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Abstract

Background: Post-transcriptional regulation is a complex mechanism that plays a central role in defining multiple
cellular identities starting from a common genome. Modifications in the length of 3’UTRs have been found to play an
important role in this context, since alternative 3’ UTRs could lead to differences for example in regulation by
microRNAs and cellular localization of the transcripts thus altering their fate.

Results: We propose a strategy to identify the genes undergoing regulation of 3’ UTR length using RNA sequencing
data obtained from standard libraries, thus widely applicable to data originally obtained to perform classical
differential expression analyses. We decided to exploit previously annotated APA sites from public databases, in
contrast with other approaches recently proposed in which the location of the APA site is inferred from the data
together with the relative abundance of the isoforms.
We demonstrate the reliability of our method by comparing it to the results of other microarray based or specific
RNA-seq libraries methods and show that using APA sites databases results in higher sensitivity compared to de novo
site prediction approach.

Conclusions: We implemented the algorithm in a Bioconductor package to facilitate its broad usage in the scientific
community. The ability of this approach to detect shortening from libraries with a number of reads comparable to
that needed for differential expression analyses makes it useful for investigating if alternative polyadenylation is
relevant in a certain biological process without requiring specific experimental assays.
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Background
Gene regulation is a complex set of mechanisms used
by living organisms to generate different cell types and
behaviors from a single genome. Among the most recent
discoveries in this field is the dynamic and highly poly-
morphic nature of 3’ Untranslated Regions (3’ UTRs)
[1–3]. These regions play a fundamental role in regu-
lating transcript abundance, translation and localization,
and have recently been shown to be highly polymorphic
both among tissues [4, 5] and individuals [6]. Most human
genes have multiple alternative polyadenylation (APA)
sites and thus are able to give rise to primary transcripts
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with different 3’ ends. The most common APA form con-
sists in the cleavage of the transcript in a position that is
more 5’ proximal than the canonical one but still in the
3’UTR, thus leaving the coding sequence unmodified but
leading to a “shortened” processed mRNA.
APA can have multiple effects on the fate of the

transcripts, since 3’UTRs harbor recognition sites for
microRNAs and several RNA binding protein affecting
transcripts stability and cellular localization; moreover
also nuclear export [7] and translational efficiency are
influenced by 3’UTRs [3].
Some general trends have been identified in recent stud-

ies of APA: cells in highly proliferative normal tissues
(i.e. testes) and cancer cells express a higher number of
shortened transcripts than non-proliferating tissues (i.e.
brain) and the healthy counterparts of tumors [3, 8, 9]. In
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agreement with these observations a trend towards longer
3’ UTRs has been identified during murine embryonic
differentiation [10].
The approaches that have been proposed so far to study

this process on a genomic level were based on specific
procedures to process microarray signals [11] while in the
last years many ad hoc RNA-sequencing protocols were
developed in order to identify the location of APA sites in
transcripts, and the expression levels of different isoforms
in different contexts [12].
Given the high number of already available RNAseq data

obtained for differential expression analyses we sought to
develop a software able to identify differential APA sites
usage across different conditions on these datasets, with-
out requiring ad hoc sequencing approaches able to detect
specifically the ends of transcripts (i.e. SAPAS by [13]).
Recently the APA phenomenon has been studied in

several normal tissues and species with ad hoc sequenc-
ing approaches making available the coordinates of many
of the possible ends of transcripts in public databases
(PolyA_DB2 [14] and APASdb [15]), therefore we decided
to exploit these already annotated APA sites to identify the
alternative transcripts whose expression levels we want
to compare. This choice should be contrasted with other
approaches recently proposed [16–23], in which the loca-
tion of the APA site is inferred from the data together with
the relative abundance of the isoforms. The advantage of
our choice is, as shown in the results, higher sensitivity in
detecting alternative usage of annotated APAs compared
to a tool that infers APA location from RNA-seq data.
Using RNAseq and APA databases to distinguish dif-

ferent isoform expression and specifically alternative
polyadenylation is not a novel idea: [24] used ratio of
RNAseq read density or average microarray probe inten-
sity on different portions of UTRs to define the Relative
expression of mRNA isoforms Using Distal polyA sites -
here we extend their RNAseq based approach to com-
pare the polyadenylation status between two different
conditions in a statistically robust manner and propose a
Bioconductor package to make differential APA analyses
an easily added step to every mRNAseq experiment.

