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Abstract

Background: Histone modifications play an important role in gene regulation. Their genomic locations are of great
interest. Usually, the location is measured by ChIP-seq and analyzed with a peak-caller. Replicated ChIP-seq
experiments become more and more available. However, their analysis is based on single-experiment peak-calling or
on tools like PePr which allows peak-calling of replicates but whose underlying model might not be suitable for the
conditions under which the experiments are performed.

Results: We propose a new peak-caller called ‘Sierra Platinum’ that allows peak-calling of replicated ChIP-seq
experiments. Moreover, it provides a variety of quality measures together with integrated visualizations supporting
the assessment of the replicates and the resulting peaks, as well as steering the peak-calling process.

Conclusion: We show that Sierra Platinum outperforms currently available methods using a newly generated
benchmark data set and using real data from the NIH Roadmap Epigenomics Project. It is robust against noisy
replicates.
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Background
The genomic localization of DNA bound proteins, such as
transcription factors or (modified) histone proteins, is fre-
quently used to identify regulatory relationships between
regulators and the regulated genes in different cell types.
The state-of-the-art method for this purpose is ChIP-
seq (Chromatin immunoprecipitation sequencing). First,
DNA is fragmented. Fragments bound to the protein of
interest are extracted and subsequently sequenced. The
resulting sequencing reads can then be mapped onto
the genome. As neither the experimental procedure nor
the mapping of the reads to the genome are perfect, the
existence of a read at a specific genomic location does
not always imply that the measured protein was bound.
Additional measurements with unspecific or without anti-
bodies serve as background measurements and allow to
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cope with the noisy signal. Peak-calling compares the
signals of the ChIP-seq experiment with backgroundmea-
surements to find genomic regions where the experiment
is significantly enriched over the background. Thus, the
genomic location of the protein measured is determined.
Several peak-callers are available for single experiments.

The largest difference between the different methods is
the statistical framework used to model the background.
Peaks are annotated at positions where the observed num-
ber of reads is significantly higher than the one expected
by chance given the background model. Koohy et al. [1]
and Wilbanks et al. [2] give a good overview and com-
parison of state-of-the-art peak-callers used in several
published studies.
Peak-calling for replicated ChIP-seq experiments, how-

ever, is not well supported. In the following, we refer to
the replicated ChIP-seq experiments as ‘replicates’ and
to their combined analysis as ‘multiple-replicate peak-
calling’. Only two approaches exist that use a single
experiment peak-caller and either combine the repli-
cates before peak-calling or combine the peaks obtained

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1248-6-x&domain=pdf
http://orcid.org/0000-0001-9544-121X
mailto: lydia@bioinf.uni-leipzig.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Müller et al. BMC Bioinformatics  (2016) 17:377 Page 2 of 13

from the single experiments (see Fig. 1: MACS-CR and
MACS-SA, respectively). Combining the replicates before
peak-calling requires equal library sizes (total number of
mapped reads) across all replicates or down-sampling to
a common library size. For example, the NIH Roadmap
Epigenomics Project uses the down-sampling approach to
avoid artificial differences in the signal strength with uni-
form depth of at most 30 million reads before merging
the replicates [3]. Similarly, MACS scales the two libraries
which are compared to the same amount of reads to
make experiment and background library comparable [4].
Down-sampling, however, may lead to an overestimation
of the noise level. It is not possible to incorporate weights
for the replicates based on their quality or to backtrack the
source of a specific signal to the supporting replicates.
Combining the peaks of the single experiments includes

all peaks in any of the replicates. Thus, replicates with
poor peak-call quality can have a large effect on the final
result. Furthermore, very long peaks can occur in the final
peak set by merging neighboring narrow peaks from dif-
ferent replicates. While none of the replicates predicts
those broad peaks, the final result contains them.
Further, only PePr [5] explicitly supports replicates of

the same condition during peak-calling (see Fig. 1: PePr).
It uses a binomial model that expects the same disper-
sion for experiment and background. However, for, e.g.,
experiments performed at different sequencing centers, it
is unknown if this condition holds and consequently it is
not guaranteed that the results obtained using this model
are reliable. Also, PePr down-samples all libraries to the
same size and thus might overestimate the noise level.
Besides the so far mentioned peak-caller, there are sev-

eral peak-callers for differential peak-calling, i.e., finding
peaks which occur in only one of two groups of samples.

