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Abstract

Background: Biological sequence motifs drive the specific interactions of proteins and nucleic acids. Accordingly,
the effective computational discovery and analysis of such motifs is a central theme in bioinformatics. Many practical
questions about the properties of motifs can be recast as random sampling problems. In this light, the task is to
determine for a given motif whether a certain feature of interest is statistically unusual among relevantly similar
alternatives. Despite the generality of this framework, its use has been frustrated by the difficulties of defining an
appropriate reference class of motifs for comparison and of sampling from it effectively.

Results: We define two distributions over the space of all motifs of given dimension. The first is the maximum entropy
distribution subject to mean information content, and the second is the truncated uniform distribution over all motifs
having information content within a given interval. We derive exact sampling algorithms for each. As a proof of
concept, we employ these sampling methods to analyze a broad collection of prokaryotic and eukaryotic transcription
factor binding site motifs. In addition to positional information content, we consider the informational Gini coefficient

of the motif, a measure of the degree to which information is evenly distributed throughout a motif's positions. We
find that both prokaryotic and eukaryotic motifs tend to exhibit higher informational Gini coefficients (IGC) than
would be expected by chance under either reference distribution. As a second application, we apply maximum
entropy sampling to the motif p-value problem and use it to give elementary derivations of two new estimators.

Conclusions: Despite the historical centrality of biological sequence motif analysis, this study constitutes to our
knowledge the first use of principled null hypotheses for sequence motifs given information content. Through their
use, we are able to characterize for the first time differerences in global motif statistics between biological motifs and
their null distributions. In particular, we observe that biological sequence motifs show an unusual distribution of IGC,
presumably due to biochemical constraints on the mechanisms of direct read-out.
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Background

The computational analysis of DNA, RNA and protein
sequences is a cornerstone of bioinformatics, enabling the
study of genomes and protein families and providing the
scaffold for a broad range of algorithms used in the anal-
ysis of biological data [1]. At the molecular level, many
biological processes rely on the recognition of specific
sequence patterns, or motifs, that define specific interac-
tions between biological molecules [2]. The ubiquity of
these motifs has led to the proliferation of a vast array
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of bioinformatics algorithms dedicated to the discovery
and study of these sequence elements and their evolution
[2—8]. Transcription factors modulate gene expression
by binding to DNA in the promoter region of regulated
genes. This binding relies on the specific recognition of
short (5-30 bp) DNA sequence motifs by the transcription
factor (TF) and, therefore, the discovery and characteriza-
tion of TF-binding motifs is essential to our understanding
of transcriptional gene regulation [5, 9, 10].

The discovery of TF-binding motifs is based on the
elucidation of statistically overrepresented sequence ele-
ments within a set of sequences known or suspected
of harboring TF-binding sites (e.g. promoter regions of
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co-transcribed genes). Many algorithms for motif dis-
covery have been developed over the years, but they
can be broadly divided into word-based and probabilistic
approaches [3]. Word-based methods rely on the enu-
meration of oligonucleotides [11], whereas probabilistic
and machine learning approaches use models of vary-
ing complexity to represent TF-binding motifs, estimat-
ing model parameters through sampling or optimization
techniques [2, 12-15]. Central to these approaches is the
definition of a robust statistical framework, a TF-binding
motif model and its enhancement with heuristics based
on knowledge of the underlying biochemistry. Most motif
discovery methods, for instance, can enforce symmetry
in TF-binding motifs to enhance performance when the
TF is known to bind as a homodimer [16]. Similarly,
the canonical position-specific weight matrix (PSWM)
model for TF-binding motifs, which assumes positional
independence in the motif, can be extended to accommo-
date variable spacing or positional dependencies [17-19].
Determining the proper model for TF-binding motifs also
plays a pivotal role in other aspects of their analysis, such
as the search for TF-binding sites or the use of simulations
to analyze TF-binding motif evolution [7, 8, 20-22].

In principle, many properties observed in experimen-
tally determined collections of TF-binding sites could
be used to enhance algorithms involved in the discov-
ery, search and evolutionary simulation of TF-binding
motifs through the inclusion of heuristics or the adop-
tion of expanded models. A principled introduction of
such enhancements, however, requires that the properties
of naturally occurring TF-binding motifs be contrasted
with those of random ensembles of motifs matching
some of their defining statistics. Indeed, the practice
of comparing empirical data to the statistics of ran-
dom ensembles is common in other fields such as com-
plex network analysis [23] and systems biology [24].
Comparatively little attention, though, has been paid to
the problem of defining such ensembles for biological
sequence motifs and designing algorithms to sample them
efficiently.

As a measure of the optimal mean message length
required to encode samples from a probability distribu-
tion, information content (IC) serves as a unifying statistic
of sequence conservation [25, 26]. Here we propose and
characterize two different algorithms to sample from the
set of DNA motifs matching a desired value of this most
fundamental statistic.

We demonstrate their use by analyzing the infor-
mational Gini coefficient (IGC) of TF-binding motifs.
Assuming that transcription factor binding motifs require
a certain amount of information in order to effectively
address their regulated genes, it is an open question how
this information should be distributed among the posi-
tions of the motif.
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Researchers have long noted disparity in the degree
of conservation between the columns of prokaryotic
transcription factor binding motifs [27]. A theoretical
rationale for this disparity has been proposed based on the
observation of sine wave-like patterns in motifs bound by
multimeric transcription factors. Regions bound through
direct readout by each TF monomer require a higher
degree of conservation than “spacer” regions involved
primarily in backbone contacts, leading to wave-like dif-
ferential patterns of information content in collections of
aligned sites [28—30]. The variability in spacing between
the monomer binding sites of different TFs (illustrated
in Fig. 1) complicates the analysis of such patterns and
the evaluation of their statistical significance. IGC mea-
sures the degree of departure from uniformity in the
distribution of positional information content across a
motif, without any assumptions on the particular shape
of such distribution. IGC therefore provides a formal and
generic statistical framework to analyze deviations from
uniformity in the positional distribution of information
of biological binding motifs, such as those imposed by
multimeric binding.

