Hundt et al. BMC Bioinformatics (2016) 17:394
DOI 10.1186/512859-016-1244-x

rapidGSEA: Speeding up gene set

BMC Bioinformatics

@ CrossMark

enrichment analysis on multi-core CPUs and

CUDA-enabled GPUs

Christian Hundt”

Abstract

, Andreas Hildebrandt and Bertil Schmidt

Background: Gene Set Enrichment Analysis (GSEA) is a popular method to reveal significant dependencies between
predefined sets of gene symbols and observed phenotypes by evaluating the deviation of gene expression values
between cases and controls. An established measure of inter-class deviation, the enrichment score, is usually
computed using a weighted running sum statistic over the whole set of gene symbols. Due to the lack of analytic
expressions the significance of enrichment scores is determined using a non-parametric estimation of their null
distribution by permuting the phenotype labels of the probed patients. Accordingly, GSEA is a time-consuming task
due to the large number of required permutations to accurately estimate the nominal p-value - a circumstance that is
even more pronounced during multiple hypothesis testing since its estimate is lower-bounded by the inverse

number of samples in permutation space.

Results: We present rapidGSEA - a software suite consisting of two tools for facilitating permutation-based GSEA:
cudaGSEA and ompGSEA. cudaGSEA is a CUDA-accelerated tool using fine-grained parallelization schemes on
massively parallel architectures while ompGSEA is a coarse-grained multi-threaded tool for multi-core CPUs. Nominal
p-value estimation of 4,725 gene sets on a data set consisting of 20,639 unique gene symbols and 200 patients (183
cases + 17 controls) each probing one million permutations takes 19 hours on a Xeon CPU and less than one hour on
a GeForce Titan X GPU while the established GSEA tool from the Broad Institute (broadGSEA) takes roughly 13 days.
Conclusion: cudaGSEA outperforms broadGSEA by around two orders-of-magnitude on a single Tesla K40c or
GeForce Titan X GPU. ompGSEA provides around one order-of-magnitude speedup to broadGSEA on a standard Xeon
CPU. The rapidGSEA suite is open-source software and can be downloaded at https://github.com/gravitino/
cudaGSEA as standalone application or package for the R framework.

Keywords: CUDA, Gene set enrichment analysis, Gene expression data, Resampling statistics

Background

High-throughput technologies such as microarray or
next-generation sequencing enable researchers to rou-
tinely measure the expressions of tens of thousands of
genes in many patients. Typically, long lists of interesting
candidate genes are generated by subsequent computa-
tional analyses. However, interpreting these gene lists is
challenging. Recognizing that genes act in concert to drive
various biological processes, Gene Set Enrichment Anal-
ysis (GSEA) was introduced [1] to summarize genomics

*Correspondence: hundt@uni-mainz.de
Department of Computer Science, Johannes Gutenberg University,
Staudingerweg 9, 55128 Mainz, Germany

( BioNed Central

data using a predefined gene set. Nowadays, GSEA is
a heavily used tool in bioinformatics [2] and has been
successfully applied to gain insights into the biological
function of diseases such as cancer and diabetes.
However, the GSEA procedure can be highly time-
consuming since significance of a calculated enrichment
score is typically tested using a resampling strategy
drawing large numbers of permutations. When a whole
database of gene sets is used, the amount of required
permutations is even higher in order to account for
multiple hypothesis testing. Furthermore, size and avail-
ability of input data sets continue to increase driven
by advances in high-throughput technologies [3]. Thus,
developing fast software solutions is of high importance

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1244-x-x&domain=pdf
http://orcid.org/0000-0002-7995-1858
https://github.com/gravitino/cudaGSEA
https://github.com/gravitino/cudaGSEA
mailto: hundt@uni-mainz.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Hundt et al. BMC Bioinformatics (2016) 17:394

to research. Previous work on accelerating gene set anal-
ysis has been limited to cloud computing [4]. We present
the rapidGSEA suite — an efficient parallelization of the
GSEA method for commonly available multi-core CPUs
and CUDA-enabled GPUs. By using a combination of
parallelization techniques we can achieve speedups of
one order-of-magnitude on Xeon CPUs and around two
orders-of-magnitude on a single GPU compared to broad-
GSEA.

Implementation

This section is divided into three parts. First, we give a
brief explanation of the sequential GSEA algorithm and
its four major processing steps for estimating the nominal
p-value of a determined enrichment score using a sin-
gle gene set. Second, we introduce novel parallelization
schemes for single and multiple gene set probing and their
explicit implementation optimized for multi-core CPUs
and CUDA -enabled GPUs. Finally, we describe the usage
of our standalone application and the bundled package for
the R framework.

The sequential algorithm

The traditional GSEA algorithm operates on a real-valued
gene expression matrix D(g;, pj) of shape |G| x |P| where
g € G denotes |G| unique gene identifiers and p; € P
enumerates |P| patient identifiers each labelled by a binary
phenotype L(p;) € {0, 1} encoding cases and controls. The
computation of the enrichment score statistics can be split
into four major stages:

Computation of local deviation measures

For each gene symbol g; (each row of D) a local devia-
tion score A(g;) is computed that encodes the inter-class
deviation between cases and controls. As an example, the
difference of means between both classes can be employed
to express their variability per gene:

1 0
Ag) = pi” —

P|-1
L(p)
@ _ J o
wi'=3 a0 D& pp)
j=0
P|-1
1—L(p))
0 _ J
W= T DEr)
]:

where mM) = Z]‘I;‘O_l L(pj) and m® = |P| — m® denote
the number of patients in each class from the set {0, 1}.
Variations that combine intra-class means and standard
deviations e.g.

»_ 0

fold change: A(g) = ﬁ(’:«n :

1
u® O (1)

COReRs

t-test: A(g) =

Page 2 of 11

are common choices for A in GSEA implementations.
Please note that extensions from binary to real-valued
phenotype profiles L(p;) € R using Euclidean distance,
Pearson’s product-moment or Spearman’s rank-order cor-
relation coefficient are straightforward [1] and thus will
not be discussed further in this paper.

