triple of the set of genes G, conditions C
and the relation is called a formal context (G,C, I) and it
carries two polar functions: the first one can obtain all the
conditions in which any set of genes x occur, while the sec-
ond can obtain all the genes in which a set of conditions
y occur.

x↑ = {
c ∈ C | ∀g ∈ x, gIc

}
y↓ = {

g ∈ G | ∀c ∈ y, gIc
}

(3)

Despite being mutually recursive, these two functions find
their fixpoints in just two steps

((
x↑)↓)↑

= x↑
((

y↓)↑)↓
= y↓

A formal concept (here, a bicluster) is the pair of an extent
(set of genes) a ⊆ G and an intent (set of conditions) b ∈ C
which define each other mutually.

(a, b) ∈ B(G,C, I) ⇔ a↑ = b & b↓ = a (4)

Note how formal concepts fulfill the definition of biclus-
ters or factors in [15].
The set of formal concepts is B(G,C, I). Formal con-

cepts are partially ordered by the inclusion (resp. reverse
inclusion) of extents (resp. intents). This means that for
every two concepts c1 = (a1, b1) and c2 = (a2, b2) there is
a concept order

c1 ≤ c2 ⇔ a1 ⊆ a2 ⇔ b1 ⊇ b2 (5)

and therefore the set of formal concepts with this order
is actually a complete latticeB(G,C, I). In this instace we
call it call the gene expression lattice.

Creating and reading gene expression lattices FCA
provides efficient generic procedures and tools [20] for:

1. Finding all the biclusters (a, b).
2. Finding the ordering between biclusters ≤.
3. Finding a compact set of biclusters that generate all

others by a well understood method.
4. If the sets of genes or conditions are sufficiently

small, drawing the lattice as an order diagram and
navigate it using a point-and-click interface.

So by casting GED as formal contexts, biclusters as for-
mal concepts and hierarchies as concept lattices we are
capable of carrying out extensive exploratory analysis of
GED using the FCA machinery.

Figure 1 is an example of a classical depiction of a lat-
tice diagram (right) corresponding to a synthetic boolean
matrix (left) where each of the nodes represent a con-
cept (or bicluster). For the purpose of reading extents and
intents of the lattice diagram, biclusters could be anno-
tated graphically with a complete labeling, by listing for
each bicluster the set of genes (white boxes) in the extent
and the set of samples (gray boxes) in the intent. But since
this implies repeatingmany times each gene and condition
throughout the lattice (the biclusters are overlapping) the
following, reduced labeling is preferred: we put the label of
each condition only in the highest (most abstract) concept
it appears, and the label of each gene only in the lowest
(most specific) concept it appears. So conditions usually
appear just above the corresponding concept and genes
appear just below and each only once for the whole lattice,
thus diminishing the visual clutter.
In this labeling scheme, to recover the set of genes of

a particular bicluster—the extent—we take the union of
all (white) gene labels found from the node downwards
in the lattice. Similarly, to build the set of conditions—
the intent—we take the union of all the (gray) condition
labels found from the node upwards in the lattice. In the
example, if we go from b1 downwards in the lattice col-
lecting gene labels (below the nodes) we obtain its extent
g6, and if we go upwards we find the condition labels in
its intent, c6 (above b1 itself ) and c5 (above b2). Thus,
b1 = ({g6}, {c5, c6}) and b2 = ({g4, g5, g6}, {c5}) are over-
lapping biclusters but b2 appears above b1 (i.e. b1 ≤ b2)
because {g6} ⊆ {g4, g5, g6} (i.e., the set of genes in b1 are
contained in the set of genes of b2) and {c5, c6} ⊇ {c5}
(i.e. the conditions for which the genes of b1 are expressed
include the conditions for which the genes of b2 are
expressed).
Finally, the biclusters (or sets of biclusters) that do not

have any overlappings appear in the lattice as separate
sublattices (although strictly speaking they all share the
top and bottom nodes). In Fig. 1 three separate sublat-
tices can be observed: SL1 (to the left, shadowed in gray)
including a single bicluster plus the top and bottom con-
cepts; SL2 (at the center) with three biclusters plus top and
bottom; and SL3 (to the rigth, also shadowed in gray), also
with a single bicluster plus top and bottom. Concepts in
different sublattices are incomparable except for the top
and bottom. We will say that such sublattices are adjoined
or parallel sublattices of the GED lattice.
There are many different available algorithms to visual-

ize a Concept Lattice, each with its advantages and disad-
vantages, some based on square grids, others in attraction
or repulsion forces, etc. A review can be found in [31].
In this paper, most of the lattices depicted are obtained
with WebGeneKFCA that provides our own adaptations
of the visualization schemes for GED (see section Lattice
visualization adaptation for GED).