Implementation
Our approach is based on defining two distinct portions
of the ends of the transcripts: one shared by both the short
and long isoforms, which from now on will be addressed
as PRE, and the other one (POST) that pertains only to
the long isoforms. Using reads falling on these two regions
for a given gene we are able to obtain the expression ratio
(m/M) between the short and long isoforms in a given
sample. To compare different conditions we calculate the
ratio of the two m/M obtained in different samples: this
Ratio Of A Ratio is called roar and represents the tendency
of the first condition to express relatively higher levels of

the short isoform (when roar > 1) or higher levels of the
long one (when roar < 1).
To evaluate the statistical significance of such difference

we use a Fisher test, following [25], comparing the imbal-
ance between the PRE and POST read counts in the two
conditions. When there is more than one sample for each
condition the roar calculations are performed on mean
read counts; then if the experimental design is unpaired all
the possible sample combinations are evaluated with the
Fisher test, otherwise only tests comparing paired samples
are performed and then their p-values are combined using
the Fisher method ([26]).
In the analyses presented here we identify shortened

and lengthened genes according to these criteria:

1. cutoff on the expression levels of the gene (in both
conditions):

FPKMPRE > 1

2. a roar value > 1 (shortening) or < 1 (lengthening).
Note that negative or undefined values of m/M or
roar could occur in some situations - such as counts
equal to zero for PRE or POST portions - and are
discarded

3. the Bonferroni corrected1 Fisher test p-value < 0.05
for single samples analyses, while for multiple
samples cases we require that all samples crossings
result in a nominal p-value < 0.05

FPKMPRE is simply the FPKM value obtained for the PRE
fragment, reflecting the abundance of the given gene.

Definition of PRE and POST portions
Our approach could be used for genes with either a sin-
gle polyadenylation site or multiple ones, but as long as
in the majority of cases even genes with many reported
polyadenylation sites predominantly use only two of them
(0.9 is the average ratio of reads supporting the two most
used sites in APASdb over total reads for the sites falling
over a gene, see Fig. 1), we offer a simplified procedure
that deals with a univocal PRE and POST definition for
each gene. We also implemented an efficient strategy to
consider multiple APA sites for every gene, calculating
m/M, roar and p-values for each one of them in combina-
tion with the canonical end of the transcript.
For the analyses presented here we define the canon-

ical transcripts ends using RefSeq annotations from
UCSC ([27–29]) and collapsing together the structures of
all the transcripts assigned to a gene, defining in the most
conservative way exons and UTRs by getting the union of
all the exons and defining the 3’ (5’) UTR using the most
5’ distal (proximal) coding end (start). Moreover we kept
only mRNA RefSeqs.
We used as alternative ends annotation sources two dif-

ferent databases: APASdb [15] and PolyA_DB [14]. The
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Fig. 1 APASdb reported sites across tissues. a - mean (+/- sem) of the fraction of reads assigned to the two sites with more reads for every gene with
at least two overlapping sites in APASdb across different tissues. For “alltogether” we put together sites annotations for all the 22 human normal
tissues, normalizing reads with respect to the total number of reads found in that tissue and considering the sites supported by more than 2
normalized reads. b - percentages of sites found in different tissues that are found in other N tissues: on average 29 % of sites are found in all tissues.
50 % of the sites are found in at least 17 tissues

former is based on an ad-hoc sequencing protocol that
sequences the RNA near poly-A tails (SAPAS) followed by
reads alignment and clustering to define transcripts ends,
filtering out possible false positives derived from inter-
nal priming with stretches of adenines on the genomic
sequence. The latter is based on similar principles but
uses as starting data cDNA/ESTs that contain a stretch
of A or T after their aligned portion. APASdb offers data
for 22 normal human tissues, some cancer tissues, the
murine thymopoiesis, zebrafish embryonic development
and some lancelet samples while PolyA_DB for human,
mouse, rat, chicken and zebrafish using all the cDNA/EST
sequences available in the respective UniGene databases
from NCBI.
The choice of the Refseq annotation to define the

canonical polyadenylation site instead of one of the sites
reported in the APA databases is justified by the fact that
in most cases the site reported by APASdb as being sup-
ported by most reads falls near the end defined using
Refseq. Moreover this procedure can be applied even
when datasets do not report information about the num-
ber of supporting reads (i.e PolyA_DB) for each site and
thus makes results obtained with APASdb and PolyA_DB
more easily comparable.
To compute the distance between transcript ends and

the most used APASdb alternative site we put together
annotations for all the 22 human normal tissues, normal-
ize reads by the total number of reads found in different
tissues, sum them and consider the sites supported by
more than 2 normalized reads and that overlaps with our
genes - themedian distance between the “RefSeq end” and
the site supported by the highest number of reads for each
gene is 9 (see Fig. 1). This small distance suggests that
indeed these two cleavage sites refer to the same major
site ([30]).

