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Abstract

Background: Clustering is a widely used collection of unsupervised learning techniques for identifying natural
classes within a data set. It is often used in bioinformatics to infer population substructure. Genomic data are often
categorical and high dimensional, e.g., long sequences of nucleotides. This makes inference challenging: The distance
metric is often not well-defined on categorical data; running time for computations using high dimensional data can
be considerable; and the Curse of Dimensionality often impedes the interpretation of the results. Up to the present,
however, the literature and software addressing clustering for categorical data has not yet led to a standard approach.

Results: We present software for an ensemble method that performs well in comparison with other methods
regardless of the dimensionality of the data. In an ensemble method a variety of instantiations of a statistical object
are found and then combined into a consensus value. It has been known for decades that ensembling generally
outperforms the components that comprise it in many settings. Here, we apply this ensembling principle to clustering.
We begin by generating many hierarchical clusterings with different clustering sizes. When the dimension of the data
is high, we also randomly select subspaces also of variable size, to generate clusterings. Then, we combine these
clusterings into a single membership matrix and use this to obtain a new, ensembled dissimilarity matrix using
Hamming distance.

Conclusions: Ensemble clustering, as implemented in R and called EnsCat, gives more clearly separated clusters than
other clustering techniques for categorical data. The latest version with manual and examples is available at
https://github.com/jlp2duke/EnsCat.
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Background
The idea of clustering is to group unlabeled data into
subsets so that both the within-group homogeneity and
the between-group heterogeneity are high. The hope is
that the groups will reflect the underlying structure of
the data generator. Although clustering continuous data
can be done in a wide variety of conceptually distinct
ways there are generally far fewer techniques for cat-
egorical data. Probably the most familiar methods are
K-modes [1], model-based clustering (MBC) [2], and vari-
ous forms of hierarchical clustering. K-modes is K-means
adapted to categorical data by replacing cluster means
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with cluster modes. MBC postulates a collection of mod-
els and assumes the clusters are representative of a mix-
ture of those models. The weights on the models and the
parameters in the model are typically estimated from the
data. Hierarchical clustering is based on choosing a sense
of distance between points and then merging data points
or partitioning the data set, agglomerative or divisive,
respectively. The merge or partition rules in a hierarchical
method must also be chosen. So, hierarchical clustering
is actually a large collection of techniques. Other more
recent approaches include ROCK [3], which is based on
a notion of graph-theoretic connectivity between points,
and CLICK [4], which is based on finding fully connected
subgraphs in low dimensional subspaces.
Ensembling is a general approach to finding a consensus

value of some quantity that typically gives better perfor-
mance than any one of the components used to form it.
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In the clustering context, this means that we should be
able to take a collection of clusterings and somehowmerge
them so they will yield a consensus clustering that is better
than any of the individual clusterings, possibly by separat-
ing clusters more cleanly or having some other desirable
property. Thus, in principle, ensembling can be used on
any collection of clusterings, however obtained.
There are many techniques by which the ensembling

of clusters can be done and many techniques by which
clusters to be ensembled can be generated. For instance,
in the case of continuous data, four alternative methods
for ensembling clusters are studied in [5]. They can also
in some cases be applied to categorical data. The best of
the four seems to be a form of model based clustering
that rests on discretizing a data set, imputing classes to
the various clusters from a collection of clusterings, and
modeling the imputed classes by a mixture of discrete dis-
tributions. These methods were exemplified on five low
dimensional data sets (maximum dimension 14) and even
though the model based approach was overall best, the
other methods were often a close second and in some
cases better.
More recently, [6] developed a consensus clustering

based on resampling. Any clustering technique can be
repeatedly applied. Essentially, the proportion of times
data points are put in the same cluster defines a collec-
tion of pairwise consensus values which are used to form
K consensus clusters for given K. The ensembling method
used in [6] does not seem to have been compared to the
methods studied in [5]. In addition, most recently, the R-
package CLUE (most recent instantiation 2016) ensembles
clusters using a different and more general concept of dis-
tance than in [5] or [6] although neither of those may be
regarded as special cases of CLUE.
By contrast, to ensemble clusterings, we ensemble dis-