Importantly, the distribution of information across a
motifis a global property of a motif (rather than a property
of its columns or column-pairs) and, therefore, it cannot
be analyzed via column-wise methods. Hence, the use of
random ensembles constitutes, to our knowledge, the only
means of rigorously assessing the distribution of infor-
mation content in TF-binding motifs. Our results show
that the degree of disparity in information content across
positions, as measured by IGC, is significantly higher in
transcription factor binding motifs than in null ensembles
with matched IC, and that higher IGC is not consistently
associated with motifs bound by multimeric TFs. This
indicates that the higher unevenness in the distribution of
information observed in biological motifs, as measured by
IGC, is an intrinsic property of TF-binding motifs, sug-
gesting that this statistic could be exploited as a signature
of biological authenticity in applications such as motif
discovery.

Methods

Definition of the motif sampling problem

Formally, we consider a motif to be a matrix of gaplessly
aligned sequences. Let us fix the length L of the sequence
(in bp) and the number of sequences N, and consider the
set M of all motifs with dimensions N x L, which has
4NL elements. The choice to consider motifs extension-
ally as collections of sequences, rather than intension-
ally (e.g. PSWMs) [5], is motivated by the fact that any
model of the data other than the sequences themselves is
necessarily a lossy representation whose appropriateness
depends on scientific context. In the interest of pro-
viding the most generally applicable results, we do not
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Fig. 1 Distribution of IGC values. For prokaryotic and eukaryotic motif collections, the distribution of IGC is approximated by kernel density
estimation. For each collection, the minimum, modal and maximum elements are depicted in sequence logos. Prokaryotic motifs: (@) OmpR,

wish to commit ourselves to any particular representa-
tion of a sequence motif. Instead we prefer to work with
the sequences themselves. It is also important to note
that our definition of a motif technically assumes some
ordering on the sequences, whereas it is more natural in
most sequence analysis applications to assume that the
sequences are unordered. We opt for the above definition
solely to simplify the combinatorics, and our results do not
depend on a choice of ordering in any way.

A motif statistic is any function f : M — R. The motif
sampling problem is then the following: given a motif M
and a set of motif statistics {f;}, sample motifs M’ with
matched values of the motif statistics, i.e. so that f;(M) =
fi(M') for all .

Not all sampling schemes are good solutions to this
problem—consider for example the trivial algorithm
which returns only M itself with probability 1. To exclude
these trivial solutions we require that the values of the
motif statistics be jointly sufficient statistics for the sam-
pling probabilities, i.e. that the probability of sampling a
given motif should depend only on its values of the motif
statistics, and not on any other of its properties.

Furthermore, some motif statistics may permit only the
trivial solutions M = M’ identically, whereas we are really
interested in the set of motifs whose statistics are approxi-
mately that of M. We therefore consider two relaxations of
the motif sampling problem. On one hand, we may require
the equalities to hold only in expectation, i.e. to satisfy

fitM) = (f;(M")) when M is sampled according to the
desired algorithm. On the other hand, we may permit a
small error tolerance and require only |[f;(M) —f;(M')| < ¢;
for specified values of ;.

In this work we consider several motif statistics. The
first is the total positional entropy of the motif, given by:

Hn=-% ¥

ceM be{A,C,G,T}

Pc(b) logy (pe(b))),

where p.(b) is the sample frequency of base b in column
1
c.
Second, we define the information content (IC) of the
motif to be the difference of the prior and posterior
positional entropies, i.e.:

IC(M) = Hprior — H(M). 1)

This quantity can be interpreted as the reduction in
uncertainty as to the identity of a nucleotide sequence
of length L, given the knowledge that it is a functional
binding site. Supposing that the genomic background is
well-approximated by a uniform random mononucleotide
model, the prior genomic uncertainty is 2 bits/base, and
Eq. 1 reduces to:

IC(M) = 2L — H(M). )

The modern framework of information theory is
due to Shannon [25], and the universality of motif
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IC as a measure of sequence conservation was first
noted by Schneider and co-workers [26] in the con-
text of transcription factor binding motifs. Through an
information-theoretical argument under certain simpli-
fying assumptions, the latter showed that the IC of a
transcription factor binding motif relates the specificity of
the motif to the genome size G and regulon size N through
the inequality,

IC(M) > log, (;’;) :

with the bound expected to be sharp in prokaryotic TFs
operating without co-factors, due to evolutionary opti-
mality. Although the bound may not universally hold in
eukaryotic binding motifs due to the presence of co-
factors and enhancers, IC has nevertheless become a basic
statistic of interest in the bioinformatics of transcriptional
regulation and molecular recognition generally [4, 31-34].

Lastly, we consider the informational Gini coefficient
(IGC) of the positional information, a measure of the dis-
parity of conservation between columns. If ¢y, ¢y, . . . ¢f are
the ICs of each column of M, sorted from least to greatest,
then the IGC is given by:

L .

2 Zj:l J6i  L+1
- _

LY iq¢ L

Geometrically, the Gini coefficient may be interpreted
as the area of the deficit between the cumulative distribu-
tion function of a given distribution and that of a uniform
distribution over the same support. It ranges between zero
in the case of a uniform distribution, and unity in the case
of a degenerate distribution [35].

On account of the centrality of IC in quantifying con-
servation in sequence motifs, we now turn to the problem
of sampling motifs according to a specified value of that
statistic.

GM) =

Maximum entropy approach

Maximum entropy distributions

The problem of sampling motifs from a distribution
whose desired value of entropy is fixed in expectation can
be approached through the principle of maximum entropy
(MaxEnt) [36], a fully general probabilistic modeling tech-
nique only recently applied to nucleic acid motifs [37, 38].
Supposing a random variable of interest X with unknown
distribution but the following observable constraints:

Yi = (ft(X»’l € {L"'r”} (3)

the probability distribution over X with maximum
entropy subject to these constraints is given by:

1 n
P) = — exp (— > Mﬂ(x)) : (4)
i=1
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where the conjugate variables A1, ..., 4, must be tuned
to match the expected values y1, . . ., ¥y, and the partition
function Z ensures normalization. Distributions of this
form are maximally unassuming in the specific sense that
no other distribution satisfying the constraints of Eq. 3 can
have greater entropy.

In this application, we choose the maximum entropy
distribution over the set of motifs of given dimension, sub-
ject to a constraint on the expected value of the motif
entropy itself. In practice one may consider constrain-
ing the IC instead, but this is equivalent to constraining
entropy on account to of the definition of IC in Eq. 2. The
resulting density takes the form of a Boltzmann distribu-
tion with Shannon entropy in place of energy:

1
P(M) = Ee‘“‘“M), (5)
where,
Z= Y e 6)
MeM

is the partition function and A is tuned so that (H(M))p,
the expected value of entropy when M is distributed
according to P(M), attains the desired value.