Gene ranking
After computation of the local deviations, the indices
i € {0,...,|G] — 1} enumerating the gene symbols g; are

reordered such that

(A(g©®) - Algm) - Algac-1))

is a sorted (usually descending) sequence of local devia-
tion scores. The sequence of reordered gene symbols g, ;)
is called gene ranking according to A and will later be used
to determine the enrichment score statistic. Figure 1 illus-
trates the first and second stage of the GSEA algorithm.

Enrichment score computation

To elucidate significant differences in gene regulation
across different phenotypes, it is generally insufficient
to consider transcription differences A(g,(;)) individually.
Each gene can be significantly up- or down regulated by
chance alone, or through correlation with processes such
as the cell cycle. In principle, information can be gained
from clustering genes according to their regulation [5].
Interpretation of the resulting clusters, however, is often
unclear. Instead, prior information about gene classes that
are assumed to behave correlatedly (e.g. genes on a reg-
ulatory pathway), is used in the analysis. Today, this is
typically achieved through the framework of GSEA, which
considers the significance of the transcription profile of
a set of gene symbols S C G as a whole as opposed to
individual enrichment values.

Let S be a gene set supposedly correlated to the observed
phenotypes and o (i) the aforementioned reordering of
gene symbols. The enrichment score ES(S) is then deter-
mined as the maximal amplitude of a weighted running
sum statistic p (k) €[ —1,1]:

ES(S)=p <argmax | ,o(k)l) where
k

k 1 .

_ a 18I if g €S
p(/()—g{_é ifga(i) ¢S

with precomputed constants @ = des |A(g)|?7 and B =
|G| — |S|. The exponent g > 0 is usually chosen from
the set {0, 1, %, 2} and controls the leverage of the weights
|A(gs(i))|. Please note that the special case g = 0 is the
well-known Kolmogorov-Smirnov statistic [1]. Figure 2
illustrates an example for the linear-weighted (¢ = 1)
computation of ES(S) using a toy data set.



Hundt et al. BMC Bioinformatics (2016) 17:394

Page 3 of 11

Expression Data Matrix D

ofofol1]1]1

gol22 20| 9 |8 46|22

gilw|w0]| 3 |18]3]2

L2 1|5 |45]43] 47

|| 5|14 |aa| 2|36

5| 3 | 42|40 4 |37 |48

6|3 |47 |12 |7 | 1|23

87120 7 | 0 |46|33]45

88| 43| 8 | 15| 0 |40 43

g9 40 | 26 | 17 | 40 | 30 | 38

i

compute inter-class
deviation per gene

a3 |25 9|8 |20]1 '

Deviation Measure  Gene Ranking
& A 8a(i) A
go|ss3 123
81|63 87323
|23 g3 |27
183127 Key value sort |[89]*
g4 |-12.0 9|83
g5 13 —) (g1 63
8o 197 88|57
87 |323 5] 13
88|57 84 |12.0
o |83 86 |-197

Fig. 1 Computation Scheme of Stages 1 and 2. Schematic overview depicting the computation of gene transcription differences (stage 1) and the
gene ranking procedure (stage 2) of the sequential GSEA algorithm operation on a single set of phenotype labels (L(pj))/ =(0,0,0,1,1,1)

Significance estimation

Similar to Pearson’s correlation coefficient the enrichment
score takes values in the interval [ —1, 1] with |ES(S)| =
1 indicating perfect (anti-)correlation and [ES(S)| ~ 0
implying no dependency between S and the observed phe-
notypes in terms of the used deviation measure. When
ES(S) = =1 all gene symbols g € S are situated at the
top/bottom of the ranked gene list. In contrast, small val-
ues are observed if the gene symbols g € S are scattered
over the index domain and thus are unlikely to explain the
phenotype distribution.

Enrichment Statistics

L s

8o(i) [82(87(83(80[89|81|8s|8&5|84|86

A 423323121783 | 83|63 |57 |13 |-12.0-19.7

p -0.1{04]07]09|07]0.6|04|03]01]| 0.

predefined gene set S := {go, g3, g7} ¢ G

Fig. 2 Computation Scheme of Stage 3. Schematic overview of the
incremental computation of a linearly-weighted (p = 1) Kolmogorov-
Smirnov statistic operating on our toy data set. The enrichment score

is determined by the maximum amplitude of the running sum p (k)

ES values have no intrinsic significance, though. A value
of ES(S) = 0.857, as computed in our toy model in Fig. 2,
might correspond to a high or low significance, depend-
ing on the probability to arrive at such a value by chance
alone. Unfortunately, closed forms for the statistical dis-
tribution of enrichment score are inaccessible. Therefore,
p-values are typically estimated by sampling the null dis-
tribution using a permutation of phenotype labels. Please
note that while some GSEA implementations allow to per-
mute gene identifiers instead of phenotype labels [1, 6] to
estimate the null distribution, phenotype permutation is
often considered the more appropriate choice — genes are
expected to feature statistical dependencies within a single
patient, while probes gained from distinct patients are less
likely to do so. Hence, in the following we only consider
phenotype permutation.

Figure 3 depicts the enrichment score computation for
a permutation 7 = (1 4) of the original list of six patients
where the columns 1 and 4 of D have been swapped.' The
resulting score ES(S,w) = 0.457 < 0.857 = ES(S) sug-
gests that the original value is considerably higher than
a randomly sampled one. An exact computation of the
p-value — due to absent closed forms for their distribu-
tion — would require us to calculate ES(S, ) for all |P|!
permutations and finally determine the portion of values
which are more extreme than ES(S). GSEA implementa-
tions hence usually estimate p-values by sampling in the
space of permutations since |P|! is too large even for a
moderate number of patients.