González-Calabozo et al. BMC Bioinformatics  (2016) 17:374 Page 5 of 15

Fig. 1 Example of a synthetic gene expression boolean matrix (left) and lattice (right). Genes are represented in white boxes while samples or
conditions are shown inside gray boxes. A reduced labeling strategy is employed (see text). Adapted from [46]

From FCA to kFCA: exploring non-boolean gene
expression data
The main drawback of FCA is the requirement that the
gene expression quantification be boolean.
We overcome this restriction using a generalization

called K-FCA [27, 32, 33], where K is a type of cost
adequate to measure gene expression levels. Its choice
depends on the data preprocessing step and whether
we want to explore gene expression for over or under-
expression4.
K-FCA introduces an extra parameter in the exploration

procedure, the threshold of existence for biclusters to be
considered: for each threshold level ϕ we may obtain a
different ϕ-lattice and ϕ-concepts. For instance, for under-
expression analysis this parameter ϕ ∈ R, describes a
maximum level of expression allowed for pairs of genes
and conditions (g, c) to be considered as members of a
bicluster (the ϕ-concept).
Therefore to obtain all the possible biclusters it is nec-

essary to calculate the sequence of lattices defined as a
function of the different ϕ threshold values. Just as a
time-ordered sequence of images constitutes a movie that
could be explored frame by frame using rewind and for-
ward operations, our depiction of the ϕ-ordered sequence
of lattices casts the process of lattice exploration as the
observation of the lattices as they evolve with ϕ, as will
be illustrated in section The evolution of the number of
concepts with thresholding. Indeed, with this procedure
the explorer can progressively choose from a coarser view
of the data (with a very demanding ϕ) that only allows
the most salient biclusters to appear or zoom in into
finer views where this threshold is relaxed to offer a more
detailed lattice with a larger number of biclusters (see
section Lattice visualization adaptation for GED). Our
own graphical representation of the sequence of lattices
that ensures that biclusters with the same set of conditions
are always plotted in the same spatial coordinates inde-
pendently of ϕ and that has been specifically designed for
facilitating the exploration of GED, also allows us to define
a measure of the persistence or robustness of a bicluster,

as will be discussed in Lattice visualization adaptation for
GED.

Lattice visualization adaptation for GED
Providing visually smooth transitions between consecu-
tive lattice representations is the key for easing the expert
process of discovering meaningful biclusters. In [29] we
proposed a scheme having the distinctive feature that
the biclusters with the same set of conditions are always
plotted in the same position through different concept
lattices5. This means that as the user explores the val-
ues of φ (or ϕ) she will easily see how the set of genes
of each bicluster evolves, increasing or decreasing until
disappearing.
In our particular example, with n = 9 conditions, this

silhouette will exhibit 10 levels or rows including the top
and bottom (see Figs. 3, 4, 5 and 6). This can be observed
in our example where the intents (i.e. the set of condi-
tions) of the maximum of 9 concepts of the second row
(right below the top) have only a single element: each of
the conditions. The third row will be composed of up to(9
2
)
2-combinations of the previous row concepts’ intents

(i.e. all the possible pairs of conditions), the fourth, up to(9
3
)
3-combinations, etc.

Unlike the standard representation of lattice diagrams
of Fig. 1, where genes and conditions were represented
in separate white and gray boxes respectively, our adapta-
tion for GED takes into account the fact that |G| 
 |C|
and substitutes the pair of boxes per node by a single one
indicating the set of conditions and the number of genes
belonging exclusively to that particular node, usually too
large to be listed. Nonetheless, selecting the node by click-
ing on it provides access to the full list of genes. As in
Fig. 1, to complete the list of genes of the bicluster we have
to take the union of all the genes found in the labels from
that node downwards.
To illustrate this, in Fig. 3 we have included the labels

for every node6. For example, the second biggest node
(the biggest is the top) represents a bicluster with only one
condition (MaleIPS) and 14 own genes (i.e. those that are
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only under-expressed for that condition and no other)7.
Also, the different rows of the lattice show the hierarchy
previously explained where the second row presents the
biclusters of the lattice with a single condition each, the
third contains those nodes that include extensions with
pairs of conditions, etc.