similarity matrices rather than cluster indices and we
assume the data are categorical. Thus, our method is
again different from those that have been presented. Our
method starts by forming an incidence matrix I summa-
rizing all of them. The number of columns in I is the num-
ber of clusterings, sayB; each column has n entries, one for
each data point. The (i, j) entry of I is the index of the clus-
ter in the j-th clustering to which xi belongs. The Ham-
ming distances between pairs of rows in the incidence
matrix effectively sums over clusterings – combining their
effects – and gives a distance between each pair of data
points. These distances are the entries in the ensembled
dissimilarity matrix that we use in our approach. This
form of ensembling is described in detail in [7]. Note that
the individual clusterings that go in to forming the ensem-
bled dissimilarity matrix are unrestricted; they may even
be of different sizes.
We have used Hamming distance with equal weights

since it is natural for discrete data when the principle

of insufficient reason applies1 – it corresponds to clas-
sification loss which assumes the values are categorical
rather than discrete ordinal and does not weight any one
categorical variable more or less than any other. Implic-
itly Hamming distance also assumes that all distances
between values of the same random variable are the same.
Hence it is a good default when no extra information is
available. Indeed, it is well known that different senses of
distance correspond to different clustering criteria. Deter-
mining which sense of distance is appropriate for a given
setting is a difficult and general problem. It is beyond
the scope of this paper which is merely to present the
software.
Given this, the question is which base clusterings to

ensemble. Recall that with categorical data the measure-
ments on a subject form a vector of discrete unordered
values. Here, we will assume there is a uniform bound on
the number of values each variable can assume. Data sat-
isfying this condition is common in genetics because the
nucleotide at a location is one of four values. We have
ensembled a variety of clusterings generated by various
methods. For instance, we have ensembled K-modes clus-
terings, model based clusterings (also called latent class
clustering in some settings), and hierarchical clusterings
using Hamming distance and several different linkages.2
As seen in [7], the best clustering results seem to emerge
by i) generating hierarchical clusterings using Hamming
distance and average linkage, ii) combining them into
the ensembled dissimilarity matrix (again using Hamming
distance), and iii) using hierarchical clustering with, say,
average linkage as defined by the ensembled dissimilarity
matrix. Variants on this procedure also seem to work well,
e.g., complete linkage gives similar performance to aver-
age linkage and ensembling reduces the chaining problem
(see [8]) associated with single linkage. Metrics other than
Hamming distance may give better or worse results, but
we have not investigated this because Hamming distance
is such an intuitively reasonable way to assess distances
between categorical vectors.
This procedure outperforms K-modes because, when

the data are categorical, the mean is not well-defined.
So, using the mode of a cluster as its ‘center’ often does
not represent the location of a cluster well. Moreover, K-
modes can depend strongly on the initial values. Using
summary statistics that are continuous does not resolve
this problem either; see [9] for an example.
Our procedure outperforms MBC because MBC relies

on having a model that is both accurate and parsimo-
nious – a difficult input to identify for complex data.
Indeed, if we know so much about the data that we can
identify good models, it must be asked why we need clus-
tering at all – except possibly to estimate parameters such
as model weights. As a separate issue MBC is compu-
tationally much more demanding than our method. We



Clarke et al. BMC Bioinformatics  (2016) 17:380 Page 3 of 13

comment that in some cases, the ensemble clustering can
be worse than simply using a fixed clusteringmethod. This
is often the case for K-modes and MBC. While some-
what counterintuitive, this is a well recognized property
of other ensemble methods, such as bagging, because
ensemble methods typically only give improvement on
average.
Overall, in [7] our method was compared to 13 other

methods (including model based clustering) over 11 real
categorical data sets and numerous systematic simulation
studies of categorical data in low and high dimensional
settings. The theory established suggests that ensemble
clustering is more accurate than non-ensembled cluster-
ings because ensembling reduces the variability of clus-
tering. Our finding that the method implemented here is
‘best’ is only in an average sense for the range of prob-
lems we examined among the range of techniques we
tested. In all these cases, our ensembled method was the
best, or nearly so, and its closest competitors on average
were non-emsembled hierarchical methods that also used
Hamming distance as a dissimilarity. Thus, in the present
paper, we only compare our ensemble method with its
non-ensembled counterpart.
At root, our method generates an ensembled dissimilar-