When probing more than one gene set at once, p-value
estimates have to be adjusted for multiple hypothesis
testing. As an example, Bonferroni-corrected acceptance
levels and family-wise error rates (FWER) are frequently
used criteria to evaluate the significance of enrichment



Hundt et al. BMC Bioinformatics (2016) 17:394

Enrichment Statistics

permuted phenotypes
e e
ES
0 \//\= 1

8o(i) |87|182181183|86(89|85|84(80]|8&s

A 150|143 | 1L | 1. | 1. | 5.7 | 4.7 |-8.7|-9.0|-15.7

p 04030105 [03(02| 0. (-01|0.1]| 0.

predefined gene set S := {go, g3, 87} ¢ G

Fig. 3 Computation of Enrichment Scores on Permuted Phenotype
Labels. Schematic overview of the incremental computation of the
enrichment score statistics operating on our toy data set where the
phenotypes of patient 1 and 4 have been swapped: (L(pnm(/)))j =
(0,1,0,1,0,1)

scores. The need for a large number of samples in the
space of permutation is even more pronounced during
multiple hypothesis testing: let e € IT be the identity per-
mutation in the set of # tested permutations IT. Then the
p-value estimate for a fixed gene set S is strictly positive
[7] and lower-bounded by inverse sample size:

. 1 1
bs=— D (ESSm)| = [ESS,e)) = —

mell

The Molecular Signature Database v5.1 [8] contains
more than 13,000 gene sets divided into eight major col-
lections. Thus, when testing all gene sets at a Bonferroni-
adjusted significance level of « = % we have to probe
more than 1,300,000 permutations in order to allow the
result ps < . For the rest of the paper, we focus on
the efficient computation of the enrichment score table
ES(S, ) since p-value estimates and other statistics such
as FWER can be determined using its entries in a post-

processing phase.

The parallel algorithm

GSEA can be parallelized using coarse-grained computa-
tion schemes such as assigning threads to each permuta-
tion 7 or gene set S since all entries in ES(S, ) can be pro-
cessed independently. This approach will be used in our
multi-threaded shared memory implementation of GSEA
(ompGSEA): The set of n probed permutations is split into
m partitions each of approximate size ;- and afterwards m
threads independently operate on the individual chunks.
This can easily be achieved in shared memory archi-
tectures using OpenMP pragmas. Moreover, extensions

Page 4 of 11

to distributed memory architectures using the Message
Passing Interface (MPI) are conceivable.

However, CUDA-enabled accelerators can maintain up
to several thousands of threads (e.g. Titan X/Tesla K40c:
3,072/2,880 cores) but only exhibit a limited amount of
RAM (both GPUs provide 12 GB). As a result, fine-
grained computation schemes that parallelize the afore-
mentioned building blocks of the GSEA algorithm have
to be employed to exploit the full compute capabilities
of CUDA-enabled accelerators. In the following, we will
present the fine-grained parallelization scheme for each
processing stage separately.

Computation of local deviation measures

Many local deviation measures used in traditional GSEA
e.g. difference of means or fold change can be expressed
in terms of intra-class means and standard deviations.
Therefore, we have to separately accumulate sums of
expression values and their squares for each of the two
phenotypes. Although efficient implementations for par-
allel reduction on CUDA-enabled accelerators are known
[9] we instead parallelize the loop over the gene symbols
since each row of the data matrix D can be processed inde-
pendently without the need for expensive synchronization
as used in reduction algorithms. Moreover, the number
of gene symbols will most likely exceed the number of
probed patients and thus the loop over g; is better suited
for massively parallel computation. During the calculation
of statistical moments we encounter two challenges:

First, the numerically stable computation of standard
deviations is known to be a stubborn task. On the one
hand, when accumulating a large number of entries (here
patients) one has to account for numeric stability using
cancellation-compensation [10] or two-pass algorithms
for the standard deviations. On the other hand, when
dealing with only a few patients one-pass or cancellation-
compensated online algorithms for the standard deviation
might be a proper trade-off between accuracy and speed
[11]. rapidGSEA exploits the C++ template engine to
provide specialized and user-customizable accumulator
functors adaptable to the task’s requirements.

Second, the gene-wise computation of transcription dif-
ferences A(g;) accumulates statistical moments along the
rows of the matrix D. Using a CUDA thread block of up
to 1,024 CUDA threads for a fixed permutation of the
phenotype array L(pz(j) it is advisable to transpose D
to guarantee coalesced access to global memory. More
specifically, since a warp of 32 threads is executed simul-
taneously on the GPU their concurrent reads from the
same column of D would result in excessive cache misses.
In contrast, when transposing D the same access pat-
tern causes consecutive threads to simultaneously access
consecutive memory. This change from column-major-
order to row-major-order traversal decreases the runtime



Hundt et al. BMC Bioinformatics (2016) 17:394

of this processing step by one order-of-magnitude in our
experiments. Since D usually tends to be smaller than 100
MB, we can use a standard bank conflict-free out-of-place
algorithm for matrix transposition [12]. Figure 4 depicts
the described computation scheme for two CUDA thread
blocks each consisting of ten CUDA threads. Please note
that the genes are distributed using a block-cyclic dis-
tribution if the number of genes exceed the number of
threads.

The sampling of permutations can be accomplished
using the pseudo random number generators (PRNG)
from the cuRAND library [13] bundled with the CUDA
SDK. Unfortunately, cuRAND does not provide host-
sided calls for the random number generators defined in
the device APIL Thus, we implemented the keep it simple
stupid (KISS) PRNG [14] for the CPU and GPU in order
to provide consistent results across architectures. Both
cuRAND’s xorwow PRNG and our KISS implementation
pass all tests of the dieharder suite [15]. The permutation
of the phenotype labels L (pﬂ(j)) is generated by reorder-
ing the original label list L(p;) in shared memory using a
Fisher-Yates shulffle.