Gene set enrichment with external ontologies
Interfacingwith gene ontologies
As very early noted by Godin and collaborators [34, 35]
a Formal Concept Analysis-based lattice can be turned
into a content-based indexing device onto other
knowledge resources. This affordance plays an impor-
tant role in supporting the exploration of a scientific
experiment and specifically for GED analysis [28]. A
more in-depth analysis of affordances of FCA for the
analysis and synthesis of Information Retrieval systems
is [36].
This means that the data-driven lattices obtained

with K-Formal Concept Analysis can be used to sup-
port interaction with those ontologies by indexing them
based in extents and intents. Besides, this also facili-
tates Gene Set Enrichment enabling the search of pos-
sible additional genes of GO terms present in a given
bicluster and the evaluation of their hierarchy in the
lattice.
We have enriched WebGeneKFCA with direct links to

Gene Ontology (GO) and KEGG web services provid-
ing an interactive guide for navigating already available
genetic information resources under the scope of the
particular experiment being explored.
In particular, WebGeneKFCA provides a brief descrip-

tion for each probeset selected from a bicluster. This
description has references to the NCBI gene database8 to
ease the access to the latest online description of that gene.
There are also references to each of the Gene Ontolo-
gies9 the gene belongs to, with one link to each ontology
description. Finally WebGeneKFCA shows if the gene is
known to belong to a pathway and provides a link to
KEGG pathway database. 10

Statistical methods for hypothesis testing
Most EDA processes need to undergo a subsequent
CDA step to empirically verify the discoveries. Prior
to this costly process however, it is also convenient to
calculate the probability for obtaining these gene clus-
ters by looking at biological information known a pri-
ori, that is, computing the so-called p-values of the
discovered biclusters with respect to well-known gene
ontologies.
This idea was put on practice by [37] where dif-

ferent genes where classified in one of the different
199 functional categories from the Martinsried Insti-
tute of Protein Sciences (MIPS) yeast database and

with this information the probability that each gene
belongs to a cluster just by chance is calculated. In
[38] the same work is done but with the a priori
information gathered from the Gene Ontology (GO)
database.
We follow the work of [39], developed in the context

of Gene Set Enrichment and Depletion applications, a
very important application favored by our setting, taking
advantage of the fact that WebGeneKFCA provides inter-
facing facilities to GO (see section Interfacing with gene
ontologies). The mathematical details have been included
in Additional file 1.

Results
Amethodology for the EDA of genomic expression data
using concept lattices
A general view of themethodology
We propose the following stages for the interactive
exploratory analysis of GED data with concept lattices.

1. Contextualization and data preparation
2. Exploration: concept lattice cardinality.
3. Exploration: gene and condition bi-clustering.

• Lattice-based under-expression analysis.
• Lattice-based over-expression analysis.

4. Exploration: Gene Set analysis.

(a) Lattice-based functional enrichment with
ontologies.

(b) Lattice-based gene set enrichment analysis.

At each of these steps, the system provides input guid-
ance and output visualization to assist and guide the user
in hypothesis abduction.
Next we visit each of these stages clarifying them and

providing a running example on real data.

Contextualization and data preparation
Contextualization refers to building a formal context or
the data table for the analysis. The decisions typically
affect whether to analyze in terms of genes or probesets
and a detailing of what the conditions chosen for the study
are, possibly with an explanation of what their purpose is.
Once the expression data have been gathered, they have

to be rendered adequate for ulterior K-FCA. To ren-
der data into a logarithmic cost amenable to Rmax,+ and
Rmin,+ modeling, we suggest it should be normalized an
log-compressed, in addition to any preprocessing to adjust
for background noise, etc., [40].

Running example: contextualization and data
preparation To illustrate our EDA process we have
taken as a reference the trisomy data and the results
presented in [41] where one chromosome 21 is silenced
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in pluripotent stem cells presenting trisomy 21. This extra
chromosome is silenced by inserting a XIST gene found
in the X chromosome which condenses one X chromo-
some in female mammals. In this experiment a modified
version of the XIST gene was inserted into chromosome
21 and it was activated or deactivated by the presence of
Doxycycline.
To build the context we downloaded from the National

Center for Biotechnology Information [42] 27 CEL files
from [41] (see Additional file 2). Only the probesets
for chromosome 21 were selected so |G| = 621 and
the original expression data matrix has a dimension of
621 × 27.
Since there were 9 × 3 samples of different tissues, to

average noise out the geometric mean of the expression
level of each probeset was taken for each different tis-
sue (3 samples of each), so that |C| = 9 and we obtain a
matrix A of 621 × 9 entries. The value of each probeset
was later normalized by its overall geometric mean over
the conditions and log-compressed

rij = log
aij

m
√∏m

k=0 aik
(6)

to obtain the context (G,C,X) .
More details about this experiment can be found

in Additional file 2 and it can be browsed on-line
at https://webgenekfca.com/webgenekfca/datamatrices/7
for the data and https://webgenekfca.com/webgenekfca/
kfcaresultses/9 for lattice exploration.