ity matrix that seems to represent the distances between
points better than the dissimilarity matrices used to form
it. The result, typically, is that we get dendrograms that
separate clusters more clearly than other methods. Thus,
simply looking at the dendrogram is a good way to choose
the appropriate number of clusters.
To fix notation, we assume n independent and identi-

cal (IID) outcomes xi, i = 1, . . . , n, of a random variable
X. The xi’s are assumed J-dimensional and written as
(xi1, . . . , xiJ ) where each xij is categorical and assumes no
more than, say, M values. We consider three cases for the
value J : Low dimension, i.e., n � J , high dimension, i.e.,
J � n, and high dimension but unequal, i.e., different xi’s
can have different J ’s and all the J ’s are much larger than
n. We implemented our procedure for these three cases in
an R package, entitled EnsCat. As will be seen, the basic
technique is for low dimensional data but scales up to high
dimensional data by using random selection of subspaces
and increasing the size of the ensemble. This is extended
to data vectors that do not have a common length by using
multiple alignment. We present these cases below.

Implementation
We implemented our methods in the R statistical lan-
guage that is free and open source [10]. So, our package
does not require any other software directly. Since R is
already widely used by researchers, we limit our presen-
tation below to the functions we have defined in Enscat.
The one exception to this is that if one wants to use our
software on unequal length data e.g., genome sequences,

the data points must be aligned and our software is com-
patible with any aligner. Several aligners are available in R,
however, they have long running times for genome length
data. As noted below, we convert categorical data values
such as {A,T ,C,G} to numerical values such as 1,2,3,4
because R runs faster on numerical values than on char-
acter values, and numerical values require less storage
capacity.
When J is large, our methodology uses a random sub-

space approach to reduce the dimension of the vectors
being clustered. We do this by bootstrapping. Given the
set {1, . . . , J} we choose a sample of size J with replace-
ment, i.e., we take J IID draws from {1, . . . , J}. Then we
eliminate multiplicity to get a set of size J∗ ≤ J of dis-
tinct elements. This procedure can be repeated on the set
with J∗ elements, if desired, to get a smaller set of distinct
dimensions. Since the dimensions of the subspaces are
random, they will, in general, be different. This allows our
procedure to encapsulate a large number of relationships
among the entires in the xi’s. As a generality, ensemble
methods are robust by construction because they rep-
resent a consensus of the components being ensembled.
This is formally true for random forests in classification
contexts, [11], and partially explains why ensemble meth-
ods are not always optimal. Sometimes a single compo-
nent routinely outperforms ensembles of them; this seems
to be the case with K-modes and MBC.

Results and discussion
Low dimensional categorical data
The package Enscat includes functions for implement-
ing K-modes, hierarchical clustering methods, and our
ensemble clustering method. It can also call routines for
MBC. To show how this works, here we use the data set
USFlag as an example. This dataset contains information
about maritime vessels in the U.S.-Flag Privately-Owned
Fleet and can be downloaded from the United States
Department of Transportation site for United States
Maritime Administration data and statistics [12]. USFlag
has sample size n = 170 and each observation has 10
categorical variables containing information about ves-
sel operator, vessel size and weight, and vessel type
(Containership, Dry Bulk, General Cargo, Ro-Ro, and
Tanker, denoted as 1 through 5). The data are stored
in USFlag$obs and the vessel types are stored in
USFlag$lab. Once the Enscat package has been down-
loaded and installed, K-modes clustering can be done in R
by using the commands

library(EnsCat) (1)
data(USFlag)
kmodes(USFlag$obs, k=5,k2=1:5)

The second argument in the function kmodes,k=5, is
the number of clusters K-modes should output. The third
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argument is the specification of the initial modes. Here,
1:5 means the first five data points should be taken as
the initial modes. As recognized in [1], K-modes is sen-
sitive to initial values, possibly leading to instability and
inaccuracy.
Hierarchical clustering has attracted more attention

than K-modes since it provides a nested sequence of clus-
terings that can be represented as a tree or dendrogram.
This technique requires a matrix specifying the distances
between data points; such a matrix can be calculated
using Hamming distance. The following commands gen-
erate a dendrogram using Hamming distance and average
linkage.

distham0<-hammingD(USFlag$obs)

distham<-as.dist(distham0)

hcham<-hclust(distham,method="average")

ggdplot(hcham, lab=USFlag$lab, title=

"average linkage hclust of USFlag data")