In the single APA version of the algorithm we choose
the most distal APA site (with respect to the transcript
end) associated to a gene referring only to sites inside the
3’UTRwhen possible. POST is then defined as the portion
of a transcript between the chosen site and the transcript
end and PRE as the portion starting with the beginning of
the exon that contains the site and the site itself. Limiting
the PRE portion to this exon without further extending
it towards the transcript start should avoid noise in read
counts derived from alternative splicing events involving
other transcript portions and also make the approach less
prone to suffer from possible 3’ bias in reads distribu-
tion. We decided to exclude APA sites found in introns
and prefer those in 3’UTRs when available to focus our
attention on bona fide alternative polyadenylation events
and to avoid difficulties that could arise when computing
the lengths of various transcripts portions in the multiple
APA version of the software.
For the multiple APA version when we had a single sam-

ple for each condition (or a known sample pairing) we
selected for every gene the most significant Fisher test
p-value (or combined p-value) and used that as the rep-
resentative result for that gene in the following analyses.
When there multiple samples for both conditions with-
out a pairing between them we resorted to choosing for
each gene the result that had a Fisher test nominal p-value
< 0.05 in every pair and solving ties preferring the result
with the smallest product of all p-values.
Figure 2 briefly depicts our strategies to define PRE and

POST portions and the software algorithm at a glance,
while Fig. 3 represents one anecdotal example of how read
densities over PRE and POST portions are reflected in
m/M values - we have chosen one of the genes with the
highest roar (9.63, thus shortened in the first condition)
from one of the comparisons presented in the “Results”.
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Fig. 2 Pipeline. a - how we define gene structures starting from different transcripts. We obtain “melted genes” collapsing together the structures of
all the transcripts assigned to a gene. aPA: alternative polyadenylation site. cPa: canonical polyadenylation site. Thicker blue rectangles represent
coding exons, while the others depict untranslated regions. b - an example of how roar works with the single APA annotation: in sample #1 the
shorter isoform is more expressed than the longer one with respect to sample #2. Blue wavy shapes represent aligned mRNAseq reads. c - how
transcript fragments are defined in multiple APA analyses to efficiently count reads for all the possible APA choices. aPA1-2-3 are three different APA
sites reported for this sample gene

m/M calculations
To correctly evaluate the ratio of read counts, we have to
take into account that reads falling over PRE could have
been obtained from both isoforms while the ones falling
on POST derive exclusively from the longer one; another
more trivial question that needs to be addressed is that
reads fall with larger frequencies on longer stretches of
RNA.
We can say that the total number of reads falling over

a transcript in its entirety (N) derives from the relative
abundance of the two isoforms and their potential to gen-
erate reads; that is: N = εMM + εmm where m is the
quantity of the short isoform, M of the long one and ε

identifies their efficiency in generating reads.
Assuming the equiprobability of read distribution (that

is each nucleotide has the same probability of finding
itself in a read) the efficiency in generating reads of the
two isoforms is proportional (with a constant k) to their
lengths:

εM = k(lPRE + lPOST )

εm = k(lPRE)

Defining lPRE as the length of the PRE portion and lPOST
as the length of the POST we can now obtain the number
of reads falling on the two portions as:

#rPRE = εMM
(

lPRE
lPRE + lPOST

)
+ εmm

and:

#rPOST = εMM
(

lPOST
lPRE + lPOST

)

These two equations reflect the fact that all the reads
deriving from the short isoform (εmm) fall on the PRE
portion while the ones deriving from the long one are dis-
tributed over the PRE and POST portions depending on
their lengths.

Fig. 3 Example of read density and corresponding m/M values. a- Sashimi plot produced with IGV of two alignments for representative samples for
testes and brain over the PRE and POST portions that we consider for CAMSAP1, one of the genes with the strongest shortening signal in testes
versus brain. Read density is clearly lower in testes on the POST portion. CAMSAP1 is on the negative strand and the PRE fragment overlaps with the
coding portion and the beginning of the 3’UTR of its last exon. b- Dot plot representing the m/M values obtained for the two testes and six brain
samples. The larger m/M values for testes reflect the preferential expression of the short isoform in that tissue
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We can now setup a system of equations aimed at
obtaining them/M value in terms of the numbers of reads
falling over the two portions and their lengths.
We start from:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