Exploration: choosing the range of thresholds for under- and
over-expression
K-FCA is a generic technique in K that, with the proper
choice of thresholds and underlying cost algebras K,
allows us to explore gene over- and under-expression (see
[27, § 2.2.2] for the details).

1. For each under-expression threshold ϕ, kFCA finds
those biclusters maximal for inclusion of gene and
condition sets that have a norm below the threshold

Bϕ
max(G,C,X) = {(a, b) | ‖(a, b)‖max ≤ ϕ} . (7)

2. For each over-expression threshold φ, kFCA
finds those biclusters minimal for inclusion of gene
and condition sets that have a norm above the
threshold φ,

B
φ
min(G,C,X) = {(a, b) | ‖(a, b)‖min ≥ φ} . (8)

Thus, for each matrix of GED, we need to explore in
two directions to find both the under- and over-expressed
genes in the conditions under scrutiny, but for the pur-
pose of limiting the impact of under- and over-expression
noise we want to avoid exploring values of the threshold
close to 0.

Therefore, to analyze under-expression we explore in
ϕ ∈ (−∞, 0] and to analyze over-expression in φ ∈[ 0,∞).
To guarantee the evolution of the exploration from

threshold to threshold, we concentrate on those ϕ and
φ that actually appear in the expression data, instead
of exploring the whole ranges given. In such case, the
product of the exploration are the sequences of lattices
obtained with either threshold:

{
Bϕ

max(G,C,X) | ϕ ∈ (−∞, 0]∩{Xij}, i ≤ m, j ≤ n
}

(9)

for under-expression and
{
B

φ
min(G,C,X) | φ ∈[ 0,∞) ∩ {Xij}, i ≤ m, j ≤ n

}

(10)

for over-expression. Several other strategies could also be
used to further decimate these ranges, like sampling the
bins in a histogram analysis of Xij values.

The evolution of the number of concepts with thresholding
An important feature of the sequence of lattices produced
in the exploration is the evolution of the number of con-
cepts or biclusters along the ϕ and φ thresholds, since it
provides an indication of the size and complexity of the
lattice. For instance, in over-expression, if the absolute
value of the threshold of existence is large, then large abso-
lute values of the gene concentrations will be required for
the concepts to exist, meaning that the lattice will only
show the most salient relationships or biclusters. On the
contrary, if the absolute values required for existence are
low, many nodes of the lattice appear showing spurious
relations due to the uncertainty during data collection or
measurement noise.
Sudden changes in the slope reveal values of threshold

where the lattice changes substantially and therefore will
be values of interest to look into in the exploration process
as we describe below.

Running example: visualizing the number of concepts
Figure 2 is a depiction of this evolution for the data
described in the section Contextualization and data
preparation.
Since ϕ ∈ (−∞, 0] and φ ∈[ 0,∞) the left part

of the curve corresponds to under-expression analysis
whilst the right one represents over-expression. The max-
imum number of concepts is attained at ϕ = φ =
0.0, |B0.0

max(G,C,X)| = |B0.0
min(G,C,X)| = 350 well under

the theoretical maximum at 2|C| = 29 = 512 : we take
this to imply that the combinatorics of the probesets in
this example is greatly reduced, supporting the hypothesis
of heavy coregulation. In this case the interesting ranges
to explore for under-expression and over-expression are,
respectively, ϕ ∈[−0.07,−0.02] and φ ∈[ 0.02, 0.08] .

https://webgenekfca.com/webgenekfca/datamatrices/7
https://webgenekfca.com/webgenekfca/kfcaresultses/9
https://webgenekfca.com/webgenekfca/kfcaresultses/9
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Fig. 2 Evolution of the number of concepts [color on-line] Number of concepts vs. ϕ (light blue, continuous) to the left for ϕ < 0.0, and number of
concepts vs. φ (drab green, dashed) to the right for φ > 0.0, for the context being explored

Exploring for under- and over-expression: visualization of
bicluster hierarchy
The hierarchical organization of the bicluster lattices
can be gleaned from the visualization scheme presented
in Lattice visualization adaptation for GED. We say that
the higher in the lattice a node appears, the more abstract
the bicluster is, since the set of genes that comprise its
extent appear in fewer conditions. Conversely, the lower
the bicluster, the more specific it is since the set of genes
included in its extent respond to a larger number of
conditions and hence are better profiled.
When using the online tool, the gene appearance order

for a given cluster as a function of ϕ is related to the
confidence of that gene to belong to the given cluster.
From there the reader can explore the lattices for different
values of ϕ and φ.