This distribution satisfies the stated requirements of the
first formulation of the motif sampling problem. The aver-
age value of the motif IC is respected, and the probability
of a motif depends only on its IC and not on any of its
other properties.

The description of a probability distribution, however,
does not by itself suffice to sample from it. We complete
this section by introducing an exact algorithm for effective
sampling from distributions of this type.

Maximum entropy sampling

In principle, any discrete MaxEnt distribution can be
sampled rather mechanically: one need merely compute
the partition function in Eq. 6 and employ the inverse
transform method to obtain samples. In this application,
however, Z contains 4L terms and will be impossible to
enumerate directly for all but the smallest dimensions.

Distributions with intractable normalization constants
are often approachable via Markov Chain Monte Carlo
techniques [39—-41]. In the absence of an explicit conver-
gence criterion, however, the practitioner must rely on
heuristics or visual inspection to gauge approximate sta-
tionarity of the chain. For this reason, we are motivated to
derive an exact algorithm instead.

Let us first consider the set of motifs of dimension N x 1,
i.e. those consisting of a single column of length N. The
probability assigned to each motif in that set must depend
only on its entropy, and hence only on the frequencies
of each nucleotide. This observation permits us to par-
tition the set of motifs into a smaller set of equivalence
classes defined by equality of entropy. To understand this
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equivalence relation, we can define a counting function
Kk that takes each motif to the vector of its nucleotide
counts (ng,nc,ng, nr). Two motifs are then equivalent
with respect to entropy if their count vectors are permuta-
tions of one another. To efficiently compute the partition
function, then, it suffices to compute the entropies of each
unique vector of counts (up to permutation) and weight
them by the cardinality of their equivalence classes.

In detail, the entropy associated with a count tuple 7 is:

- np np
Hiy=- Y Zlog(-2),
be{A,C,G,T} N N

Next, define a weight function w by,

w(in) = Z Lean~n

MeM

where M is the set of N x 1 motifs and ~ denotes
equivalence under permutation. Informally, w counts the
number of motifs that map to each distinct tuple. For
ease of reference, when we consider equivalence classes
of count tuples we will take the first element of the class,
sorted lexicographically, as its distinguished representa-
tive. Now it is possible to obtain a convenient closed form.
To do so, we first define:

m(ﬁ)=< Yo lpmmadeer ) ]l[nb—nTJ>~
be{A,C,G, T} be{A,C,G,T}

Informally, m counts the multiplicities of each element
of the count tuple. Then we have:

R 4! N!
wn) = — . (7
() I m(n)! I1 np! @
be{A,C,G,T} be{A,C,G,T}

This formula has an elementary interpretation: the first
term counts the permutation-equivalent count vectors,
and the second term counts the number of motifs associ-
ated with each count vector.

At end, we need only compute the sum:

Zy =Y wme O, (8)
neN/~

where A/ ~ is the quotient of the set of count vectors
by permutation equivalence, # ranges over the distin-
guished representatives of all equivalence classes, and we
write Z, to remind that this is the partition function for
a single column. In this way we can reduce the sum to a
tractable number of terms that can be computed exactly.
For N = 200, for example, there are fewer than 6 x 10*
terms in the sum over equivalence classes, as opposed to
approximately 2 x 1029 in the full sum.

Finally, having treated the single-column case, let
us now consider multiple columns. Because positional
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entropy is additive with respect to columns, we can
rewrite the expression in Eq. 5 as:

P(M) = e D HOD
4
L

1 —AH (M)
= — 1_[@ ] ,
Zi

where M; denotes the jth column of M, and Z = ZL. The
MaxEnt distribution over motifs therefore factors into the
product of MaxEnt distributions for the columns. Sam-
pling a multiple-column motif is then only a matter of
sampling L columns independently and adjoining them.
The expected entropy of a motif as a function of A is
given by:
W(’jl)e—AH(;l)

(HM)), =L Y H() 700

neN /~

)

The appropriate setting of A for a desired value of
entropy H* can be found by solving:

(HMD)), —H* =0 (10)

via standard root-finding algorithms [42].

Runtime analysis

The runtime of the algorithm described in the previous
section is dominated by the task of estimating the param-
eter A, which requires evaluation of the weight function in
Eq. 7 for every count vector as well as computation of the
sum in Eq. 8. Both of these tasks are linear in the size of
the count vector quotient '/ ~ defined in Eq. 8. The size
of the count vector quotient is just the number of integer
partitions of N having at most 4 parts. This quantity has a
convenient closed form [43],

3 2
N/~ | =round<(N+4) +3WN +4)" - IN+HWN +4) m0d2)>,

144

which is O(N3). Once A has been fixed, the remaining
sampling steps require O(Llog(|N/ ~ |)) operations.
The total runtime is therefore linear in L and cubic in N.
Although the time complexity of the algorithm is polyno-
mial in both N and L, we caution as a practical matter that
runtimes may still be long when N is large.

Truncated uniform approach

Truncated uniform distributions

While the MaxEnt distribution described in the previous
section is the maximally unassuming model for motifs of
a given mean IC, the user might find it more convenient
in some cases to explicitly define the range of permissible
IC values to sample from. We therefore consider the task
of sampling uniformly from the set of all motifs having a
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given IC of I £ ¢ bits. This distribution has the form:

L —ICM)| <e
0, otherwise

P(M) = {

where Z normalizes. This distribution satisfies the stated
requirements of the second formulation of the motif sam-
pling problem.

Truncated uniform sampling

To sample from the truncated uniform distribution on
IC we propose a rejection sampling algorithm [44] that
employs the MaxEnt distribution as a proposal. Fixing the
desired IC £ ¢, let

AIC(M)
Zq

e

QM) =

be the p.m.f. of a MaxEnt proposal distribution with mean
IC I. (For notational convenience we will consider Q to
be defined in terms of information content rather than
entropy; the two formulations are equivalent up to a sign
change and a constant.)

Now let,
[HC(M) — 1| < €]
Zp

be the p.m.f. of the target distribution. If there exists a pos-
itive constant C such that % < 1 for all M, then it is
possible to sample from P by drawing a sample M from Q
and a uniform random variate r from U[ 0, 1], accepting M
only if % <r.