Gene ranking
Up to this point, the transcription differences A(g;)
have been computed for a batch of permutations that

Page 5 of 11

fit into the RAM of the GPU. Unfortunately, we can-
not directly apply a key-value sort to A(g;) within the
same kernel due to the 48 KB limitation of shared
memory. Thus, after termination of the previous ker-
nel, we call a device-wide key-value radix sort primitive
cub: :DeviceSegmentedRadixSort from the CUB
[9] library specifically optimized for the efficient sort-
ing of segmented arrays. This approach is up to one
order-of-magnitude faster than stacking single device-
wide cub: :DeviceRadixSort calls for each permu-
tation or aliasing global memory to the block-wide
cub: :BlockRadixSort primitives. The number of
concurrently sorted arrays has been set to 128 as a proper
trade-off between runtime and memory consumption. At
the end of this stage, we have stored the sorted deviation
scores A(g,(;) and corresponding indices o (i) for each
of the probed permutations in global memory. Figure 4
illustrates the described workflow.

Enrichment score computation

The computation scheme for the running sum statistic
is similar to the processing of local deviation scores. For
each permutation a CUDA thread block operates on a
pair (g» (i), A(gr(»)) of reordered gene symbols and gene
transcription differences. The test whether a gene identi-
fier is part of a gene set g5(; € S is usually implemented

CUDA Thread Block 0
thread/gene identifiers

[o[1[2] 4 s e 7 e]o]

22(18| 2|17 (31| 3 |31(20]|43(40

Sl
—~
o
=

20(10| 1 | 5 (25]42|47| 7| 8 |26

9|3 [5|14(9|40|12(0|15|17

8 (18(45|44( 8 | 4|7 [46] 0 (40

46| 3 |143(21]20|37( 1 |33(40]30

22(29|47(36| 1 |48]23|45|43]|38

deviation per gene 1 — yo
AO[8]6[e]22]n]1[2]52]6]s]

1. Deviation per Gene
phenotypes

ranked genes from Block 0

reordered gene identifiers
JO) | 2|7 |3]0o|9|1|8]|5]|4]|s
AO) 42322288661 |12/-20

2. Ranking

CUDA Thread Block 1
thread/gene identifiers

[l #]s e 7 2]

221182 (17|31 3 [31]20(43|40

)

2

20110 1 (5 }25|42(47| 7 | 8 |26

93 [5|14(9|40|12(0 |15]|17

8 (18(45]|44( 8 | 4|7 [46]| 0 40

46| 3 |43 (2120 (37| 1 |33(40]30

phenotypes

2229|4736 1 (4823454338

deviation per gene p; — yo
A® [S[uTu]u]-o]5]uls]es]

¢ cub: :DeviceSegmentedRadixSort ¢

ranked genes from Block 1

reordered gene identifiers
IO 7 2]1]3]6|o]5][4]0]8
A |15 |14 |u|ufu|e|5|-9/-9|-6

Fig. 4 Fine-Grained Parallelization of Stages 1 and 2. Parallelization of the deviation score computation operating on the transposed data matrix D’ .
Each thread block draws a permutation by shuffling the original phenotype label list in shared memory. The threads within a thread block
independently accumulate gene transcription differences for each gene symbol identifier (along columns) ensuring coalesced reads from global
memory. Finally, the local deviation scores are sorted using the segmented radix sort primitive of CUB




Hundt et al. BMC Bioinformatics (2016) 17:394

with hash sets on CPUs. Efficient hashing algorithms on
CUDA-enabled devices are stated in the literature [16]
which typically involve linked lists or binary search in
sorted arrays in order to resolve collisions. However, we
decided to encode the affiliation of a gene g with a binary
bit mask b(g,S). The computation of the bit mask can
be delegated to the CPU using STL hashes. Further, the
corresponding execution time can be overlapped with the
deviation score and gene ranking kernels. As a result, we
can determine a gene’s affiliation on the GPU in constant
time by reading the corresponding entry of the bit mask
from global memory.

Each thread k within a thread block processes one
gene set S. Shared memory can be utilized to avoid
slow accesses to global memory since all threads in a
warp have to access the same entry from the bit mask
b(gs (i), Sk) in random order. To achieve this, batches of
64 entries of reordered gene transcription differences
A(g5;)) and bit mask entries b(g,(;), Sx) are consecutively
loaded into shared memory (scratchpad) and afterwards
processed in order. Due to the large number of genes
we again use numerically stable Kahan summation [10]
in order to suppress cancellation in floating point arith-
metic. Finally, the maximum amplitude of the weighted
Kolmogorov-Smirnov statistic is written to the enrich-
ment score table ES(S, ) and consecutively transferred to
the host. Figure 5 illustrates the described procedure.

Significance estimation
When only computing p-value estimates the counting
of values in the tails of the null distribution could be

Page 6 of 11

accomplished on the GPU using the device-wide reduc-
tion primitive cub: : DeviceSegmentedReduce from
the CUB library. A similar approach for the computation
of the FWER is conceivable. However, we decided to copy
ES(S, ) to the host in order to provide the full informa-
tion for consecutive analysis and visualization of sampled
distributions.

Bindings for the R language

The core algorithm written in CUDA and C++11 is pro-
vided as standalone application and additionally as Rcpp-
based [17] package for R. The latter includes functions for
the reading of gene expression tables (*.gct), class assign-
ment labels (*.cls) and gene sets files (*.gmt) as well as
methods for the querying and selection of the used GPU
(see user manual).