Running example: gene under-expression analysis If
we select a very restrictive ϕ, i.e. if ϕ � 0 (see for
example Fig. 3, ϕ = −0.150), only biclusters on the sec-
ond row (those which are highly under-expressed in only
one condition), a very few on the third (those highly
under-expressed on two conditions) and a single one on
the fourth (highly under-expressed on three conditions)
appear11. That is, very abstract biclusters are present and
the number of probesets that they contain is very low.
Most of the probesets are at the top bicluster, meaning that
we cannot assert that they are under-expressed with this
very strict confidence level.
As we relax the restrictions on ϕ more interesting

groupings appear. In particular, around ϕ ≈ −0.010
(Fig. 4) big biclusters appear at the third, fourth and even
fifth row allowing us to observe which sample combi-
nations share the same under-expressed genes, notably
situated to the right of the lattice where the condition

Clone3Dox is placed. Specially relevant is the bicluster
corresponding with Male iPS and all the Clones treated
with Doxycycline (fifth row) that appears at this level but
persists (i.e. is very robust) until ϕ = 0.0. This way the
interpretation that there are genes from theClones treated
with Doxycycline that have a similar level of expression as
those found in disomatic cells is consistent with that given
in the original paper [41] where only some genes from
the trisomic cells are expected to decrease their expres-
sion when the third chromosome is silenced with the
procedure there described.
Also worth mentioning is the biggest bicluster with

43 own probesets whose intent comprises Male iPS, and
Clones 1 and 3 treated with Doxycycline. For some reason
these two clones are responding slightly better than Clone
2 to the experiment, which is also consistent with the
graph facilitated in [41, Fig. 4a]. Attending to the bicluster
hierarchy, made evident in the lattice structure, we can say
that this is a less specific bicluster than the one mentioned
in the previous paragraph since these 43 probesets are the
ones under-expressed in the three mentioned conditions
but not for Clone 2.
Following the same line of reasoning, we can explore the

third row where the two most significant biclusters are
the ones for the conditionsMaleIPS and Clone3Dox to the
left and Clone1Dox and Clone3Dox to the right. These are
parent nodes for the one described in the previous para-
graph and ancestors of the one in the fith row mentioned
earlier. Thus we can say that these are even less specific.
This means that the probesets that we find there listed are
under-expressed only in their respective pair of conditions
but not in the rest.
But if we keep relaxing the restrictions approaching

the origin at ϕ ≈ −0.005 (Fig. 5) big biclusters appear
yet in lower positions of the lattice (fith and sixth rows
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Fig. 3 Gene under-expression lattice for ϕ = −0.150. This lattice can be browsed at https://webgenekfca.com/webgenekfca/kfcaresultses/9

Fig. 4 Gene under-expression lattice for ϕ = −0.010. This lattice can be browsed at https://webgenekfca.com/webgenekfca/kfcaresultses/9

https://webgenekfca.com/webgenekfca/kfcaresultses/9
https://webgenekfca.com/webgenekfca/kfcaresultses/9
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Fig. 5 Gene under-expression lattice for ϕ = −0.005. This lattice can be browsed at https://webgenekfca.com/webgenekfca/kfcaresultses/9

in the example) and therefore are more specific. How-
ever, let us remind that for these very specific biclusters
to appear, extremely low variations in the concentrations
are admitted as significant and the results are prone to
measurement errors. The explorer should be cautious
when analysing these biclusters. See, for example, that the
big bicluster in the sixth row shows the genes that are
under-expressed (minimally) to both Parental (with and
without Doxicicline treatment) and all the non-treated
clones.

Running example: gene over-expression analysis In
the analysis of over-expression the exploration order is
reversed. As can be noted from Fig. 2, a larger number
of concepts, presumably including too specific biclusters
with low reliability, appear at lower values of φ due to
the relaxed restrictions on the concentrations and more
robust biclusters can be observed with larger values of φ.
As an example for φ = 0.05 (Fig. 6) there is one big

cluster in the third row for the non-treated Clones 1 and
2 and two others in the second row again for the non-
treated Clone 1 and non-treated Clone 3 showing that, in
this case, over-expression rather affects the non-treated
samples.

Exploration: gene set analysis
Next, as part of the lattice exploration, the user can eval-
uate the lists of probesets of each node making use of
the interfacing facilities with external ontologies and also
obtain their p-values as indicated in Interfacing with gene
ontologies.

Running example: interfacing with GO A print-out of
a sample information that can be obtained by interfac-
ing with GO through the lattices is included in Additional
file 3. Please, note that the links in WebGeneKFCA are
active and lead to the ontologies’ on-line databases. This
particular sample has been obtained by digging into the
main cluster of the lattice of Fig. 4 and selecting the
probeset 11742211_x_at.