#rPRE = εMM
(

lPRE
lPRE+lPOST

)

+εmm

#rPOST = εMM
(

lPOST
lPRE+lPOST

)

Then with simple algebraic steps the system can be
solved yielding the formula to obtainm/M using only read
counts and lengths:

m/M = lPOST#rPRE
lPRE#rPOST

− 1

As a simple emblematic case suppose that the PRE and
POST portions have the same lengths and that the short
and long isoforms are in perfect equilibrium (i.e. they are
present in a cell in equal numbers). In this situation we will
find on the PRE portion two times the number of reads
falling on the POST one because half of them will derive
from the long isoforms and the other half from the short
ones. In this case the equation correctly gives us an m/M
equal to 1.
In the previous discussion we have ignored reads falling

across the PRE/POST boundaries. As long as they can
derive only from the long isoform it is reasonable to assign
them to #rPOST . To simplify the implementation of this
strategy in the multiple APA version of the software we
consider reads as falling on a single base at their most 3’
distal end.
Portion lengths should be corrected to keep into

account read lengths and the assignment to POST of
spanning reads, therefore:

l′PRE = lPRE

l′POST = lPOST + readLength − 1
Normally we should have added readLength to both the

lengths but in this case we do not expect reads to fall after
the POST portion (that is the end of transcripts) and thus
we only have to correct for the spanning reads. We do
not subtract the same value from lPRE as long as in the-
ory we could expect reads to fall at its 5’ (i.e. reads falling
across that exon and the previous one or those from still
unspliced transcripts). These corrected lengths are those
used for them/M calculations.

Bioconductor package
The algorithm is implemented in a Bioconductor pack-
age that takes as input bam files with the alignment of the
RNA-seq reads coming from two experimental conditions
and a gtf file with coordinates of genes and APA sites to be
analyzed.

As we previously mentioned, the package could be used
in two ways: with a single PRE/POST definition for every
gene for which the user provides coordinates and lengths
of the PRE and POST portions (on the transcriptome and
not on the genome, i.e. excluding introns) or with multiple
APA sites for every gene; in the latter case the user must
provide the exon structures of the desired genes and the
coordinates of the sites that have to be considered. The
package will then automatically identify all the possible
pairs of PRE and POST portions for the genes (with POST
always ending at the end of the given transcripts) and their
lengths. Practically the second approach works also with
genes harbouring a single APA but we left the first option
for ease of use and to avoid breaking the interface of our
first version of the Bioconductor package. Internally the
management of the multiple APA analyses is performed
without having to count the same reads many times for all
the PRE/POST choices but more efficiently by counting
reads falling on all the relevant portions of the genes and
summing the appropriate combinations needed to obtain
the different #rPRE and #rPOST (see Fig. 2c).
The results between a single and a multiple analysis are

not identical even when in principle they should be (i.e.
for genes with a single APA or for the same gene-APA
pairs) due to programming choices made for efficiency
reasons. The first difference is due to the “shrinkage” of
reads to a single base at their most 3’ distal end and the
fact that we align and count them on distinct fragments of
the genes: if a very long read spans several fragments per-
taining to different POST portions (for different choices
of APA sites of the same gene) in the multiple version it
will be counted only as aligning on the most 3’ distal frag-
ment and therefore on a single POST. The second cause of
small differences is due to genes with overlapping 3’UTRs:
the single version correctly discards reads that align on
the overlapping portion and therefore whose transcript
of origin is not univocally identifiable. The multiple one
manages genes on different strands separately and there-
fore counts these kind of reads as aligned on all the genes
that they overlap (if the genes are on different strands).
This second problem in the multiple analyses could be
overcome by supplying annotations without overlapping
genes. The only way to solve this problem and the first one
together in a multiple APA analysis context would be to
use the single APA one many times (one for every choice
of APA for the genes of interest) - this would be very time
consuming and inefficient. The multiple APA version has
been implemented for ease of use and efficiency and in
spite of the cited details when we compare its results with
the single version for one of the datasets presented in the
“Results” we get identical roar values in 3870 genes over
7498 and a pearson correlation of 0.82 between them.
We provide ([31]) gtf files for hg19 and mm9 genome

releases using PolyA_DB2 or APASdb (only for hg19) as
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APA annotation sources, for both the single and multiple
APA analyses.
The package is well integrated with the Bioconductor

infrastructure and presents different methods for each
analysis step (obtaining counts, m/M, roar, Fisher test p-
values), allowing the user to choose filtering parameters
(in terms of expression levels, Fisher test p-values, ...) and
to study the results of each phase of the pipeline.