The first command generates the n × nmatrix in which
the (i, j)-th entry is (1/J)H(xi, xj) ∈[ 0, 1] where H is the
Hamming distance between its arguments. The second
command tells R to regard distham0 as a matrix of dis-
tance. Taken together, the third and fourth commands
produce and plot the dendrogram for hierarchical cluster-
ing using distham0 and average linkage. The command
ggdplot is a convenience wrapper for the function ggden-
drogram in the package ggdendro which automates the
plotting of a rotated dendrogram with user specified leaf
labels and plot title. The results are shown in Fig. 1.
By contrast, our ensembling algorithm is the following.
Ensemble clustering of USFlag can be done by the

following.

disten<-Benhc(USFlag$obs,En=200)

en<-hclust(disten,method=’average’)

ggdplot(en, lab=USFlag$lab, ptype=2)

The first command uses Benhc, one of two functions
in Enscat that implement our new method. This gener-
ates the ensembled dissimilarity matrix T by combining
B = 200 hierarchical clusterings using Hamming distance
and average linkage, each generated by Steps 1, 2, and 3 in
Algorithm 1. (As a generality, average linkage was found
to perform well in this context, see [7].) The second com-
mand runs a hierarchical clustering using T and average
linkage. hclust is a function in R from the package stats
that can be used to make a dendrogram. The third com-
mand generates a plot of the ensembled dendrogram, with
a grayscale grid in the background to help gauge the length
of each lifetime; see Fig. 2. In contrast with Fig. 1, the
ensembling gives longer ‘lifetimes’, i.e., the vertical lines
connecting to the individual data points. Longer lifetimes
mean that the clusters are separated more clearly. We
found this to be the typical effect of ensembling.

Algorithm 1 Ensemble clustering for low dimensional
data. We defaulted to

√
n in Step 1, but other choices are

possible

1. Draw Kb ∼ DUnif[ 2,
√
n] for b = 1, . . . ,B.

2. For each b, take a sample (with replacement) Xb from
the original data.

3. Generate a clustering with Kb clusters for Xb by any
clustering procedure.

4. Form the incidence matrix

I =
⎡
⎢⎣
w12 w12 . . . w1B
...

...
...

...
wn1 wn2 . . . wnB

⎤
⎥⎦

Each column in I corresponds to one of the B
clusterings and wib is the index of the cluster in the
b-th clustering to which xi belongs.

5. Find the ensembled dissimilarity matrix T from I
where

T = (dB(xi, xj))i,j=1,...,n,

in which

dB(xi, xj) = 1
B

B∑
b=1

δ(wib,wjb).

and δ(·, ·) is one minus the indicator function for the
equality of its arguments.

6. Use hierarchical clustering on T with any linkage
function to plot the dendrogram for the ensemble
clustering.

Estimating the correct number of clusters, KT , is a dif-
ficult problem. Several consistent methods are known for
continuous data, see [13] for a discussion and comparison
of such techniques. In the categorical data context, some
techniques such as K-modes and MBC require K as an
input and in practice the user chooses the value of K that
gives the most satisfactory results. For hierarchical clus-
tering, K need not be pre-assigned; it can be inferred, at
least heuristically, from the dendrogram. When ensem-
bling separates the clusters more clearly inferring K may
be easier. In particular, it can be seen from the increased
number of long lifetimes in the dendrogram of Fig. 2 rela-
tive to the number of long lifetimes in the dendrogram of
Fig. 1 that the ensembling visibly improves the separabil-
ity of the clusters leading to fewer, more distinct clusters.
Thus, simply looking at the dendrogram may be a good
way to choose the appropriate number of clusters.
This observation is heuristic but is supported by for-

mal stability computations under perturbation indices, for
instance. One established approach is due to [14]. The
idea is to generate a range of clusterings of various sizes.
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Fig. 1 Dendrogram generated by average hamming distance on USFlag data

Then, for each clustering, reclustering B bootstrap sam-
ples from it evaluating the Jaccard coefficient by cluster for
each clustering. Higher values of the Jaccard coefficients
for the clusters indicate higher reproducibility under boot-
strapping and hence high stability. We have applied this
procedure using the function clusterboot in the R-package
fpc. The result is in Fig. 3. For K = 3, . . . , 10, the boxplots
of the Jaccard coefficient between the original clusters
and the clusterings based on the resampled data are plot-
ted. The notation ‘e’ on the horizontal axis indicates the
ensembled version; ‘h’ indicates the (not ensembled) hier-
archical version. For each K from 3 to 10, the ensembled
version is strikingly more stable. Although not shown
here, the same qualitative behavior can be observed if
the adjusted Rand index is used. On the other hand, the
behavior is similar but not identical if the unadjusted rand
index is used. So, there may be some dependence on the
exact form of data point perturbation method.