Running example: gene enrichment This principle can
be applied to the clusters identified in the previous
section. For example, Table 1 shows the ten most reli-
able – the ones with the lowest p-values – gene ontology
terms from two different clusters. In this case the genes
have been replaced by the microarray probesets. The
full list can be obtained on-line at https://webgenekfca.
com/webgenekfca/kfcaresultses/9 as a CSV file and also
as Additional file 4. A print-out is also included in
Additional file 5.

Discussion
The aim of this paper is not merely to introduce a new
biclustering algorithm for GED analysis but instead to
offer a set of analysis and visualization tools that revolve
around K-Formal Concept Analysis. These are cast into
the framework of Exploratory Data Analysis (EDA) to sup-
port full human interaction during the step of hypothesis
abduction. Tukey was the figure who advocated the use
of exploratory, discovery-driven methods in the Statistics
community. He coined the expression “Exploratory Data
Analysis” and supported a complementary curriculum for

https://webgenekfca.com/webgenekfca/kfcaresultses/9
https://webgenekfca.com/webgenekfca/kfcaresultses/9
https://webgenekfca.com/webgenekfca/kfcaresultses/9
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Fig. 6 Gene over-expression lattice for φ = 0.05. This lattice can be browsed at https://webgenekfca.com/webgenekfca/kfcaresultses/9

Statisticians balancing EDA against Statistical Hypothe-
sis Testing (that he called Confirmatory Data Analysis)
[10]. At present, EDA is standard practice of good statis-
tics, it is taught at basic statistics courses in academia [43],
and supported by widely-used data processing software
[44, 45].
The reader should be aware that since this methodology

cannot be used as a tool for Confirmatory or Predictive
Data Analysis by itself, an empirical verification of the
hypothesis gained in the exploration should be carried out
as a subsequent step. We believe, nevertheless, that the
framework we promote is specially suited to support sci-
entific knowledge discovery in GED [28] given the usual
lack of ground-truth in this type of data. This leads us to
the enduring dilemma of obtaining quality indicators in an
EDA framework.
Despite not being a Confirmatory Data Analysis tool,

our framework profits from some affordances of FCA-
related tools to define quality indicators. On the one hand,
we introduced the notion of persistence or robustness of
a bi-cluster based on the range of ϕ for which it exists—
thus providing an idea of a concept robustness—, and
the degree of confidence on the empirical measures that
define the bi-clusters [29].

On the other hand, the resulting conceptual lattice can
be used to index external databases, such as Gene Ontol-
ogy (GO), thus offering a new way of accessing other
available resources. According to the theoretical back-
ground of Gene Set Enrichment, this enables the calcula-
tion of the p-values of bi-clusters as confidence measures
based on the terms in those resources. In this sense, the
sequence of lattices for a particular experiment allows the
researcher to observe the evolution of a gene throughout
the different biclusters it appears in, thus vertebrating the
researcher vision of that given resource. This may be used
to confer relevance to bi-clusters, observing which genes
are included and what their persistence is, to infer, for
example, hypotheses on their function.
Another key aspect of an EDA framework is its data

visualization capabilities. We profit from two important
FCA affordances in this regard: namely, that the formal
quality of FCA makes it suitable for domain-independent
data analysis, and that visualization and manipulation of
data in table format and hierarchical format are mutually
warranted—stemming from the duality of contexts and
lattices. Furthermore, since we extend FCA to support
non boolean data tables by usingK-FCA, our visualization
of GED takes the form of a sequence of lattices.

https://webgenekfca.com/webgenekfca/kfcaresultses/9
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Table 1 Ten most significant GO terms including their p-values computed as described in Additional file 1 – Statistical methods for
hypothesis testing for the bicluster with intentMalePS, Parental NoDox, Clone 1 NoDox and Clone 3 NoDox from Fig. 4