The underlying statistical model assumes that there are
basically three types of peaks: peaks occurring in both
groups of samples and peaks occurring in only one of the
two groups. In particular, none of the groups is treated as
background for which no peak should be found. Similar to
PePr, those peak-callers apply methods from differential
gene expression which fit two negative binomial distribu-
tions to the two groups for each locus and compare the
data based on these distributions. For example, csaw [6]
uses the edgeR package [7] to find differential peaks, while
diffBind [8] uses peaks predicted on each sample and com-
pares the peaks based on read counts within the peaks
using the edgeR package [7]. We do not aim at finding
differential peaks but peaks with respect to a background
measurements which is a very different task from a sta-
tistical point of view [6]. We will therefore not further
evaluate those peak-callers in detail.
The currently available approaches for replicate peak-

calling are neither designed to assess the replicates’ quality
nor to handle replicates of different quality. Moreover, the
replicates’ quality can not be incorporated during peak-
calling. In the case of combining the peak-calls of the
single experiments, it is in principle possible to introduce
weights to account for different qualities of the replicates.
However, doing this in a statistically sound way is hardly
possible since non-significant positions are not provided
by the peak-caller.
To close this gap, we propose Sierra Platinum, a new,

fast and robust peak-caller for replicated ChIP-seq exper-
iments with visual quality-control and -steering. Sierra
Platinum uses a model based on the Poisson distribution
together with the inverse normal method to combine the
replicates. Multiple quality measures are computed and
visualized. This allows to judge the replicate’s quality as
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Fig. 1 Overview of the multiple-replicate peak-calling process showing the basic steps of multiple-replicate peak-calling for Sierra Platinum, PePr,
MACS-CR (combine replicates approach using MACS as single-experiment peak-caller), and MACS-SA (combine peaks approach using MACS as
single-experiment peak-caller). All peak-caller extract the parameters of the underlying model (squares) from the background data (dark circles) and
use it to calculate p-values (pentagons) indicating how significantly enriched the experiment (light circles) is. Based on the p-values, peaks (triangles)
are calculated. Quality control (magnifier) is provided usually alongside with the peaks. Only Sierra allows to examine the quality during the
peak-calling process, while all other methods only allow to examine the quality of the peaks obtained
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well as the quality of the resulting peaks. A subset of
replicates can be selected and weighted to obtain the com-
bined peaks. Figure 1 shows the principal differences and
commonalities between the current methods formultiple-
replicates and Sierra Platinum (see also Chapter “Method”
in the Additional file 1).
We optimized the computation of the combined peaks

to keep time and memory requirements minimal (see also
Chapter “Optimization” in the Additional file 1).
Currently, no benchmark data set for assessing the qual-

ity of peak-callingmethods is available. Peak-callingmeth-
ods are evaluated against real data without known ‘ground
truth’. To be able to assess the quality of peak-calling
methods based on ‘ground truth’, we created a benchmark-
ing data set (see also Chapter “Benchmark Data Set and
Quality Measures” in the Additional file 1).
Based on this benchmarking data set we assessed and

compared the quality of Sierra Platinum, PePr, and exist-
ing approaches using single-experiment peak-callers. It
shows that our approach allows an optimized combina-
tion of the replicates yielding less false positive peaks and
stable true positive ones, while avoiding also false negative
peaks, that is, avoiding missing peaks (see also Chapter
“Evaluation” in the Additional file 1).
Finally, we applied Sierra Platinum to H1 chromatin

methylation and acetylation data. We found that our pre-
dictions match the results known from literature better
than previously published ones (see also Chapter “Results”
in the Additional file 1).

Methods
The multiple-replicate peak-calling process of Sierra Plat-
inum is depicted in Fig. 1. Sierra Platinum computes the
multiple-replicate peak-calls in three phases: (I) construct
p-values per replicate, (II) combine these p-values, (III)
compute the final peaks and additional information based
on the combined p-values. The individual steps of each
phase are described next (see also Chapter “Method” in
the Additional file 1).