Results and discussion

The performance of rapidGSEA is compared to the broad-
GSEA Java application in version 2.2.2 [18] on the follow-
ing platform:

e (CPU) Intel Xeon E5-2660 v3 @ 2.60 GHz GHz
(10+10 HT) with 128 GB DDR4 RAM

e (GPU) NVIDIA GeForce GTX Titan X with 12 GB
GDDR5 RAM, NVIDIA Tesla K40c with 12 GB
GDDR5 RAM disabled ECC, NVCC ver. 7.5

e (Software) Ubuntu 14.04 LTS, GCC ver. 4.8.4,
IcedTea ver. 2.6.3 OpenJDK 64-Bit Server VM

In our experiments, we use gene expression data (GEO:
Series GSE19429) consisting of 183 MDS patients and 17

CUDA Thread Block 0

4 thread/gene set ids
=
= Lo[i]a]s]«]s]e]7]
2 T(0)A(0)
)
o [ 2 [T To [ i foTo ool
S fntE 2
S 7 [ &0 fofa [ fefofo ] ©
9] 1519) = @
w = 3lzlSlifefolifofolulo] e
o S ofs|Eli]olololofofolo] 5
o - 3 .
E =[] olofolofolifolof s
El1]s of1fofofofofo]o]| S
= T =
o < |8]¢6 of1fofof[1]ofof0]| =
oy ,.,: E
S 5 5(1 0|1 (00| 1 |1[0]0]| &
3 [}
S Z el |[ofofofo|1]1]o]o] 2
e = 6 l20ly|ofo[1[t]ofo]1]o]|
L
en

enrichment scores
Es(O) l 0.9 [—0.7[ 0.8 [ 0.6 [—0.9[—0.6[—0.5[ L0 l

Fig. 5 Fine-Grained Parallelization of Stage 3. Parallelization of the enrichment score computation operating on the ranked genes and precomputed
bit masks. Again, each thread block processes a permutation. The threads within a thread block independently accumulate the running sum statistic
for each of the probed gene sets. Shared memory is utilized to suppress redundant reads from global memory

CUDA Thread Block 1

thread/gene set ids
Lol 2]s e s e ]7]
TOAD
° 7
2 sl fefolifefofejoli .
S 12 fu|&lofofifofofololi| D
2
[sT9] Nl o
< [tju|Sloft]ofofojofolof g
v « b3}
SEEIL SRR NN
as) @ 2
5 |6 |u ofolififofolifo] D
S S
Zlols ofojofofo|1|ofo] S
e =
g [s5]s oft1fofof|1|1]o]o]|®
:é 4 -9 ojofofo|1|1[0]0O %jn
=} 0[-9 1(0|j0(fO0O]|O|O]|O|O ‘E
= lslslylof1]ofo]1]o]0]0

enrichment scores
ES(I) l 0.5 0.7 [ 0.7 [—0.9[—0.7[ 0.5[ 1.0 l

-0.5




Hundt et al. BMC Bioinformatics (2016) 17:394

healthy controls where the array spots have been collapsed
to |G| = 20,639 unique gene symbols by max pooling
ambiguous mappings in the Affymetrix Human Genome
U133 Plus 2.0 Array (GEO: Platform GPL570) [19]. We
further choose the smallest (H: hallmark, 50 gene sets) and
the biggest (C: curated, 4726 gene sets ) collection from
the Molecular Signatures Database 5.0 [8]. The number
of tested permutations ranges from 1,024 up to 1,024% =
1,048,576 samples. Single-precision runs are executed on
the GeForce GTX Titan X and double-precision experi-
ments on the Tesla K40c GPU. If not stated otherwise,
rapidGSEA and broad GSEA have been configured to read
the input data from disk and afterwards to write the full
enrichment score table ES(S, ) to the file system in order
to ensure fair competition.

Accuracy and compliance of enrichment scores

We have evaluated the compliance of computed enrich-
ment scores between broadGSEA and rapidGSEA using
the identity permutation on the 50 gene sets of the Hall-
mark collection under the difference of classes measure.
The deviation of computed enrichment scores between
rapidGSEA and broadGSEA comply within six digits for
both single and double-precision arithmetic (see Fig. 6).
Using identical floating point data types the computed
scores of both rapidGSEA components, cudaGSEA and
ompGSEA, are indistinguishable.

Page 7 of 11

However, a comparison of computed histograms
ES(S, ) is more complex due to different implemen-
tations of random number generators. Thus, we have
approximated the probability density functions (PDFs) of
the enrichment score distribution using # = 1,024? per-
mutations and /7 = 1,024 bins uniformly sampling
the interval [ —1, 1]. Afterwards, the approximate cumula-
tive distribution functions (CDFs) are computed by prefix
summation. The maximum absolute difference of approx-
imated CDFs, also know as Kolmogorov distance,

dist = max |CDF]£faPidGSEA) _cD F/EbroadGSEA)l

is then determined for each of the 50 gene sets.
Note, the Kolmogorov distance is a reasonable choice
since it determines the measurement error of the area
under the PDF of the enrichment score distribution
and thus relates to the error of the estimated p-value.
Figure 7 visualizes the described procedure for one gene
set. The minimum/median/maximum absolute deviation
between the approximated CDFs produced by rapid GSEA
and broadGSEA over the 50 gene sets is given by
0.0005/0.0011/0.0018. When comparing two histograms
both computed by broadGSEA with different seeds the
same metrics yield 0.0006/0.0011/0.0018. Moreover, in 26
out of 50 cases rapidGSEA produces histograms with a
smaller Kolmogorov distances to broadGSEA in contrast

1 FP32 rapidGSEA to broadGSEA

count

-2 -1 0 1 2
difference in enrichment scores 1€-7

Fig. 6 Compliance of computed enrichment scores. Histograms of the difference of computed enrichment scores between rapidGSEA and
broadGSEA over the 50 gensets from the Hallmark collection. Both, single and double-precision residues comply within six digits