Although both P and Q contain intractable normaliza-
tion constants, we can nevertheless write:

P(M) =

P(M) _ P/ Zp
QW) QM) zq

_—HcanZQ
7%

. Zo .
and absorb the ratio Z—g into the constant C. From then
on, we may simply consider the ratio of the unnormalized
densities,

Py 1
Q( M) T MCM)’

which is maximized for IC(M) = I — ¢ = I,;;,. Therefore
we set C = e~*nin, Altogether, the acceptance ratio AR for
a motif M drawn from Q is given by:

ARM) = & Umin—IC(M))

In particular, the acceptance ratio is never less than
—2Ae
e,

The total time required to draw one motif from P there-
fore goes as the product of T, the time required to sample
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from Q, and (ﬁ)Q, the mean number of trials required
in order to accept a sample. If ¢ is small, then we have
To é, whereas the mean number of proposals will
be bounded above by e?**. Hence the CPU time will go

. 20 . . . . .
approximately as “—, which is minimized for

1

Therefore, although it is possible to set ¢ to any desired
value, an approximately optimal error tolerance follows
directly from the runtime analysis.

Parametric bootstrapping

For any motif M and motif statistic f, we may compute the

bootstrap percentile of y = f(M) in the following way.
j.i.d.

First we compute / = IC(M), then sample M7, ... M, g

P(M'|I), for P the parametric density of our choice (Max-

Ent or TU). Setting y; = f(M)) for each i, the bootstrap

percentile of y is given by,

[ily” < 7}
pes(f, M) = lT,
or the fraction of observed bootstrap replicates having a
value of the motif statistic f less than f (M) [45].

Information content p-value calculations
MaxEnt distributions subject to mean entropy may be
exploited in order to estimate the p-value of a motif’s
information content. In this application, the task is to
determine the probability of observing a motif of given
dimension with IC of at least I bits by chance. Although
exact algorithms for this problem have proven elusive,
[46, 47], we suggest an application of the MaxEnt frame-
work to this problem, yielding an importance sampling
estimate that may be bounded analytically, approximated
by moment matching, or estimated efficiently through a
Monte Carlo importance sampling estimate.

Formally, the p-value of the information content / of a
motif M is given by,

1
Pl = - > con > 1, (12)

MeM

where Zp = 4N*L Let QM) = %e“C(M) be the MaxEnt

distribution subject to mean IC such that the expected IC
under Q is I. Then Eq. 12 can be recast as an importance
sampling estimate,
Z _
Prat = 5 (ICAD > e D) (13)

with the expectation taken according to Q.
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Analytic upper bounds

We can obtain an upper bound on the p-value by noting
that the expression inside the expectation, [ IC(M) > ]
e MCWM) - will never be greater than e ™. Under the
assumption that the induced distribution on IC is sym-
metric about I, we can reduce this bound further by a
factor of two since half of the samples will not contribute
to the sum, yielding:

Zo[1l _
Pval = =2 |:e Mi| .

=7 |2 (14)

Moment-matching estimates

It is also possible to estimate the expectation analytically.
The distribution Q(M) over motifs induces a distribution
IC(M) on information content which is approximately
normal. The mean of that distribution is just I, by con-
struction. The variance o> can be computed exactly by
summing over count vectors in the fashion of Eq. 9. The
expectation can therefore be recast as the integral,

([ICM) > I] e_“C(M))Q ~ /Ooe_“¢(x;1,02) dx,
I

(15)

where ¢ is the normal probality density function. This
integral has an exact solution [48], allowing the p-value to
be written altogether as:

ZQ 1 Ao
~ — | = f —— )
Pval Zp [26 erfcx \/E

where erfcx is the scaled complementary error function
[49]. In fact, Eq. 16 can be read as Eq. 14 adjusted by a

factor of erfcx (%), which is bounded in the unit inter-

(16)

val for positive arguments and captures the effect of the
dispersion of the IC values from Q about I.

Importance sampling
Finally, we note that the accuracy of these methods may
be checked by simply taking an importance sampling esti-

i
mate, drawing M, M, ... M, e Q and replacing the
expectation in Eq. 15 with a sample mean:

Zo |1 _ ,
Pral ~ Z—i |:n Z[IC(ML') >1Ie AIC(MZ):| . (17)

i=1

Conversion to E-values

To convert from p-values to E-values, which are more
common in the context of motif discovery, we simply mul-
tiply the p-value by the number of alignments possible
under the given data model (e.g. OOPS, ZOOPS, ANR,
&c.) [46], various results for which are collected in [50].
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GC-content adjustment
As Eq. 4 suggests, the MaxEnt framework permits the
incorporation of as many mean constraints as the modeler
sees fit. We have chosen to focus on information content
as a universal statistic of sequence specificity, but other
constraints may sometimes prove desirable as well. In the
context of transcription factor binding motifs, which draw
their instances from typically AT-rich promoter regions,
one may prefer to control for GC-content as well as IC.
Formally, this amounts to finding parameters A and u so
that the system:

PM) = %eXp ACM) + nGCM))),
(Icn) =1,
(GC(M)) = G,

is satisfied for desired IC / and GC G. In general, a system
with multiple constraints might be solved by generic opti-
mization techniques such as stochastic gradient descent.
In this case, however, we can exploit the fact that the
computation of A is independent of GC in order to first
fix mean IC, and then fix mean GC conditional on mean
IC. In this way, we preserve both the exactness of the
parameters and the efficiency of the sampling algorithm.

In particular, the expected GC-content of a column is
given by:

e 18
Zg' u(gln)e

= : 18
Z(n, ) 1%

(%GC) =) " P(i)

gen

where g € 7 ranges over the possible GC-contents deriv-
able from the count vector 7, u(g|#) is the base probability
of selecting a GC content of g from 7, (i.e. if u were 0),
and Z(n, u) = de;, u(g|ln)e M8 is the partition function
over GC levels for a given count vector 7. Finding the value
of u that yields the desired mean GC-content is a one-
dimensional root-finding problem that may be solved on
analogy with Eq. 10.

We caution that IC and %GC are not independent:
it is impossible, for example, for a column to be fully
conserved while maintaining a %GC of 0.5. In general,
the minimum (respectively, maximum) %GC is given by
> P(n) min{g|g € n}, (respectively, max). If desired %GC
n

exceeds these bounds, then there will be no values of A
and p that simultaneously satisfy the constraints. In our
implementation, we check for existence of the solution
and warn the user if necessary.