GO term Description Ont. p-value probesets

GO:0005905 Coated pit CC 1.11E-16 11742211_x_at , 11742215_s_at

11746866_a_at , 11752199_a_at

11752200_x_at , 11738008_s_at

11741216_x_at , 11742210_a_at

11751350_a_at , 11750384_a_at

11752481_a_at

GO:0016358 Dendrite development BP 1.11E-16 11742211_x_at , 11742215_s_at

11746866_a_at , 11752199_a_at

11752200_x_at , 11738008_s_at

11741216_x_at , 11742210_a_at

11751350_a_at , 11750384_a_at

11752481_a_at

GO:0008344 Adult locomotory behavior BP 1.11E-16 11742211_x_at , 11746866_a_at

11752199_a_at , 11757287_x_at

11742210_a_at , 11751350_a_at

11750384_a_at , 11728320_a_at

11742215_s_at , 11752200_x_at

11738008_s_at , 11741216_x_at

11752481_a_at

GO:0035253 Ciliary rootlet CC 1.11E-16 11742211_x_at , 11742215_s_at

11746866_a_at , 11752199_a_at

11752200_x_at , 11738008_s_at

11741216_x_at , 11742210_a_at

11751350_a_at , 11750384_a_at

11752481_a_at

GO:0006378 mRNA polyadenylation BP 1.11E-16 11742211_x_at , 11742215_s_at

11746866_a_at , 11752199_a_at

11752200_x_at , 11738008_s_at

11741216_x_at , 11742210_a_at

11751350_a_at , 11750384_a_at

11752481_a_at

GO:0048669 Collateral sprouting in absence of injury BP 1.11E-16 11742211_x_at , 11742215_s_at

11746866_a_at , 11752199_a_at

11752200_x_at , 11738008_s_at

11741216_x_at , 11742210_a_at

11751350_a_at , 11750384_a_at

11752481_a_at

GO:0030900 Forebrain development BP 1.11E-16 11742211_x_at , 11742215_s_at

11746866_a_at , 11752199_a_at

11752200_x_at , 11738008_s_at

11741216_x_at , 11742210_a_at

11751350_a_at , 11750384_a_at

11752481_a_at
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Table 1 Ten most significant GO terms including their p-values computed as described in Additional file 1 – Statistical methods for
hypothesis testing for the bicluster with intentMalePS, Parental NoDox, Clone 1 NoDox and Clone 3 NoDox from Fig. 4 (Continued)

GO:0019717 Synaptosome CC 1.11E-16 11742211_x_at , 11746866_a_at

11752199_a_at , 11722552_x_at

11722551_s_at , 11742210_a_at

11751350_a_at , 11750384_a_at

11742215_s_at , 11752200_x_at

11738008_s_at , 11741216_x_at

11736141_a_at

11752481_a_at

GO:0004867 Serine-type endopeptidase inhibitor activity MF 1.11E-16 11742211_x_at , 11742215_s_at

11746866_a_at , 11752199_a_at

11752200_x_at , 11738008_s_at

11741216_x_at , 11742210_a_at

11751350_a_at , 11750384_a_at

11752481_a_at

GO:0043197 Dendritic spine CC 2.22E-16 11742211_x_at , 11742215_s_at

11746866_a_at , 11752199_a_at

11752200_x_at , 11738008_s_at

11741216_x_at , 11742210_a_at

11751350_a_at , 11750384_a_at

11752481_a_at

The full list can be obtained on-line at https://webgenekfca.com/webgenekfca/kfcaresultses/9 as a CSV file or as Additional file 4 – CSV le of GO terms’ information for gene
enrichment from WebGeneKFCA. A print-out is also included in Additional file 5 – Print-out of GO terms’ information for gene enrichment from WebGeneKFCA

An important consideration in the exploration of this
sequence of lattices is the choice of the particular values
of ϕ and φ of interest. Hints for the discovery of rele-
vant positions based on the evolution of the number of
biclusters (or concepts) are presented in The evolution of
the number of concepts with thresholding but it is worth
noting that values of ϕ and φ close to 0 can be error-
prone in noisy samples. As we have mentioned before,
higher absolute values of these thresholds will show genes
more intensely over- or under-expressed, perhaps at the
expense of missing some other relations. A current limita-
tion of this representation is the small number of samples
or conditions that can be simultaneously visualized, a
disadvantage that can be partially ameliorated by a pre-
processing stage providing manually arranged groupings
of the conditions. But this ought to be revisited in the
future.

Conclusions
Within the framework of EDA, we have introduced a set
of interactive analysis tools based on K-FCA that include
a new bi-clustering algorithm for GED analysis and visual-
ization capabilities to support exploration of GED backed
by two quality indicators: our own defined persistence
of a bi-cluster and the p-values computed within the
background of Gene Set Enrichment statistical confidence

measures facilitated by the indexing capabilities ofK-FCA
for external databases, such as Gene Ontology.
In contrast with the currently dominant paradigm of