High dimensional categorical data: fixed length
Ourmethod extends to high dimensional fixed length data
by clustering on random subspaces, i.e., random selec-
tions of the categorical variables of comparatively smaller
dimension, using Hamming distance and average link-
age. Taken together these clusterings give an I as in
Algorithm 1 and Steps 5 and 6 can be performed. As
can be seen by comparing Algorithms 1 and 2, the only
methodological difference between our treatment of low

and high dimensional categorical data is the clustering on
random subspaces.
It is seen that the X∗

b ’s contain independently chosen
subsamples of possibly different sizes of the J variables so
that all variables have the same chance of inclusion. The
commands for implementing Algorithm 2 are a special
case of those given in the next subsection (i.e., in Step 1
run enhcHi with type=1)3. If J is so large that the output
of Step 2 results in an unacceptably long running time for
Step 4, a second, or even third, level of boostrapping can

Algorithm 2 Ensemble clustering of high dimensional,
fixed length categorical data. As in Algorithm 1, we
defaulted to

√
n in Step 1.

1. Take a sample of size J with replacement from
{1, . . . , J}. Eliminate multiplicity and denote the result
by J∗ = {a1, . . . , aj∗}. Do this B times to generate sets
J∗b for b = 1, . . . ,B.

2. Select the categorical variables corresponding to J∗b and
denote the data set as X∗

b .
3. Draw Kb ∼ DUnif[ 2,

√
n] for b = 1, . . . ,B.

4. Using Hamming distance and average linkage find the
hierarchical clustering of X∗

b with Kb clusters; do this
for b = 1, . . . ,B.

5. Run Steps 4, 5 and 6 of Algorithm 1 on the B
clusterings to obtain the ensemble clustering.
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Fig. 2 Dendrogram generated by the ensemble method on USFlag data

be used (i.e., interactively bootstrap the bootstrap sample
to further reduce the number of variables). Enscat does
implement a double bootstrap in the high dimensional
case; see the example code for Algorithm 2.

High dimensional categorical data: non-fixed length
Our method extends to non-fixed length high dimen-
sional data by ‘filling in’ missing variables by alignment
and then using random subspace clustering as described
in the last subsection. As an example we generate an
ensemble clustering of complete viral genomes from the
Family Rhabdoviridae. According to the Virus Pathogen
Database and Analysis Resource (ViPR)([15]), Rhabdoviri-
dae is divided into 12 genera and for ease of exposition we
have limited our analysis to the data set containing all dis-
tinct and complete genomes from those genera with less
than 40 complete genomes (9 of 12 genera).
The 9 relevant genera of Rhabdoviridae are, namely,

Cytorhabdovirus, Ephemerovirus, Novirhabdovirus, Nuc-
leorhabdovirus, Perhabdovirus, Sigmavirus, Sprivivirus,
Tibrovirus, and Tupavirus, with 5, 10, 16, 10, 1, 3, 5, 1, and
2 genomes, respectively. The viruses belonging to these

genera came from different hosts, namely, Alfalfa, Cattle,
Drosophila, Eel, Fish, Garlic, Midge, Mosquito, Eggplant,
Taro, Trout, and Unknown. In the dendrograms each sam-
ple is identified by the first two letters of the genus and
the first three letters of the host (e.g., Cytorhabdovirus
from Alfalfa is labeled Cy.Alf). The genomes have lengths
between 10,845 and 16,133 base pairs. In principle, we
could have included incomplete genomes and filled in the
missing data by imputation via alignment. For simplicity
we did not do this.
To cluster categorical vectors of different lengths, the