Data curation

In our analysis we examined naturally occurring, exper-
imentally validated transcription factor binding motifs
from both prokaryotic and eukaroytic organisms.
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Prokaryotic motifs were accessed from the CollecTF,
MtbRegList, RegTransBase, RegulonDB, DBTBS, and
CoryneRegNet databases [51-56]. Eukaryotic motifs
were accessed from the JASPAR vertebrate database [57].
Motifs that had fewer than ten sites, inconsistent lengths,
fewer than five bits of IC, or which were derived from
SELEX were excluded. Motifs with more than 200 sites
were randomly subsampled without replacement to a
final depth of 200 sites.

Provided that this down-sampling is performed at ran-
dom, the only potential concern is small sample bias. The
sample-size correction for IC is (’)(%) [58], amounting to
less than 0.01 bits per position when N = 200. Since IGC
is a function of the positional IC values of a motif, its
own small sample size correction is also negligible. Statis-
tics for down-sampled motifs can therefore be confidently
imputed to the originals.

Summary statistics are given in Table 1 and presented
graphically in an additional file [see Additional file 1].

Hardware

All timing simulations were performed on a desktop work-
station, using a single 3.3 GHz Intel Xeon core with an
8MB cache, and 16 GB DDR RAM.

Software
Algorithms described in this study are implemented
in a Python 2.7 library available at github.com/poneill/
formosa.

Results

Validation and performance

We begin by validating the output of both algorithms.
Figure 2 shows the distribution of IC of motifs sampled
via both the MaxEnt and TU distributions (top left and
top right, respectively) under various parameter settings.
In particular, the length of the motif was fixed at 10 bp; the
number of sites in the motif N varied from 20 to 200; and
the desired IC varied between 5 and 15 bits with a toler-
ance of £0.1 bits for the TU distribution. In each case we

Table 1 Motif summary statistics

Prokaryotic Eukaryotic

Min  Median  Max Min  Median  Max
Length (bp) 9 17 29 4 9 26
Number of Sites 10 19 459 10 44 19,264
IC (bits) 6.10  13.05 2157 5 12.70 3348
IGC 016 033 0.56 0 0.21 0.51
Number of Motifs 63 424

Minimum, median and maximum statistics are presented separately for prokaryotic
and eukaryotic motifs. Maximum statistics for number of sites refer to values prior to
subsampling
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find good agreement between the desired and obtained IC
values.

In the lower panels we display CPU times required to
perform the sampling. Depicted for each parameter set-
ting is the mean time required to sample a motif when
requesting 100 random motif variates, with each call aver-
aged over three trials. In all cases, the required time is less
than 1s per motif.

To compare the distributions on IGC induced by the
MaxEnt and TU distributions, we fixed motif parameters
L =10 and N = 50 and then sampled from each distribu-
tion, with desired IC increasing from 0.1 to 1.9 bits over
100 steps. Results, shown in Fig. 3, show that the MaxEnt
and TU distributions have quite similar distributions of
IGC conditional on IC. In agreement with intuition, IGC
approaches 0 as IC approaches a maximal value of 2 bits
per column, as all columns become fully conserved. As IC
decreases (right to left), mean IGC increases. To assess
whether the distribution of IGC conditional on IC differed
between the two algorithms, MaxEnt and TURS IGC val-
ues for each IC step were compared via Kruskal-Wallis test
[59]. To account for multiple hypothesis testing, the sig-
nificance level was adjusted via the Benjamini-Hochberg
procedure [60] to hold the false discovery rate (FDR) to
5 %. To within the limits of statistical power, there is no
detectable difference in the distribution of IGC condi-
tional on IC between the two algorithms (Kruskal-Wallis
test with FDR correction p > 0.05).

IGC in biological motifs
We then explore how the IGCs of biological motifs
compare to those from matched synthetic motifs. We
separately considered the prokaryotic and eukaryotic col-
lections of naturally-occuring, experimentally validated
transcription factor binding motifs. For each motif we
generated 100 matched motifs according to both the Max-
Ent and TU distributions, then compared the observed
IGC to the mean of the synthetic motifs. To explore the
possibility of a relationship between IGC and basic motif
structure, we classified each motif as an inverted repeat,
direct repeat or monomer. The results are shown in Fig. 4.
For prokaryotic motifs, the Pearson correlations
between biological and synthetic IGCs are statistically
significant for both the MaxEnt and TU distributions
(r=.50,p < 1074, and r = .52, p < 107, respectively).
For eukaryotic motifs, the correlations are even higher
(r=.92,p < 10723, and r = 93,p < 10796, respectively).
It is clear that our model is capturing some fraction of
the variation in IGC. We also observe, though, that the
biological values of IGC are typically higher. This is espe-
cially true of eukaryotic motifs. The basic motif structure
is indicated in the style of the marker, showing no clear
relationship between structure and IGC. For reference,
the IC values of the biological motifs are also shown
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against the mean IC values of their matched replicates.
These plots indicate good agreement in all cases.

To ensure that the effect observed in Fig. 4 was not
due merely to systematic differences in %GC between
transcription factor binding motifs and random controls,
we generated for each motif an ensemble of randomised
motifs matching mean IC only, and a second ensemble
matching mean IC and mean %GC. We then compared
their distributions of IGC in order to test for possible bias
in %GC-controlled motifs towards higher IGC values. In

Fig. 5, we compare mean IGC for each pair of ensembles,
finding excellent agreement (Pearson r > .99).

IGC as a signature of biological origin

Noting that the IGCs of biological motifs are generally
higher than those of synthetic motifs with matching IC,
we consider next whether this phenomenon could be
employed as a predictor of biological origin. For each bio-
logical motif we compute the bootstrap percentile of its
IGC value from a sample of 100 MaxEnt motifs. These

e MaxEnt
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0 5
MaxEnt and TU distributions for each IC value, and IGC plotted against IC
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Fig. 3 Conditional distribution of IGC given IC. For L = 10, N = 50 and IC varying uniformly from 0.1 to 19 bits, 100 motifs were sampled from the
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percentiles are typically high; in the prokaryotic collec-
tion, for example, 14 of 63 motifs were found to have IGCs
greater than all 100 of their bootstrap replicates, whereas
the number of such motifs expected by chance is less than
one.