FP64 rapidGSEA to broadGSEA

12

10

0
-2 -1 0 1 2 3

difference in enrichment scores 1€-7




Hundt et al. BMC Bioinformatics (2016) 17:394

Page 8 of 11

1.4 1.0
1.2
0.8
1.0
2 B o6
- 0.8 ko]
2 2
T o
£ E
8 8
= 0.6 2
S 204
© 5
0.4
0.2
0.2
0.0 0.0
-1.0 -05 0.0 0.5 1.0 -1.0 -05
enrichment score
then 0.001 in this example

enrichment score

HALLMARK_INTERFERON_ALPHA_RESPONSE

6 le-4

difference of approximated cdfs

-6

-8

0.0 0.5 1.0 -1.0 -05 00 05

enrichment score

1.0

Fig. 7 Compliance of computed histograms of enrichment scores. Histograms of the computed enrichment scores of rapidGSEA and broadGSEA
usingn = 1,0242 permutations over one of the 50 gensets from the Hallmark collection. Both, the computed PDFs (left panel) and CDFs (middle
panel) are visually almost indistinguishable. The absolute difference of CDFs (right panel) and thus the absolute error of p-values is bounded by less

to 24 cases where both histograms produced by broad-
GSEA are more similar. Concluding, the deviations in
estimated areas are reasonably small and mainly caused by
different samples in permutation space.?

Scaling over multiple cores

We perform a strong scalability test of our ompGSEA
implementation over multiple cores of the Xeon CPU.
Note, ompGSEA is part of the cudaGSEA binary and can
be selected using the -cpu flag. The time needed to pro-
cess the 50 gene sets defined in the H(allmark) collection
is measured for a fixed input size of # = 16, 384 permuta-
tions and a variable number of threads. The experiments

Table 1 Scaling over multiple cores

cover performance measurements for up to ten physical
cores each executing a single thread and a hyper-threaded
scenario where up to twenty threads are assigned to ten
physical cores. When taking measurements on less than
ten physical cores we enforce a thread’s affinity using the
taskset command in order to avoid rescheduling by
the operating system. The obtained runtimes are listed in
Table 1 and illustrated in Fig. 8. The first experiment uti-
lizing only physical cores reveals almost linear speedup
for ompGSEA with an efficiency of roughly 77 % for
ten cores. However, the hyper-threaded variant exhibits
slightly super-linear behaviour for up to nine physical
cores and an efficiency of 98 % for all cores. Throughout

noHT 1 2 3 4

Runtime 22411 116.06 83.93 65.11
Speedup 1.00 1.93 267 344
Efficiency 1.00 0.97 0.89 0.86
HT 1 2 3 4

Runtime 174.82 91.09 66.31 52.09
Speedup 1.28 246 338 4.30
Efficiency 1.28 1.23 1.13 1.08

5 6 7 8 9 10
53.56 45.21 39.31 34.87 31.74 28.94
4.18 4.96 5.70 6.43 7.06 774

0.84 0.83 0.81 0.80 0.78 0.77

5 6 7 8 9 10
42.57 3558 3094 27.55 24.79 2285
5.26 6.30 7.24 8.13 9.04 9.81

1.05 1.05 1.03 1.02 1.00 0.98

Runtime in seconds, speedup and parallelization efficiency using up to ten physical cores with disabled hyperthreading (noHT) and enabled hyperthreading (HT) for a fixed

number of n = 16, 384 permutations on the Hallmark gene set collection




Hundt et al. BMC Bioinformatics (2016) 17:394

Page 9 of 11

Scaling Test over 10 Cores
250

runtime in seconds

physical cores

panel) using up to ten physical cores with and without hyperthreading

Fig. 8 Scaling ompGSEA over multiple cores. Runtime in seconds (left panel) and speedup in comparison to single-threaded performance (right

— — ompGSEA hyperthreading disabled
——— ompGSEA hyperthreading enabled

Speedup Measurement over 10 Cores

10

absolute speedup

1 2 3 4 5 6 7 8 9 10
physical cores

the rest of this paper all reported runtimes of ompGSEA
refer to the hyper-threaded ten core scenario running
approximately ten times faster than the corresponding
single-core application. Please note that the time for writ-
ing the enrichment score table ES(S, ) to disk has been
neglected during this benchmark.

Comparison between rapidGSEA and broadGSEA

The execution time of rapidGSEA and broadGSEA is mea-
sured on the aforementioned data set over a wide range
of permutations (1,024 up to 1,024?) using the Hallmark
(H: 50 gene sets) and Curated (C2: 4,725 gene sets) col-
lections. The experiments include parsing of input files,
memory transfers over PCle when using CUDA and writ-
ing the enrichment score table ES(S, ) to spinning disk.
The obtained runtimes and speedups are listed in Table 2

and illustrated in Figs. 9 and 10. Numbers in square brack-
ets or dashed lines indicate linearly extrapolated runtimes
for broadGSEA in log-log space for large amounts of
permutations.

Our multi-threaded implementation ompGSEA outper-
forms broadGSEA on both gene set collections (H and
C2) by at least one order-of-magnitude. Note, although
broadGSEA spawns more than twenty threads the major-
ity remains idle during processing. Therefore, broad GSEA
cannot benefit from the additional physical cores of the
Xeon processor. The same behaviour can be observed on
an Intel i7 i3970X CPU with six physical cores.

Moreover, cudaGSEA outperforms broadGSEA by
around two orders-of-magnitude with growing speedups
for an increasing number of permutations. This can be
explained by the thread occupancy of the used GPUs.