first step is to preprocess the data using a multiple
alignment approach so all the vectors have the same
length. This is done by including an extra value, say φ,
that is inserted in various locations so that sequences
of nucleotides match as closely as reasonably possible.
There are several programs that do multiple alignment
and they can give different equalized lengths depend-
ing on the exact rules followed for inserting φ. We
used MAFFT-7 [16] but any aligner would be com-
patible with our software, although different aligners
might give different results. We stored the aligned data
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Fig. 3 Jaccard resampling stability analysis for the USFlag data. The labels indicate the type of clustering and the number of clusters, e.g., e.3 is
ensembled hierarchical clustering with 3 clusters while h.3 is non-ensembled hierarchical clustering with 3 clusters

in a file called ‘rhabdodata’ and pulled it into R using
data(“rhabdodata”). Now, the data take values in
{A,T ,C,G,φ}. For efficiency, this categorical data is con-
verted to numerical data. The Enscat command CTN
does this conversion; {A,T ,C,G,φ} in rhabdodata are
replaced with {1, 2, 3, 4,NA}. R recognizes NA as missing
data so this does not increase Enscat’s running time.
Hierarchical clustering on rhabdodata using Hamming

distance and average linkage is given by
dis0<-hammingD(rhabdodata$dat)

REDIST<-as.dist(dis0)

hc0 <- hclust(REDIST,method = "average")

ggdplot(hc0, lab=rhabdodata$lab, title=

"average linkage hclust of rhabdodata")

This is the same code as for low dimensional categorical
data. The resulting dendrogram is in Fig. 4.
The dendrogram of the ensemble clustering for rhabdo-

data using hierarchical clustering with average linkage and
the matrix T generated by the B clusterings of the random
subspaces can be obtained using the following commands.

ens<-enhcHi(rhabdodata$dat,En=100,

len=c(2,8), type=2)

dis0<-hammingD(ens)

REDIST<-as.dist(dis0)

hc1 <- hclust(REDIST,method = "average")

ggdplot(hc1, lab=rhabdodata$lab,

title="average linkage ensembled hclust of

rhabdodata")

enhcHi is the Enscat function that generates I for the
equalized length vectors; it stands for ensembling hier-
archical clusterings of high dimension. In this example,
B = 100 random subspaces are chosen and the values Kb
are chosen according to a DUnif [2, 8]. We chose 8 because
8 ≈ √

53 and n = 5+ 10+ 16+ 10+ 1+ 3+ 5+ 1+ 2 =
53. The argument type=2 specifies a double bootstrap
procedure for variable selection. The result is in Fig. 5.
We note that Fig. 5 improves on Fig. 4 in the same sense

as Fig. 2 improves on Fig. 1. That is, the dendrograms from
the ensemble methods have an increased number of long
lifetimes relative to short lifetimes suggesting increased
stability. Again, this is reflected in the Jaccard coefficients
for the various choices of K, see Fig. 6. For K = 3, . . . , 8
it is clear that the ensemble method gives higher stabil-
ity than the hierarchical method though the improvement
is not as much as in the low dimensional case for reasons
discussed earlier. As a point of interest, note that stability
indices can themselves become unstable when there is too
little data per cluster. This is seen for K = 9, 10 in Fig. 6.
An alternative way to visualize the improvement pro-

vided by ensembling is shown in the ‘tanglegram’ in Fig. 7.
The left hand dendrogram shows the average linkage hier-
archical clustering under Hamming distance, while the
right hand dendrogram shows the ensembled version of
clusterings of this form. This figure was generated by a
simple command,

tangle(hc0, hc1)
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Fig. 4 Dendrogram generated by average hamming distance on rhabdodata via DU(2, 8)

Fig. 5 Dendrogram generated by ensembling clusterings of random sizes on rhabdodata via DU(2, 8)
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Fig. 6 Jaccard resampling stability analysis for the rhabdoviridae data. The labels indicate the type of clustering and the number of clusters, e.g., e.3
is ensembled hierarchical clustering with 3 clusters while h.3 is non-ensembles hierarchical clustering with 3 clusters