To construct a negative set, one MaxEnt motif was
sampled from each biological motif, and IGC bootstrap

percentiles were computed similarly. Figure (6) depicts the
resulting receiver-operating characteristic (ROC) curve
for IGC percentile as a predictor for distinguishing biolog-
ical from synthetic motifs. An ROC curve can be used to
describe the performance of a binary classifier with a tun-
able threshold by comparing the true positive rate (TPR)
to the false positive rate (FPR) over all possible values
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MaxEnt replicates is compared to the mean IGC of a second ensemble additionally matched for %GC. For each plot, Pearson r > 0.99. The identity
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of the threshold. A perfect classifier can simultaneously
achieve a TPR of 100 % and a FPR of 0 %, whereas for an
arbitrary random classifier the TPR will generally be equal
to the FPR for any threshold value. By integrating the ROC
curve, one obtains the “area under curve” (AUC) statis-
tic, which will vary between unity for a perfect classifier,
and 0.5 for a random classifier [61]. In this case, the AUC
statistic is approximately 0.85.

Motif IC p-values

Turning to the problem of estimating motif IC p-values
with the MaxEnt framework, we validate our methods in
Fig. 7. Fixing L = 10 and varying N between 20, 50 and
100, we estimate p-values according to the bounding and
moment-matching approaches discussed above (Eq. 14
and Eq. 15, resp.) for IC ranging between 0 and 15 bits.
For further comparison, the cumulative density function
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Fig. 7 IC p-value estimates. Upper bounds and analytic estimates for motif IC p-values are shown for the parameter values L = 10, N = 20,50,100. Also
shown is the empirical complementary cumulative distribution function of 10% randomly sampled motifs, as well as p-values derived from
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(CDF) of the null IC distribution for each value of N was
estimated empirically from 103 samples each. For IC val-
ues beyond the detection limit of direct sampling, p-values
were computed by importance sampling (Eq. 17), with 10
samples per data point.

The inset plot shows good agreement between both
methods and the empirical complementary CDF, up to
the event detection limit of 1073, Beyond this limit, the
methods continue to agree with the importance sampling
p-values past 107100 with the upper bound typically hold-
ing to within a single factor of ten. In fact these trends per-
sist over the full domain of IC, though we have truncated
the y-axis for clarity.

False-positive identification in motif-finding settings

In the previous section, we introduced methods to esti-
mate the p-value of a given motif. Conversely, these meth-
ods can also be applied to the problem of estimating
the length of a collection of sequences to be input into
a motif-finding algorithm in order to yield one motif of
given dimensions and IC. This allows us to benchmark
the advantages of the IGC percentile as a potential fil-
ter for false positives in motif-finding algorithms. To this
end, we considered another classification task similar to
that of Fig. 6, but in which the negative set is drawn
from motif-finding algorithms rather than from MaxEnt
distributions. For each motif in our collection we con-
structed random sets of sequences drawn either from a
mononucleotide model or from the coding sequences of
the Escherichia coli K12 MG1655 genome [62]. Eukaryotic
motifs were excluded due to the difficulty of generating
synthetic false positives of such characteristically large
size. E. coli genomic sequences were restricted to coding
regions in order to preclude the possibility of recover-
ing a genuine transcription factor binding motif. One
motif of equivalent dimensions was then extracted from
each collection using a Gibbs sampling approach [63]
under the assumption of a one-occurence-per-sequence
model. Considering these motifs as false positives, we then
attempted to discriminate them from true TF binding
motifs as in Fig. 6, constructing 1000 MaxEnt replicates
for each and measuring their IGC percentiles. AUC values
range from 0.60 for E. coli sequences to 0.65 for syn-
thetic sequences. We note in particular that for motifs
drawn from E. coli sequences, classifying power is great-
est for high IGC percentiles and falls off to approximately
random chance as the threshold decreases, whereas for
random sequences the classifying power is approximately
constant with respect to threshold. Results are shown in
the left panel of Fig. 8.

We next performed an analogous experiment with syn-
thetic motifs drawn this time from the MEME algo-
rithm [14]. Due to the computationally intensive nature
of MEME, seven large prokaryotic motifs timed out and
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were excluded from further analysis, leaving 56 motifs in
total. The results, shown in the right panel of Fig. 8, indi-
cate that the IGC percentile criterion yields AUC values of
less than 0.5 when used to discriminate TF binding motifs
from false positives produced by MEME.

To explore this last unexpected result, the distribution
of IGC percentiles for synthetic motifs drawn from ran-
domized sequences through Gibbs sampling or MEME
(following Fig. 8) are compared in Fig. 9. There we see
that while the percentile distribution is roughly uniform
for motifs found through Gibbs sampling, there is a pro-
nounced peak in high IGC percentiles for motifs found
through MEME, indicating a bias in MEME towards high
IGC, relative to expectation.

Discussion

In this study we present a general framework for analyzing
the properties of biological sequence motifs. This method
arises from the general problem that, given a motif with
some seemingly unusual feature, we often wish to know
whether that feature is remarkable in the statistical sense.
The question then arises of what to compare the given
motif zo. The most natural null distribution is the set of all
motifs with comparable IC, but it is not obvious how to
obtain them.

Consider a motif of modest dimensions L = 10 and
N = 20 with 10 bits IC, for example. There are 42 ~
2 x 10'20 motifs of this size, of which we can calculate that
approximately 2 x 1078 have 10 % 0.1 bits IC. The prob-
ability of obtaining one such motif by sampling uniformly
at random is therefore on the order of 10~*2, implying
runtimes longer the timescale of the universe. Alternately,
one could construct high IC motifs heuristically, but there
is no guarantee that the resulting replicates would satisfy
the requirements of the motif sampling problem as stated.
To our knowledge, prior to this study the problem of sam-
pling a motif with a desired quantity of IC has never been
addressed.

The algorithms developed here allow users to sample
from the space of all motifs of given dimension so that
the generated variates have I bits of IC on average (for
MaxEnt) or all have IC within ¢ bits of I (for TU).

Validation and performance

While validating the methods, we noticed that although
the agreement between specified and sampled IC in Fig. 2
was generally good, the Truncated Uniform distribution
was biased towards the lower endpoint of the IC interval,
especially for large N. This is an expected consequence of
the fact that the base density of motifs is approximately
inversely exponential in IC. Thus a distribution which
assigns equal probability mass to all motifs in a given range
of IC will be biased towards the lower end of the interval
simply because there are more motifs there to be sampled.
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Due to the fact that the algorithm for the TU distri-
bution employs a MaxEnt sampler as a proposal for a
rejection sampling scheme, TU runtimes are never lower
than MaxEnt runtimes for the same parameters. Specif-
ically, the TU runtimes go inversely with the acceptance
ratio. For ease of comparison between parameter settings,
we set ¢ 1—10 throughout and found acceptance ratios
typically not less than 1072, This will naturally degrade,

however, as ¢ — 0. The user who wishes to maximize the
acceptance ratio may set & according to the heuristic we
describe in Eq. 11.