Phase I The steps of this phase are computed for each
data set—experiment and background of each replicate—
or each replicate separately. First, the windows are con-
structed. Each window has a start position and a size.
All tags overlapping this window are counted. Empty
windows are discarded.
Afterwards, the Poisson distribution of the tag counts

of the windows is computed. Similar to the approach by
Zhang et al. [4], this serves as a model for computing
the single experiment p-values. As in general the amount
of used and mapped material differs between experiment
and background, the experiments are scaled. This allows
the comparison between experiment and background.

Next, the 1, 5, and 10 k neighborhoods of each window
are determined. Now, single experiment p-values are cal-
culated for each window and each replicate based on the
global λ of the normalized Poisson distribution and the λ

values computed for each neighborhood.

λ = max{λglobal, λ1k , λ5k , λ10k} (1)

Strong but very local changes in the tag distribution
along the genome might lead to significant changes in
both background and experiment compared to the λ com-
puted. Therefore, we check whether the background is
significant given the chosen λ. If this is the case, then we
use the tag count of the corresponding window as λ esti-
mate instead and recalculate the corresponding p-value.
These p-values determine the peaks of each replicate.
To reduce the effect from the correlation between the
p-values computed, they are transformed into so-called q-
values. As the q-values are corrected p-values, they are
subsequently called p-values.

Phase II During this phase, the information computed
for the replicates is combined. Sierra calculates for each
window and replicate one p-value. To obtain a single p-
value for each window, the inverse normal method [9] is
used to combine p-values of the different replicates of the
same window. First, the correlation between the replicates
is determined. This information is used for adapting the
combination of the replicates performed next. On the one
hand, the replicates need to be correlated to compute jus-
tified, combined peaks. On the other hand, correlation is
problematic for applying the combination method pro-
posed. Therefore, the combination has to be corrected for
the correlation found.
The replicates are filtered and weighted based on their

quality assessment. To compute the combined p-values
for each window, the inverse normal method is applied.
During this step, replicates, which are filtered out, are
discarded, and the correlation coefficients and weights
established previously are applied.

Phase III During this phase, the combined p-values are
used for computing additional quality information as well
as narrow and broad peaks. The combined p-values are
again correlated and therefore converted into q-values. As
the q-values are corrected p-values, they are subsequently
called p-values again. Finally, the narrow peaks and the
broad peaks of the final combined result are determined.

Quality parameters Sierra assesses several quality
parameters for the single experiments, the combined
p-values, and the final peaks (see Fig. 1). This allows the
user to assess and control the quality of the peak-calls.
For each replicate, Sierra provides the following quality
measurements. We provide the theoretical and empirical
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read distributions allowing the user to judge whether
the Poisson distribution is a good fit for the data. Since
the background model has to be comparable to the
experiment’s read count distribution, experiment and
background are scaled to the same library size (same
total number of reads). Sierra allows to inspect the nor-
malized distribution to judge the comparability of both
models. To evaluate the quality of the reads used for
peak-calling, the base quality distribution of the mapped
reads is depicted. The p-value distribution indicates if
the significance level allows peak-calls of high quality.
The median p-value distribution calculated across all
replicates allows to assess whether a replicate is an outlier
or fits into the replicate ensemble. Similarly, the distribu-
tion of significant windows for all chromosomes of the
replicate and the respective medians across all replicates
allow to draw conclusions about the replicates fit to
the ensemble of replicates. Furthermore, they allow to
identify chromosomes with an odd number of significant
windows.
To support the calculation of the combined p-value, the

correlation between the replicates is calculated based on
the so-called probits. Probits are a transformation of the
p-values of the single experiments and are a by-product
of the inverse normal method. The correlations indicate
how strong the replicates agree on a common signal. We
provide the distribution of the combined p-values which
allows to adjust the cut-off and p-value correction method
to the data. After peak-calling, we provide the overlap of
the final significant windows with the significant window
in each replicate. In contrast to the correlation, this mea-
surement already incorporates the chosen p-value cut-off
(see also Chapter “Method” in the Additional file 1).