Colored lines connect the same data points in the two
different clusterings; the dashed lines identify branches
that exist in only one of the two dendrograms. It is visually
apparent that the ensembling collapses many branches
into single clusters. That is, the ensembling amplifies and
simplifies the underlying cluster structure, so that the
clusters are more readily discernible. For a nice exposition
of tanglegrams and other visualizations of dendrograms
see Galili (2015) and the associated package dendex-
tend [17].
To see the effect of the range of the number of clus-

ters, Fig. 8 shows the result of using our ensemble method
drawing the kb’s from DUnif(2, 20). It is seen that by
increasing the range of the Kb’s, the sensitivity of the
ensemble clustering to the data increases. This is no
surprise because the range of clusterings has increased
thereby decreasing the stability and this effect is larger
in high dimensions than small. While we can generate
a Jaccard stability assessment for the dendrograms in
Figs. 5 and 8, we have seen that the Jaccard coefficient
matches our visual intuition well so it is enough to argue
that the degree of sensitivity in Fig. 8 is a little too high.
This follows from noting that the number of long life-
times in the dendrogram has decreased visibly. In practice,
a user should test several ranges for the Kb’s and choose
the results that produce the clearest separation between
clusters. Although informal, this is a common approach to
selecting a clustering and works typically as well as many
formal methods.

Simulation
For the sake of completeness, we give a simulated exam-
ple of our method for equilength categorical vectors, both
low and high dimensional. We generated data sets from
different parameterizations and structures of multinomial
distributions,100 data sets at each setting. The parameter
values in the data generating model were fixed accord-
ing to a simulation scheme (full factorial design) that
allowed for examining the impact of several aspects of the
clustering procedure:

• number of observed variables, taken as 12 and 100
• sample sizes, taken as 100, 300, 1000
• number of categories, taken as 2, 3, 4, 8
• number of clusters, taken as 3, 5, 7
• size of clusters, taken as all equipopulated or

representing a range of differences of proportions of
the data

• expected cluster separations, ranging from all
categories equi-likely to some categories likely and
some not very likely

We generated 24 data sets at each of the three sam-
ple sizes, thus 72 data sets in total. Of the 24 data sets at
a given sample size, 12 had 12 variables and 12 had 100
variables. In the case of 12 variables, three were binary,
three were ternary, four were quaternary, and two were
octonary. In the case of 100 variables, all were quater-
nary. For each of the 72 data sets, we tested three, five,
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Fig. 7 A tanglegram of the clusterings shown in Figs. 4 and 5. This visualizes the amplification and clarification of the cluster structure provided by
our ensembling approach. The same samples in both clusterings are connected by lines; branches that appear only in one clustering are denoted
by dashed lines

Fig. 8 Dendrogram generated by ensembling clusterings of random sizes on rhabdodata via DU(2, 20)
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and seven clusters taken as true. Hence we generated 432
clusterings, half using the hierarchical method based on
Hamming distance and half using our ensemble method.
We then used the Jaccard stability method as before to
compare the 216 clusterings under one method to their
respective 216 clusterings under the other method.
While many implications can be drawn from this sim-

ulation we focus on the fact that in all cases the differ-
ence between the median Jaccard index for the ensemble
method was strictly greater than the median Jaccard index
for the hierarchical method. Indeed, for sample size 100,
the average median increase in stability was .174. The cor-
responding increases for sample sizes 300 and 1000 were
.296 and .399, respectively. That is, the stability of our
method over hierarchical clustering increased substan-
tially with sample size.We comment that in the absence of
knowledge of the skewness of the distribution of the Jac-
card coefficient we have defaulted to the median, a slightly
less efficient measure of location than the mean but qual-
itatively giving the same results for the sample sizes we
have used.
As a separate point, the median improvement of ensem-

ble clustering over hierarchical clustering in terms of
Jaccard stability decreases with dimension. For the case of
12 dimensions, the increase in stability is .327 and for 100
dimensions it is .252. This is no surprise since it is well
known that as dimension increases, clustering becomes
increasingly unstable to the point where, in the limit of
large dimensions, all clusterings are equally valid. This
counter-intuitive result was first shown in [18] and a char-
acterization established in [19]. Thus, in the limit of high
dimensions, increases in stability are harder to achieve so
even small ones may be important.

Conclusion
Here we have described software that can cluster high
dimensional categorical data points that have unequal
lengths. The code is implemented in R, a well-known pro-
gramming language. Our method is based on ensembling,
random subsets, and pre-processing data (if necessary) by
using an aligner.
There are two pragmatic benefits of the methodology

built into our software. First, it is clearly seen that ensem-
bling clusterings, at least when done well, gives results that
are no worse and usually much better that using an indi-
vidual clustering. The main way this is accomplished is by
the reduction of ‘variability’. This is seen in the longer life-
times, the increased stability, and the elimination of many
of the dashed lines in the tanglegram. This parallels the
well-established principle that ensembling generally gives
better results when applied to classification and regres-
sion problems – also by reducing variability. A particularly
clear instance of this is seen in the theory behind bagging,
see [20].