When we examined the relationship between IC and
ICG generated by the MaxEnt and TU distributions in
Fig. 3, we saw that mean IGC increases as IC decreases, a
phenomenon due simply to the greater number of ways to
satisfy the required IC with high disparity of conservation
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motifs derived from random sequences via Gibbs sampling and MEME (following Fig. 8)
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between columns, relative to the number of low-disparity
solutions. The variance also increases with decreasing IC,
indicating that low-IC motifs admit a wider variety of
solutions in terms of columnar conservation.

IGC in biological motifs

Comparing biological motifs to random ensembles of syn-
thetic motifs with matched IC in Fig. 4, we find that
the ensemble statistics account for some fraction of the
observed variation, leading to statistically significant cor-
relations in both the prokaryotic and eukaryotic collec-
tions. On the other hand, we also find that biological
motifs typically show higher IGC than would be expected
by chance. Moreover, this phenomenon is independent of
the choice of null distribution.

The conventional explanation for the inequal distribu-
tion of information content in TF-binding motifs is based
in the informational footprint associated with sites bound
by TFs in multimeric conformation (typically as homod-
imers) that is observed in a large fraction of prokary-
otic TFs. The combination of low specificity binding at
spacer regions with highly specific readout at monomer-
binding sites leads to a characteristic wave-like pattern in
the distribution of information content on aligned bind-
ing sites. We do not, however, observe any clear trend
between motif structure and IGC. Furthermore, the pat-
tern of greater than expected IGC persists in eukaryotic
motifs, where the large majority of transcription fac-
tors are monomeric [64]. Comparisons between biological
motifs and the synthetic replicates used to assess IGC dif-
ferences show good agreement in IC. Hence the observed
discrepancy in IGC cannot be attributed to any discrep-
ancy in IC introduced by the sampling process, nor to
multimeric binding mode, and comparison of IGC val-
ues for MaxEnt ensembles with and without controlling
for %GC in Fig. 5 confirms that this deviation is not
caused by %GC bias in TF-binding motifs. This suggests
that the uneven pattern of information encoding seen in
TF-binding motifs is the result of other biochemical or
informational constraints on TF-binding site evolution.

DNA accessibility on the axis of binding impacts the
ability of proteins to specifically recognize individual
DNA bases, both across grooves and between them
[65, 66], providing a potential explanation for the devi-
ation in IC distribution observed in TF-binding motifs,
independent of binding mode. The uneven encoding of
binding information, however, can also provide advan-
tages from an informational point of view. Theoretical
analyses have shown that the short length of TF-binding
sites enhances their mutational robustness [8]. Deviation
from uniformity in the distribution of information across
a TF-binding motif effectively translates into a form of
site compression for mutational purposes, with conserved
positions acting as hubs in the space of viable TF-binding
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sites, and hence provides an informational basis for the
observation that TF-binding sites are both more muta-
tionally robust and evolvable than one would expect by
chance in sequences of similar length [67].

IGC as a signature of biological origin

As an illustration of possible applications, we have shown
that the bootstrap percentile of IGC is an effective feature
for discriminating biological motifs from synthetic motifs
of comparable IC. As a proof of concept, we consider the
task of distinguishing biological motifs from IC-matched
MaxEnt control motifs. We employ MaxEnt distribu-
tions as negative controls precisely because they are least
assuming distributions that satisfy the expected ICs. Using
only IGC as a predictor to identify the biological motifs,
we find that such a classifier achieves an AUC of approxi-
mately 0.85. Crucially, this feature is orthogonal to IC, and
can therefore provide an independent signal of biologi-
cal authenticity in transcription factor binding motifs for
ensemble classifiers. For example, consider the problem
of prioritizing further research into putative motifs found
through a motif discovery application. Among motifs with
equal E-values, there is no a priori reason to prefer one
to another. By ranking the motifs according to their IGC
bootstrap percentiles, however, one can prioritize a ran-
dom biological motif before a random false positive with
about 85 % probability. This scenario suggests that the
IGC is a fairly robust signature of biological provenance
in transcription factor binding motifs, and may therefore
prove useful in the context of motif discovery as an adju-
vant to conventional E-value-based methods of assessing
significance.

Motif p-values
Next we turn to the exploration of motif p-value esti-
mates depicted in Fig. 7. The problem of motif p-value
estimation is central to the task of motif discovery, help-
ing workers to distinguish between motifs likely to possess
biological relevance and spurious results due to chance.
The problem of statistical significance is especially acute
in this setting since the search, being NP-hard, takes place
over a necessarily combinatorial space of possible motifs
[68]. Accordingly, motif p-value calculation algorithms
tend to invoke the machinery of generating functions
[69, 70], dynamic programming [68], or related meth-
ods such as branch-and-bound algorithms implemented
with fairly sophisticated data structures [71]. Of interest
to us was the question of whether the MaxEnt framework
could be pressed into service of the motif p-value prob-
lem in order to yield a conceptually simple Monte Carlo
calculation or some related estimators.

Comparing our methods to simulations in Fig. 7, we
find strong agreement between the upper bound of Eq. 14
and the analytic estimate of Eq. 15 on one hand, and the
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empirical p-values found by direct sampling and impor-
tance sampling on the other. The strategy of bounding
the p-value from above is an analytic result requiring no
further assumptions, and in particular holds over all pos-
sible distributions on IC which satisfy the constraint on
the mean. Despite this generality, it appears to hold con-
sistently within a factor of ten of the true p-value over
a hundred orders of magnitude. The moment-matching
estimate is more precise, but assumes that the distribution
induced on IC is approximately normal. This assumption
is easily granted when the dimensions of the motif are
large, but even for modestly sized motifs (e.g. L = 10,N =
20) we found excellent agreement with empirical simu-
lation. These estimators fall out more or less naturally
from the MaxEnt framework, and illustrate its utility in
rare-event estimation.

After developing this application we noticed an interest-
ing congruence between our rejection sampling algorithm
and the method of Hertz and Stormo [46]; the latter
approached the p-value problem via large deviations the-
ory and the method of exponential tilting, whereas we
were motivated by the general task of sampling motifs
via the principle of maximum entropy. Ultimately, how-
ever, our approach allows us to derive p-value estimates
and upper bounds which agree well with experiment over
the entire domain of IC values without having to perform
piece-wise approximations.