Results
Benchmark
We evaluate the results of Sierra Platinum and com-
pare it to PePr [5], and MACS-SA and MACS-CR using
MACS2 [4] based on the benchmarking data set (gold
standard). Except for the ‘noise free’ set of replicates,
we generated peak-calls using all replicates with equal
weight (Sierra1, without down-weighting or excluding bad
replicates), excluding the ‘noisy’ replicates (Sierra 2), and
down-weighting the ‘noisy’ replicates (Sierra 3). In all data
sets, the ‘noisy’ replicates could be identified using at
least one quality measurement. Additional information is
provided in the Chapter “Evaluation” of the Additional
file 1.
The results are shown in Figs. 2, 3 and 4. From top to

bottom we report Recall, Positive Predictive Value (PPV),
False Discovery Rate (FDR), and Number of Peaks (see
also Chapter “Benchmark Data Set and QualityMeasures”
in the Additional file 1). In addition to the results obtained
by the different peak-calling methods, we also provide

the number of peaks that would be optimally found (gold
standard, GS).
First of all, we checked the performance on noise-free

data. However, the noise-free data is far away from a data
set produced in a laboratory. Thus, we introduced differ-
ent types of noise, which could also be observed in real
data. To be able to assess the effects of the factors indepen-
dently, we generated data sets containing only one type
of noise. In the following, we will show the effects of the
following factors: pure sequencing quality, too low enrich-
ment, too low sequencing depth (i.e., under-sequencing),
and too high sequencing depth (i.e., over-sequencing).
Furthermore, we test for the combination of bad quality,
low enrichment, and low sequencing depth (bad1, bad2,
likeK4), and noisy signals (see also Chapter “Benchmark
Data Set and Quality Measures” in the Additional file 1).

Noise-free data For the noise-free data (Fig. 2), Sierra
Platinum has the highest recall, followed by both varia-
tions of MACS having more than 10 % less recall, while
PePr has a recall of≈ 30 % less. Compared toMACS (both
approaches) and PePr also the PPV and FDR are much
better for Sierra Platinum. The high number of peaks gen-
erated by PePr comes at the expense of a high FDR. In
total, best results are obtained by Sierra Platinum.

Pure sequencing quality For pure sequencing quality,
we used two benchmarking data sets. Each of them con-
tains two good replicates and either one or two bad
replicates (Fig. 3, first column). It does not make a large
difference whether we add one or two data sets with a low
sequencing quality, and thus more sequencing errors, to
two high quality data sets: the results are quite similar to
those of the noise-free data set. Excluding the low qual-
ity replicates improves the results a bit with respect to
recall, PPV, and FDR. Almost as good is the improvement
when down-weighting instead of excluding the replicates
of low sequencing quality. Compared to MACS and PePr,
any approach of Sierra Platinum (all replicates, removing
bad replicates, down-weighting bad replicates) performs
better with respect to all three quality measurements.

Low enrichment A low enrichment, i.e., the signal to
noise ratio is low, does not much affect the performance
of all peak-callers (Fig. 3, second column). The result of
Sierra Platinum can be equally well improved by deleting
or down-weighting the low enriched replicates.

Low sequencing depth A low sequencing depth does
not have a strong influence on the peak-calling qual-
ity of Sierra Platinum (Fig. 3, third column). Deleting
or down-weighting the replicates with low sequencing
quality improves the results even more. Deleting is just
marginally better than down-weighting. Still, MACS-CR
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Fig. 2 Evaluation results for the noise-free data set (6 replicates)

and MACS-SA have lower recall but a higher PPV than
PePr. The recall is about 3 % lower than in the noise-free
data for MACS.