Table 2 Performance comparison between rapidGSEA and broadGSEA

H (50) 1,024 4,096 16,384 65,536 262,144 1,048,576

broad Xeon 83.6 307.1 1,149.0 4,681.0 18,301.0 70,946.8

rapid Xeon 30 (28) 7.0 (44) 22.7 (51) 858 (55) 3394 (54) 1,357.8 (52)
rapid Tesla 1.8 (45) 2.7 (112) 6.5 (176) 219 (214) 83.7 (219) 3299 (215)
rapid Titan 1.6 (54) 1.9 (164) 3.1 (367) 83 (564) 282 (648) 105.2 (674)
C2 (4,725) 1,024 4,096 16,384 65,536 262,144 1,048,576

broad Xeon 1,113.0 4,600.0 17,962.0 70,2134 [274,464.0] [1,072,878.9]

rapid Xeon 89.3 (12) 2829 (16) 1,084.8 (17) 4,266.2 (16) 17,069.0 (16) 68,682.3 (16)
rapid Tesla 13.1 (85) 316 (146) 108.5 (166) 418.7 (168) 1,685.5 (163) 6,732.6 (159)
rapid Titan 10.3 (108) 208 (221) 619 (290) 2140 (328) 895.9 (306) 34473 (311)
Runtime in seconds and speedups of rapidGSEA compared to broadGSEA (round brackets) using up to n = 1,024% permutations on the Hallmark (H: 50 gene sets) and

Curated (C2: 4725 gene sets) collection. Please note that runtimes in square brackets indicate linearly extrapolated runtimes of broadGSEA in log-log space



Hundt et al. BMC Bioinformatics (2016) 17:394

Page 10 of 11

108 Runtime in Seconds

10*

10°

102

runtime in seconds

10’

0

absolute speedup

\

210 11 512 513 514 515 516 517 518 519 520

number of permutations

broadGSEA Xeon
ompGSEA Xeon
cudaGSEA Titan X
cudaGSEA Tesla K40c

10° Speedup to broadGSEA

o
o

1
210 211 212 213 214 215 216 217 21E 219 220
number of permutations

Fig. 9 Performance Comparison between rapidGSEA and broadGSEA on Hallmark Gene Set Collection (H). Runtime in seconds of rapidGSEA and
broadGSEA (left panel) and speedups of rapidGSEA in comparison to broadGSEA (right panel) for up to 1,024 permutations on the Hallmark (H)

collection consisting of 50 gene sets

Both, the GeForce Titan X and the Tesla K40c can store at
once tens of thousands of permutations (roughly 70k/35k
in single/double-precision) within their 12 GB of RAM.
Thus, when probing a small number of permutations the
majority of streaming multi-processors remain idle. Fur-
thermore, the parsing of input files and dumping of results
takes several seconds and cannot be parallelized on the
GPU.

Conclusions

In this paper, we have introduced rapidGSEA - a
software suite consisting of two tools for facilitating
permutation-based GSEA: cudaGSEA and ompGSEA.
cudaGSEA is a CUDA-accelerated tool using fine-grained
parallelization schemes on massively parallel architec-
tures while ompGSEA is a coarse-grained multi-threaded
tool for multi-core CPUs. ompGSEA outperforms the

Runtime in Seconds

10

runtime in seconds

10°

10?

10’

number of permutations

absolute speedup

210 11 912 13 514 515 516 H17 518 519 520

= = broadGSEA Xeon
ompGSEA Xeon
cudaGSEA Titan X
cudaGSEA Tesla K40c

Speedup to broadGSEA

o
o

'
210 211 212 213 214 215 216 217 218 219 220
number of permutations

Fig. 10 Performance Comparison between rapidGSEA and broadGSEA on Curated Gene Set Collection (C2). Runtime in seconds of rapidGSEA and
broadGSEA (left panel) and speedups of rapidGSEA in comparison to broadGSEA (right panel) for up to 1,024% permutations on the Curated (C2)
collection consisting of 4,725 gene sets. Please note that dashed lines indicate linearly extrapolated results in log-log space




Hundt et al. BMC Bioinformatics (2016) 17:394

state-of-the-art implementation of GSEA (broadGSEA)
by at least one order-of-magnitude in terms of execu-
tion times while providing compliant results. Further-
more, cudaGSEA outperforms broadGSEA by around two
orders-of-magnitude. The time for probing 1,048,576 per-
mutations on a gene expression data set consisting of
20,639 unique gene symbols and 200 patients can dras-
tically be reduced from roughly 13 days for broad GSEA
to less than two hours using rapidGSEA on a commonly
available Tesla K40c GPU in double-precision or less than
one hour on a GeForce Titan X in single-precision.

A possible direction of future research in order to
further reduce runtimes is the parallelization of GSEA
on a compute cluster with multiple GPUs attached to
each node. Furthermore, extensions of GSEA to consider
graph-based (Gene Graph Enrichment Analysis [20]) or
network-based (Network-based GSEA [21]) correlations
between gene symbols and observed phenotypes have
gained increasing attention in recent years. It will be inter-
esting to investigate how the parallelization techniques
discussed in this paper can be applied to accelerate these
extended enrichment methods.

Availability and requirements

Project name: cudaGSEA

Project home page: https://github.com/gravitino/
cudaGSEA

Operating system(s): Linux

Programming language: C++, CUDA, R

Other requirements: CUDA -capable GPU
License: GNU LGPL

Any restrictions to use by non-academics: None

Endnotes

!Please note that throughout this manuscript, we use
zero-based indexing.

2Individual results for each gene set can be found at the
github repository of rapid GSEA.

Abbreviations

API: Application programming interface; CUDA: Compute unified device
architecture; FWER: Family-wise error rate; GSEA: Gene set enrichment analysis;
MPI: Message passing interface; PCle: Peripheral component interconnect
express; PRNG: Pseudo random number generator

Acknowledgements
Partial funding was gratefully provided by the Center for Computational
Science in Mainz.

Authors’ contributions

BS and AH conceived the study, and participated in its design and
coordination. All authors contributed to the writing of the manuscript. CH
wrote and evaluated the CPU and GPU implementations. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Page 11 of 11

Ethics approval and consent to participate

Throughout this paper the used gene expression data set is anonymized and
has been obtained from NCBI Gene Expression Omnibus (GEO: Series
GSE19429). The data has exclusively been used for runtime measurements and
compliance evaluation of computed enrichment score values between
broadGSEA and rapidGSEA. The original source [19] explicitly states approval
granted by appropriate ethics committees: The study was approved by the
ethics committees (Oxford C00.196, Bournemouth 9991/03/E, Duisburg
2283/03, Stockholm 410/03, Pavia 26264/2002) and informed consent was
obtained.’