False-positive identification in motif-finding settings
When we considered the problem of distinguishing true
TF binding motifs from synthetic motifs of equivalent
dimensions generated by Gibbs sampling, as in the left
panel of Fig. 8, we found that the IGC percentile method
can discriminate true positives at a rate consistently better
than chance. This was true of synthetic false positives gen-
erated both from E. coli coding sequences and a random
mononucleotide model, although the asymmetric nature
of the ROC curve for synthetic motifs derived from E.
coli suggests a depletion of low-IGC motifs in that nega-
tive set. We note that this may be an artifact of the use
of coding sequences, where the degeneracy of the wobble
position in-frame may increase the variance of conserva-
tion by column, relative to what would be expected by
chance [72].

However, when we attempted to reproduce the per-
formance of the ICG percentile classifier with synthetic
motifs inferred by MEME (Fig. 8, right panel), we found
that IGC percentile performed no better than chance
at eliminating false positives. The reason for this result
becomes clearer when we compare the distributions of
IGC percentiles for synthetic motifs generated by MEME
and Gibbs sampling in Fig. 9. While the IGC percentiles
for Gibbs sampling motifs are roughly uniformly dis-
tributed, those for MEME motifs are strongly peaked
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about the maximum percentile value. This suggests a sys-
tematic bias in MEME towards motifs with higher IGC
values, relative to what would be expected by chance,
given IC.

This last finding should be interpreted as a caution, as
it suggests that MEME may be less suited than meth-
ods based on Gibbs sampling to the discovery of low-IGC
motifs. In the context of the TF binding site motif discov-
ery problem which originally motivated the development
of the MEME algorithm and provided its early test cases,
such a bias is in fact generally helpful because TF binding
motifs are also so biased (Fig. 4). In other motif-finding
applications, however, the benefits of a bias towards high-
IGC motifs is not as obvious, and might be taken into
account when deliberating between MEME and Gibbs
sampling methods which sample more evenly with respect
to IGC.

Limitations and future directions

Sample size

The runtimes of the algorithms presented in this work
are cubic in the size of the motif, and this can present
challenges for analyzing very large DNA motifs. In prac-
tice we have elected to downsample such large motifs
to a regime where the algorithms are tractable, yet the
small sample noise for the statistics of interest is negli-
gible. For column-wise information content (and hence
for IGC), this trade-off is not difficult to negotiate. For
other choices of motif statistic, however, it is incumbent
upon the user to ensure that the distribution of the statis-
tic under downsampling is comparable to the statistic of
the full motif.

Extension to the amino acid alphabet

In principle, the algorithms described above go through
just as well for arbitrary alphabets other than nucleotides,
including the standard amino acid alphabet. Although we
have described the algorithms in this study in terms of
the DNA alphabet for clarity, one may adapt them to
any alphabet A rather mechanically, iterating over the ele-
ments of A where appropriate and replacing factors of 4
by factors of |A|.

We caution, however, that the time complexity is
O(N'I=1) in general, so that sampling for protein align-
ments in the standard amino acid alphabet goes as a
19" degree polynomial. This may render analysis of large
protein alignments quite taxing.

Extension to the continuous limit

The algorithms presented here are entirely discrete. When
N is very large, however, it is tempting to pass to the
continuous limit and treat the columns of a motif as ele-
ments of a probability simplex rather than as raw counts.
MaxEnt distributions subject to mean IC over probability
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simplices are formally equivalent to the “entropic priors”
of the form P(B) o« e PHP sometimes used in Bayesian
inference [73]. However, to our knowledge there are no
exact sampling algorithms for such distributions.

Another possibility is to construct a rejection sampling
algorithm using a symmetric Dirichlet distribution as a
proposal, since it is straightforward to sample [74] and
the expected value of entropy can be found analytically
[75]. Rejection sampling, however, requires the ratio of
target and proposal densities to be globally bound by
a known constant that, while empirically well-behaved,
appears difficult to obtain in closed form.

Conclusions

At root, bioinformatics is the study of patterns in bio-
logical sequence data. Such patterns appear largely as
conserved elements in collections of sequences, with the
degree of conservation quantified in terms of positional
entropy. The description of such patterns has two essen-
tial aims, one basic and the other applied. In terms of
basic research, one would often like to infer the existence
of a biological mechanism from an unusual pattern in
sequence data. In terms of applications, one often seeks to
find more instances of a motif in a database of sequences,
given a few positive examples. Searches based on infor-
mation scores often suffer from large numbers of false
positives, motivating the incorporation of additional fea-
tures to further constrain a probabilistic model of the
motif. Both of these tasks assume, however implicitly, that
the practitioner can recognize an unusual feature of a
collection of sequences, over and above what might be
expected simply by chance from any collection with a
similar degree of conservation. To our knowledge the sta-
tistical problem of sampling such collections has never
been formally addressed.

In this study we provide algorithms for sampling from
the maximum entropy distribution over nucleic acid
motifs of a specified dimension given mean IC, as well as
from the truncated uniform distribution over all motifs
of a given dimension having IC within a given interval.
Our methods allow researchers to ask, for any motif and
motif statistic of interest, “how unusual is the observed
value of the motif statistic among all similarly conserved
motifs?” We note that in contrast to other strategies for
sampling high-dimensional objects such as Markov Chain
Monte Carlo methods, which generally provide samples
from an approximation to the distribution of interest
after long and typically uncertain runtimes, the algorithms
described in this work are exact and efficient.

As one proof of concept, we investigated the distri-
bution of IGC in a large and diverse collection of tran-
scription factor binding motifs. The marked disparity of
conservation between columns of binding motifs has long
been noted, but until now there has been no principled
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way of quantifying the excess over what is due to chance.
This would be especially difficult for IGC because it is a
global statistic of a motif that does not reduce to lower-
order functions of columns or column-pairs. Its null dis-
tribution is analytically intractable, and thus it illustrates
the advantages of the parametric bootstrap framework.
As another potential use-case, we show that the IGC per-
centile statistic can be used to help refine false positives
from certain motif-finding algorithms. As a last illustra-
tion of the framework, we consider the motif p-value
problem and show that it offers simple derivations of two
powerful p-value estimators, as well as new interpreta-
tions of existing approaches.
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Additional file 1: Contains a figure entitled “Motif Summary Statistics”,
being a graphical representation of the data in Table 1. (208 KB PDF)
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