High sequencing depth Replicates with a too high
sequencing depth are not effecting the peak-calls of
MACS-CR and MACS-SA (Fig. 3, fourth column). This
might be an effect of the two good quality replicates
always included in the data sets. Surprisingly, two repli-
cates with a high sequencing depth produce better results
than just one replicate with too many reads in the case of
PePr (recall and PPV increase by about 10 %). The results
of Sierra Platinum in its default settings are affected by the
replicates with the too high sequencing depth. Deleting
the replicates with toomany reads, the recall drops slightly
but the PPV increases. Down-weighting these replicate
shows similar results. In the case of two over-sequenced
samples, the results of the effect of down-weighting or
deleting bad replicates can be seen even stronger.

Bad replicates We evaluated Sierra Platinum, MACS-
SA, MACS-CR, and PePr also on data sets with a mixture
of noises. The data sets bad1 and bad2 (Fig. 4) are com-
posed of two good replicates, and 1 respectively 2 under-
sequenced replicates with low enrichment and low quality.

The recall drops and the FDR tends to increase with the
amount of bad replicates in Sierra Platinum, but this can
be efficiently compensated by deleting or down-weighting
the replicates. In comparison to the other peak-callers,
even the native version of Sierra Platinum has higher recall
and lower FDR.
The data set likeK4 contains a mixture of qualities

(Fig. 4), i.e., experiment and background may not have
comparable data quality and the quality between repli-
cates differs as well. Similarly to the previous data set,
recall and FDR are better compared to the other peak-
callers independently of the approach used for Sierra
Platinum.

Noisy data sets We compared all peak-callers on data
sets containing 1, 2, or 3 noisy replicates (Fig. 4, bottom
row), i.e., replicates with a different signal track. Each data
set is filled up with replicates of perfect quality until they
contain 6 replicates in total.
The recall of all peak-callers decreases with an increas-

ing amount of noise. In particular MACS-SA and PePr
show a strong drop in the recall. Furthermore, the FDR
increases strongly. The strongest increase of the FDR is
found for MACS-SA since the peaks of all replicates are
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Fig. 3 Evaluation results for data sets with noise. First column: low sequencing quality. Second column: low enrichment. Third column: too low
sequencing depth. Fourth column: too high sequencing depth. First four rows: one bad replicate; three replicates in total. Second four rows: two bad
replicates; four replicates in total
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Fig. 4 Evaluation results for quality deficits in some of the data sets. First four rows, left to right: one under-sequenced replicate with low enrichment
and low quality, two under-sequenced replicates with low enrichment and low quality, and a mixture of quality inspired by real data for H3K4me3 in
embryonic stem cells. Second four rows, left to right: one, two, and three noisy replicates
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simply merged. Thus, all peaks from the noisy replicates
are kept.

Summary Even using the defaults settings–no deletion
or down-weighting of replicates—the performance of
Sierra Platinum on noisy data is superior compared to
the performance of other peak-callers on noise-free data.
Deleting or down-weighting replicates increases the per-
formance of Sierra Platinum on noisy data reaching the
performance of Sierra Platinum on noise-free data. Thus,
the method implemented in Sierra Platinum is robust
against any kind of noise in the data. Moreover, the imple-
mented user interactions for deleting and down-weighting
replicates in combination with the visual quality control
features allow fine-tuning of the peak-calling results to
obtain the optimal results for each data set.
A detailed description of the benchmarking data set and

a more intense evaluation of Sierra and its parameters can
be found, in the Chapters “Benchmark Data Set and Qual-
ity Measures” and “Evaluation” of the Additional file 1,
respectively. Furthermore, the justification of the default
parameters and a guideline for how to recognize noisy
data sets alongside with suggestion for parameter choices
for noisy data sets are provided.

Real data set
Peak agreement
The analysis of the agreement of the peaks predicted by
Sierra Platinum and by different publicly available peak
caller is based on H3K4me3 measurements of all three
replicates of BMP4 Trophoblast Cells in the GEO Series
GSE16256. We predicted peaks with Sierra Platinum, the
MACS-SA and MACS-CR approaches, PePr, and csaw.
The overlap of the peak predictions is shown in Fig. 5. A
large amount of the peaks are predicted by both MACS
approaches, PePr, and Sierra Platinum. Many peaks pre-
dicted by Sierra Platinum are also predicted byMACS-CR
and MACS-SA. Only csaw does not show a significant
overlap with the peak prediction of the other peak caller.
The reason for this is, that csaw was designed to make
differential peak calls but not peak calls of an experiment
with respect to a background.