Second, the main contribution of the methodology and
software is to put the emphasis where it is more useful,
namely on the construction of good candidate clusterings
for categorical data. As can be seen, evaluating clustering
stability is a well developed field with many methods that
are typically accepted as intuitively reasonable. We have
used the Jaccard index but could have equally well used
other resampling based indices such as the adjusted Rand,
the variation in information, etc. There are other classes of
stability methods, e.g., Bayesian, but these are beyond our
present scope. Each specific technique has its strengths
and weaknesses that become apparent in extreme cases
(very small clusters, clusters that are close together, etc.)
but outside of these cases the various methods for stability
do not widely differ.
It is worth commenting that dimension reductionmeth-

ods are sometimes considered a competitor to ensemble
methods. Indeed, feature selection is one of the main
ways practitioners try to evade the Curse of Dimen-
sionality. The idea is to reduce the dimension of the
vectors to be clustered by identifying relatively few func-
tions of the variables thought to characterize the clus-
ters. Evidence has accumulated that feature selection does
not work very well on continuous data – absent exten-
sive knowledge about which features are relevant – see
[21, 22], and [23]. Methods such as [24] that try to weight
explanatory variables adaptively are also known not to
perform well. Moreover, if generic methods for obtain-
ing features, e.g., PCA, are used with categorical data,
the computing demands become infeasible. Since tech-
niques based on feature selection are even harder to
devise and compute for discrete data, feature selection
does not seem a promising approach to high dimensional
clustering of categorical data. Otherwise put, generic
techniques such as ours that do not rely on extensive
subject-matter knowledge are often the only available
techniques.
Generating good categorical clusterings to assess should

be the general focus of methodological development and
exploration. This is hampered by the fact that (i) cluster-
ing, like anymodel selection type ofmethodology, tends to
require large amounts of data to be effective and (ii) by the
fact that high dimensional data is qualitatively different
from low dimensional data. This is so because the concept
of distance has an increasing impact on the spatial rela-
tionships of the data points making stability more difficult
to achieve. Hence, smaller increases in stability are overall
more important in high dimensions than low. Indeed, it
has been argued that finite dimensional intuition becomes
ever more inappropriate as dimension increases; see [25]
who argues that in the limit of high dimensions ultramet-
ric distances between points are more representative than
Euclidean distances. Nevertheless, our method seems to
be flexible, capable of generating plausible clusterings
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when used reasonably, and amenable to stability assess-
ments for finite dimensions.
We conclude by noting that even in the simplest case –

clustering low dimensional categorical data having equal
lengths – no previous method can be regarded as well-
established. However, in [7], we have argued theoretically
and by examples that the method implemented by our
software performs better on average than many other
clustering methods in settings where other methods exist.
We have also argued that in the case of fixed length high
dimensional clustering our method outperforms mixed
weighted K-modes, a technique from [26]. In the case of
non-fixed length high dimensional data, we have com-
pared our method to phylogenetic trees developed from
biomarkers. Our method appears to give results that
are equally or slightly more accurate and more generally
attainable since they do not rest on biological information
that is often not available.

Availability and requirements
Project name: EnsCat.
Project home page: https://github.com/jlp2duke/EnsCat
Operating systems:Windows, OS X.
Programming language: R ≥ 3.2.4.
Other requirements: aligner (for unequal length data).
License: GNU, GPL.
Any restrictions to use by non-academics: None.

Endnotes
1 The principle of insufficient reason states that one

should assign a uniform value across elements in the
absence of reason to do otherwise.

2 In hierarchical clustering a ‘linkage’ function must be
defined. A linkage function represents a distance or sum
of distances from any given point set to another point set.
Single linkage means the shortest distance between the
two point sets. Complete linkage means the longest dis-
tance between two point sets. Average linkage means the
average of all the distances between the points in the two
sets. There are other linkage functions that are used but
these two are the most common.

3 The commands are given in the manual at https://
github.com/jlp2duke/EnsCat.
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