Received: 29 April 2016 Accepted: 8 September 2016
Published online: 23 September 2016

References

1. Subramanian, et al. Gene Set Enrichment Analysis: A Knowledge-Based
Approach for Interpreting Genome-Wide Expression Profiles. Proc Natl
Acad Sci. 2005;102(43):15545-15550. doi:10.1073/pnas.0506580102.

2. HungJH, Yang TH, Hu Z, Weng Z, Delisi C. Gene Set Enrichment
Analysis: Performance Evaluation and Usage Guidelines. Brief. Bioinform.
2012;13(3):281-91.

3. Wang X, Cairns MJ. SeqGSEA: a Bioconductor Package for Gene Set
Enrichment Analysis of RNA-Seq Data Integrating Differential Expression
and Splicing. Bioinformatics. 2014;30(12):1777-1779.
doi:10.1093/bioinformatics/btu090.

4. Zhangl, GuS, LiuY, Wang B, Azuaje F. Gene set analysis in the cloud.
Bioinformatics. 2012;28(2):294-5.

5. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and
display of genome-wide expression patterns. Proc Natl Acad Sci.
1998;95(25):14863-14868. arxiv http://www.pnas.org/content/95/25/
14863 full.pdf. Accessed 1 Apr 2016.

6. BackesC, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA,
Mdller R, Meese E, Lenhof HP. GeneTrail-advanced gene set enrichment
analysis. Nucleic Acids Research. 2007;35(suppl 2):186-92.

7. Phipson B, Smyth GK. Permutation P-values Should Never Be Zero:
Calculating Exact P-values When Permutations Are Randomly Drawn. Stat
Appl Genet Mol Biol. 2010,9(1), Article 39. http://www.degruyter.com/
view/j/sagmb.2010.9.1/sagmb.2010.9.1.1585/sagmb.2010.9.1.1585.xml.

8. Molecular Signatures Database. Accessed 1 Apr 2016. http://software.
broadinstitute.org/gsea/msigdb.

9. CUB: CUDA Unbound Library. Accessed 1 Apr 2016. https://nvlabs.github.
jo/cub/.

10. Kahan W. Pracniques: Further Remarks on Reducing Truncation Errors.
Commun. ACM. 1965;8(1):40-8. doi:10.1145/363707.363723.

11. ChanTF, Golub GH, LeVeque RJ. Updating Formulae and a Pairwise
Algorithm for Computing Sample Variances, Technical report. Stanford:
Stanford University; 1979. http://i.stanford.edu/pub/cstr/reports/cs/tr/79/
773/CS-TR-79-773.pdf.

12. Ruetsch G, Micikevicius P. Optimize Matrix Transpose Technical report.
Santa Clara: NVIDIA coporation; 2010. http://docs.nvidia.com/cuda/
samples/6_Advanced/transpose/doc/MatrixTranspose.pdf. Accessed
1 Apr 2016.

13.  cuRAND: NVIDIA CUDA Random Number Generation Library. Accessed
1 Apr 2016. https://developer.nvidia.com/curand.

14. Marsaglia G, Tsang WW, et al. Some difficult-to-pass tests of randomness.
J Stat Softw. 2002;7(3):1-9.

15. dieharder: Random Number Generator Testing Suite. Accessed 1 Apr
2016. https://www.phy.duke.edu/~rgb/General/dieharder.php.

16. Alcantara DAF. Efficient hash tables on the gpu, PhD thesis. Davis:
University of California at Davis; 2011. AAI3482095.

17. Eddelbuettel D, Frangois R. Rcpp: Seamless R and C++ Integration. J Stat
Softw. 2011;40(8):1-18.

18. Broad Institute of MIT and Harvard. GSEA Java Package. 2016. http://
software.broadinstitute.org/gsea/downloads.jsp. Accessed: 01 April 2016.

19. Pellagatti, et al. Deregulated Gene Expression Pathways in Myelodysplastic
Syndrome Hematopoietic Stem Cells. Leukemia. 2010;24:756-64.

20. Geistlinger L, Csaba G, Kuffner R, Mulder N, Zimmer R. From sets to
graphs: towards a realistic enrichment analysis of transcriptomic systems.
Bioinformatics. 2011;27(13):366-73.

21. Glaab E, Baudot A, Krasnogor N, Schneider R, Valencia A. Enrichnet:
network-based gene set enrichment analysis. Bioinformatics. 2012;28(18):451.


https://github.com/gravitino/cudaGSEA
https://github.com/gravitino/cudaGSEA
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1093/bioinformatics/btu090
http://www.pnas.org/content/95/25/14863.full.pdf
http://www.pnas.org/content/95/25/14863.full.pdf
http://www.degruyter.com/view/j/sagmb.2010.9.1/sagmb.2010.9.1.1585/sagmb.2010.9.1.1585.xml
http://www.degruyter.com/view/j/sagmb.2010.9.1/sagmb.2010.9.1.1585/sagmb.2010.9.1.1585.xml
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/
http://dx.doi.org/10.1145/363707.363723
http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf
http://docs.nvidia.com/cuda/samples/6_Advanced/transpose/doc/MatrixTranspose.pdf
http://docs.nvidia.com/cuda/samples/6_Advanced/transpose/doc/MatrixTranspose.pdf
https://developer.nvidia.com/curand
https://www.phy.duke.edu/~rgb/General/dieharder.php
http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Implementation
	The sequential algorithm
	Computation of local deviation measures
	Gene ranking
	Enrichment score computation
	Significance estimation

	The parallel algorithm
	Computation of local deviation measures
	Gene ranking
	Enrichment score computation
	Significance estimation

	Bindings for the R language

	Results and discussion
	Accuracy and compliance of enrichment scores
	Scaling over multiple cores
	Comparison between rapidGSEA and broadGSEA

	Conclusions
	Availability and requirements 
	Abbreviations
	Acknowledgements
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