Stem cell marker coverage
We analyzed the stem cell marker coverage and we looked
at the genes known to be embryonic stem cell marks, i.e.,
they are active in embryonic stem cells and their activity
is crucial for cell identity and function. We will com-
pare the predicted epigenomic states of the promoters
of such markers. The epigenomic state is hereby defined
as the collection of peaks for the histone modifications
analyzed. Three different epigenomic states will be com-
pared. Firstly, the epigenomic state predicted with Sierra
Platinum on the H1 data set. Secondly, the epigenomic

state predicted with Sierra Platinum on the ESCs data set.
Thirdly, the consolidated epigenomic state of the H1 cell
lines downloaded from the NIH Roadmap Epigenomics
Webportal of the Washington University (epigenome
E003, only H3K4me3, H3K27me3, and H3K9me3; they
used the MACS-CR approach). The calculations of the
three epigenomic states is described in the supplemental
information.
PePr crashed on the H1 and ESCs data set because it

could not find any significant window at all. Thus, we
cannot compare our results to the epigenetic state gen-
erated with PePr. We also run csaw [6] on the H1 data.
Even though csaw found a few “up-regulated” peaks, most
differential binding events where enriched in the control
(“down-regulated” peaks) rather than in the ChIP exper-
iment. This indicates that the results of csaw are very
error-prone. In both cases—PePr and csaw—we would
argue that due to the high variance of the replicates, it
is hard to find windows where the variation between the
experiment and the background is much smaller than the
variation between the replicates.
We looked at five stem cell markers for embryonic stem

cells: SNF2H, BRG1, SSRP1, OCT4, and SNF5 [10]. The
peaks generated by Sierra Platinum for the H1 and the
ESC data set largely overlap these regions even though the
signal was different. In particular, they have very similar
peaks for H3K4me3 (light and middle green) but also for
H3K9ac (light and dark pink) the agreement of H1 and
ESCs peaks is large. Comparing the three marks that we
downloaded for E003 to H1 and ESCs, we see this agree-
ment only—if at all—in H3K4me3. We show the results
for SNF5 in the following and the results for the remaining
markers in the Additional file 1.

SNF5 Around the main promoter for SNF5, we found
a strong activating signal (see Fig. 6). All three activat-
ing marks, namely H3K4me3, H3K27ac, and H3K9ac, are
present in the epigenomic states of H1 and ESCs if this
modification was included in the epigenomic state. Only
in the ESCs epigenome there are two H3K27me3 peaks.
One peak locates 5’ of the promoter of SNF5 (SMARCB1)
and thus, probably does not influence the transcription.
The second peak is located nearby the alternative tran-
scription start site and may repress transcription from
the corresponding alternative promoter. E003 gives a dif-
ferent picture. The promoter of SNF5 is at least poised
according to E003, i.e., there are peaks for H3K4me3 and
H3K27me3. There is even a small H3K9me3 peak at the
transcription start site. Therefore, one would conclude
that this gene is switched off.

Overall agreement While the stem cell marker may
present a very important class of genes for the cell type
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Fig. 5 Agreement of the Peak Predictions: The overlap in the peaks predicted by Sierra Platinum (purple), MACS-SA (blue), MACS-CR (orange), PePr
(green), and csaw (red) is shown

studied, the overall agreement in the promoter state indi-
cates whether the observed differences are a global trend
or just effects restricted to the chosen example. Therefore,
we ask now, how strong the different epigenomic states
agree on the association of a promoter with one single

modification. We calculated the Venn diagram showing
how many promoters are associated with a specific mod-
ification in the three data sets (see Fig. 7). In the overlap
of all three sets will be therefore all those promoters
which are associated with the mark in all three data sets.