Confirmatory or Predictive Data Analysis, with impor-
tant difficulties for its application to GED intrinsic to
the problem definition and mainly due to the lack of
ground-truth data, we belief that framing GED analysis
in an EDA setting (possibly complemented with ulte-
rior empirical verification of the findings) is a princi-
pled and relevant change of paradigm in GED analysis
that eases the understanding of the process of scientific
discovery. We have illustrated the capabilities of our K-
FCA-based EDA framework with the analysis of a real
data set confirming previously published findings on that
data.
The exploration facilities that it offers stem from two

main abilities ofK-FCA: first, as an FCA-derived method-
ology, it can be interpreted as a non-partitional bi-
clustering method that can be visualized as a sequence
of lattices, evidencing the hierarchical structure of the
biclusters thus obtained and already facilitating browsing
into its structure and second, by using either max-plus or
min-plus as the underlying semirings, we obtain interpre-
tations for gene under- and over-expression respectively
with a free parameter, the threshold of expression, we have
used to define an extra flavor of exploratory analysis:

https://webgenekfca.com/webgenekfca/kfcaresultses/9
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changing this value, the level of detail at which the context
is being explored varies, entailing differences in the lattice.
Indeed, Fig. 2 is an exploratory plot of the consequences of
varying such parameter in the particular case of analyzing
gene expression.
By the previous procedure, the GED analysis problem

gets transformed into the exploration of a sequence of
lattices enabling the visualization of the hierarchical struc-
ture of the biclusters with a certain degree of granularity.
A crucial advantage of our graphical representation of this
sequence is the guarantee that all the biclusters with the
same set of conditions are always plotted in the same spa-
tial coordinates, therefore facilitating their interpretation.
The graphical interface, WebGeneKFCA, as an inter-

active tool for analysis and decision, allows the user
to navigate along this parameter to observe rougher or
finer biclusters. The algorithm, available as a web service,
allows the researcher to analyze gene expression data with
no previous knowledge of the experiment conditions and
also interface with external gene ontologies.

Endnotes
1 http://www.ncbi.nlm.nih.gov/gene
2 http://amigo.geneontology.org/amigo/
3 http://www.genome.jp/kegg/pathway.html
4 Provided R has the structure of a completed idem-

potent semifield K, a technicality to induce the lattice
structure.

5 To ensure that every bicluster with the same set of con-
ditions appears at the same position throughout the whole
sequence of lattices, each lattice is drawn over the silhou-
ette of the Concept Lattice of a (virtual) contranominal
scale involving all possible attributes, N

M
= B(M,M, �=).

The rationale for this is explained in [29].
6 In the on-line tool WebGeneKFCA only the label for

the node selected with the mouse is shown to avoid
cluttering the diagram.

7 To complete the list of all the genes under-expressed
for that condition we need to add those from that biclus-
ter downwards in the lattice: from row 3, 5 genes from the
node below to the left that corresponds to the conditions
MaleIPS and ParentalNoDox, 1 gene from the node right
below with conditions MaleIPS and Clone1NoDox and 2
genes from the node below to the left of the lattice with
the conditions MaleIPS and Clone2Dox and from row
4, 2 more genes corresponding to the node with MalIPS,
ParentalNoDox and Clone2Dox.

8 http://www.ncbi.nlm.nih.gov/gene
9 http://amigo.geneontology.org/amigo/

10 http://www.genome.jp/kegg/pathway.html
11Recall from section Lattice visualization adaptation

for GED that the top node is in row 1.
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Additional file 1: Statistical methods for hypothesis testing. Description
of the statistical methods for hypothesis testing employed in the paper
and implemented in the on-line serviceWebGeneKFCA. (PDF 141 kb)

Additional file 2: Data procurement and normalization of the running
example. Details about the procurement and normalization of the data
employed in the running example employed throughout the paper.
(PDF 171 kb)

Additional file 3: Print-out of the genomic information interfaced by
WebGeneKFCA. A print-out of a sample information that can be obtained by
interfacing with GO through the lattices of the running example described
in Additional file 1. Please, note that the links inWebGeneKFCA are active
and lead to the ontologies’ on-line databases. This particular sample has
been obtained by digging into the main cluster of the lattice of Fig. 4 and
selecting the probeset 11742211_x_at. It can also be obtained at https://
webgenekfca.com/webgenekfca/kfcaresultses/9. (PDF 471 kb)

Additional file 4: CSV file of GO terms’ information for gene enrichment
fromWebGeneKFCA. A sample print-out fromWebGeneKFCA with the
information about the GO terms and their p-values computed as described
in Additional file 2 for the bicluster with intentMalePS, Parental NoDox,
Clone 1NoDox and Clone 3NoDox from Fig. 4. It can also be obtained on-line
at https://webgenekfca.com/webgenekfca/kfcaresultses/9. (CSV 24 kb)

Additional file 5: Print-out of GO terms’ information for gene enrichment
fromWebGeneKFCA A sample print-out fromWebGeneKFCA with the
information about the GO terms and their p-values computed as described
in Additional file 2 for the bicluster with intentMalePS, Parental NoDox,
Clone 1 NoDox and Clone 3 NoDox from Fig. 4. It can also be obtained
on-line at https://webgenekfca.com/webgenekfca/kfcaresultses/9 as a CSV
file. (PDF 358 kb)
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