Fig. 6 Genomic location of SNF5: The peak-calls are shown below the transcript annotation of SNF5. Peak-calls for the different modifications and
data sets are color coded as follows: green: H3K4me3, red: H3K27me3, blue: H3K9me3, black: H3K27ac, purple: H3K9ac; light: H1, medium: ESC, dark:
E003 (not all combinations exist). The position of the described promoter and gene body are marked with ‘P’ and ‘B’, respectively
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Fig. 7 Venn Diagrams for all three modifications showing how often the data sets predict the presence of the mark in the promoters: (left) H3k4me3,
(middle) H3K27me3, (right) H3K9me3. Blue circles correspond to H1, orange circles correspond to ESC, and green circles correspond to E003

Association with H3K4me3 shows the strongest agree-
ment. All circles have a similar size and the overlap of
all three data sets is large (> 46 %). For H3K27me3 and
H3K9me3, this region represents less than 2 % and less
than 1 %, respectively. The main reason for this is the large
number of promoters associated with this mark in E003
(large green circles in the Venn diagrams). Even though
the agreement between H1 and ESC is not strong, it is still
stronger than the overlap with E003.
We finally investigated whether the excessive amount of

predicted peaks by E003 compared to H1 and ESC is a
general, genome-wide trend or specific for the promoter
regions. As a measurement, we used the total number of
nucleotides that are covered with peaks of each modifica-
tion for each data set (see Fig. 8). Indeed, E003 has a much
higher coverage for each of the modifications. The differ-
ence for H3K4me3 is the lowest but still, E003 assigns this
modification to more nucleotides than H1 and ESC. The
effect is most extreme for H3K9me3 in E003.

Summary E003 and H1 are based on the same data and
nevertheless predict different peak positions. Given, that
the examples we showed are all embryonic stem cell mark-
ers which have to be active, one would expect only acti-
vating marks. Thus, the Sierra Platinum peak-calls based
on both, H1 and ESCs, fit very well the expectation for
the shown markers while the E003 peak-calls are suspi-
cious. In particular, the inactivity of SNF5 would be lethal
for embryonic stem cells [10]. Also for the other stem
cell markers shown here, it is reported that inactivity is
lethal [10]. Consequently the active chromatin predicted
by Sierra Platinum is more reliable than the may be inac-
tive chromatin or at least with inactive marks speckled
chromatin predicted by E003.
In the Chapter “Results” of the Additional file 1, a more

detailed comparison of the epigenomes is shown. Besides
stem cell marker coverage, we also report the results of our

analysis of H3K4me3 and H3K9me3 coverage in the Hox-
C and the Hox-D clusters as well as of a promoter region
coverage analysis.

Time andmemory consumption
We compared the time and space requirements of the
optimized version of Sierra Platinum with those of
MACS-CR, MACS-SA, and PePr using real data. For two
different sets of window offset and window size, Table 1
lists the runtime and the maximally used memory for all
methods. Both, MACS-CR and MACS-SR, reflect only
the time and memory used for peak-calling, i.e., of run-
ning MACS2. The total time to generate the peaks is
longer including additionally the step for combining the
input files (MACS-CR) or the output files (MACS-SA),
respectively. While for MACS-SA the time for combin-
ing the results is negligible, combining the input files for
MACS-CR can take very long depending on the perma-
nent storage access speed. In the case of PePr, a complete
measurement was not possible since PePr crashed after
calculating the candidate windows. Further steps could
not be performed since not a single candidate window
was found. This also shows that PePr is not robust against
noisy data.
The results show that Sierra Platinum is fastest among

all tested methods (window offset = 100 nt, windows
size = 400 nt) even though not all steps for MACS-CR
and MACS-SA are included in the time and PePr crashed
before finishing. Changing the window offset to 50 nt
and the window size to 200 nt does not change the run-
time or memory consumption of the methods MACS-SA
andMACS-CRmuch. Sierra Platinum uses twice as much
time and 20 % more memory. PePr also crashes for these
settings after more than 4 hrs.
The memory consumption of Sierra Platinum can not

be compared to that of the other methods. For PePr the
memory needed is unknown, as it crashed pre-maturely.
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Fig. 8 Sum of nucleotides that are covered with peaks of each modification for each data set

For MACS-SA, only one replicate is handled at a time,
and for MACS-CR all reads are already combined. Also,
the memory needs of the pre- and post-processing steps
are not included. Finally, Sierra Platinum uses thememory
not only for computing the peaks, but also for com-
puting quality information, which increases its memory
consumption.

Discussion
Sierra Platinum is substantially better than the existing
peak-calling approaches for replicated ChIP-seq experi-
ments. Our benchmarking results indicate that we are
able to find peaks with enough precision to obtain good
recalls, low false discovery rates, and positive predictive
values on the benchmarking data sets. Even using the
default settings, the performance of Sierra Platinum on
noisy data is superior to the performance of other peak-
calling approaches on noise-free data. Deleting or down-
weighting increases the performance of Sierra Platinum

on noisy data reaching the performance on noise-free
data. Thus, the method implemented in Sierra Platinum is
robust against any kind of noise in the data.
The visual controls implemented in Sierra Platinum

enable detecting the source and type of noise and thus
allow reducing the influence of noisy replicates by down-
weighting or deleting them. Sierra Platinum’s performance
is already superior to the other methods for multiple-
replicate peak-calling when adapting its parameter set-
tings to those suggested for MACS or PePr. With optimal
parameter settings recall and positive predictive value can
be increased even further. Thus, Sierra Platinum allows
high quality peak-calls. Furthermore, by fine-tuning the
parameter settings guided by the visual quality controls,
the calculations of Sierra Platinum can be adapted to pro-
vide optimal results for the given data.We showed that on
real data, such as the H1 and ESCs data sets downloaded
from the NIH Roadmap Epigenome project [3], peak-calls
from Sierra Platinum fit current knowledge reported in

Table 1 Time and memory consumption for peak-calling the six replicates of H3K4me3 in H1

Method
100nt, 400nt 50nt, 200nt

Time (mm:ss) Max mem (GB) Time (h:mm:ss) Max mem (GB)

Sierra platinum 23:16 20.0 48:46 24

PePr a59:15 a16.0 a4:12:46 a21.24

MACS-SA 33:23 1.0 33.41 0.96

MACS-CR 30:47 3.4 30:15 3.26

All results were obtained on the same machine (see Additional file 1 for hardware specification) and with the same input files using a cut-off value of p = 10−5

aElapsed time or maximal memory used until crash
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literature better than peak-calls produced with MACS-
CR. The only other tool able to performmultiple-replicate
peak-calling, PePR, was not even able to handle the data
but crashed because it could not find any significant win-
dow. It is very likely that this is a result of the high variance
in the data and its partially low quality. In summary, the
strength of Sierra Platinum lies in its robustness against
noisy replicates, and in the additional capability to assess
their data quality and to reduce the influence of noisy
replicates by down-weighting or excluding them.

Conclusion
Sierra Platinum is a fast and robust multiple-replicate
peak-caller. So far, it is the only peak-caller allowing qual-
ity control and -steering and therefore leads to better
peak-calls compared to current approaches and tools.
The procedure and parameters are chosen to produce
an optimal result with respect to recall and FDR. Sierra
Platinum is robust against noise and thus allows multiple-
replicate peak-calling even for replicates not produced
by the same lab or study. Alongside with Sierra Plat-
inum, we provide a benchmark data set which allows
to compare the performance of peak-callers with respect
to specificity and sensitivity. The implementation of the
method is optimized such that we only consume as much
memory as required to ensure a fast computation of the
peak-calls.

Additional file

Additional file 1: Supplementary information. The supplementary
information (pdf file) contains a very detailed description of the method
implemented in Sierra Platinum and a description of Sierra Platinum (user
interface and infrastructure) and its optimization. Furthermore, we present
a very comprehensive benchmark of Sierra Platinum, i.e., a comparison to
other peak-callers and peak-calling approaches for replicated ChIP-seq
experiments for various conditions and a parameter benchmark for the
parameters of Sierra Platinum. We provide derived parameter settings and
guidelines for choosing the right parameters based on the quality
measurements implemented in Sierra Platinum. The supplementary
information contains also a more extensive comparison between the result
of Sierra Platinum and MACS-CR on real data. (PDF 3000 kb)
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