Results
Validation of the approach
To validate our procedure we compared its results with
two completely different methodologies: a microarray
based one [11] and one that uses an ad hoc deep sequenc-
ing library extraction [13].
For the first comparison we used human RNAseq data

obtained from brain and testes [32, 33], where we expect
to find a notable preference towards shorter isoforms in
testes: this is indeed what we found (205 shortened genes
in testes versus brain, and only 7 lengthened). The overlap
between the 845 genes found shortened (and 56 length-
ened) with the microarray based approach (using data
from [34–40], see Additional file 1 for the complete sam-
ples lists) and ours was significant (104 common genes,
Fisher test p-value 4.41 × 10−48). For lengthened genes
the result is not significant due do the limited number of
involved genes.
The second comparison focused on human breast can-

cer and normal tissue cell lines where we performed 3
comparisons (MCF7 vs MCF10, MDA-MB231 vs MCF10,
MDA-MB231 vs MCF7) as in [13] but on mRNA-seq
data ([41, 42]): in all cases but one we obtained signifi-
cant overlaps (p-values 5.4 × 10−21, 8 × 10−12, 0.0001 for
shortened genes and 0.12, 0.0023, 0.00035 for lengthened
ones, Fig. 4a).
These results were obtained with APASdb derived

annotations choosing for every gene the APA site
that determines the most extreme shortening effect,

favouring those inside the 3’UTR when available. We
observed almost completely superimposable (Fig. 4b and
Additional file 2: Table S1) results when using PolyA_DB
with single sites.
When using either database with multiple APA sites

for every gene as expected we found practically all the
genes of the single APA analyses plus some other genes,
this resulted on average in moderately better overlaps
with other approaches (1.72 × 10−59 in testes vs brain for
shortened genes and 1.08 × 10−35, 2.19 × 10−12, 0.001 for
shortened and 0.009, 0.009, 2.51 × 10−10 for lengthened
genes in breast cell lines. See Additional file 3: Table S2 for
the results obtained using PolyA_DB).

Comparisons with DaPars
We then compared our results using APASdb with a sin-
gle APA choice on the same dataset used in [16] with
DaPars: roar detects 664 (1) of the 818 (1) genes found
shortened (lengthened) by DaPars in the CFIm25 knock-
down cells and moreover finds 1136 (39) other genes
with a significant signal towards shortening (lengthening);
this suggests that indeed exploiting previous knowledge
about alternative polyadenylation sites provides increased
statistical power in detecting alternative polyadenylation
events. For this comparison to have the same type I error
we used the DaPars results reported by the article with its
standard cutoffs, in particular with a FDR ≤ 0.05; for roar
having two samples for each condition without any known
pairing we decided to be very conservative and use for
every gene the highest p-value of all the four possible pair-
ings, correct it with Bonferroni and then use a 0.05 cutoff.
To further delve into this issue we ran DaPars and roar

on a random subset of the reads (1/15 of the total mapped
reads, reaching a quantity of readsmore similar to the sug-
gested one ([43]) for differential expression analyses rather
than for studies on transcripts structure): roar still detects
86 (0) of the 120 (0) genes found shortened (lengthened)
by DaPars but moreover detects 487 (3) other genes (with

Fig. 4 Venn diagrams of overlaps between roar results and a standard approach and between two different annotations for roar. a - MCF7 vs MCF10:
overlap between shortened genes for roar and [13] b - MCF7 vs MCF10: overlap between shortened genes for roar using PolyA_DB or APASdb
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results significantly overlapping with those obtained on
the whole dataset: Fisher p-value < 1×10−30 for shorten-
ing and 3.03 × 10−7 for lengthening). We also ran DaPars
on the two datasets used to validate roar but with the
default cutoffs it did not detect any significant shortening
or lengthening.
These results confirm that our approach is indeed able

to work on datasets obtained for standard differential
expression analyses without the need for higher read
depth.

Discussion
Comparisons with other approaches yielded significant
overlaps but also a non-negligible number of genes where
alternative polyadenylation sites usage was detected only
by our approach or by the other one. Considering for
example Fig. 4 we can identify different possible causes for
the genes independently detected by the two strategies.
From a technical point of view Fu et al. [13] used a com-
pletely different approach with some filters on genes (for
example considering only cleavage sites found in the last
exon) that could explain at least partially the 422 genes
found only by roar.MoreovermRNAseq and SAPAS could
have slightly different biases towards different genes - in
their Supplementary Material Fu et al. [13] indeed show
that the correlation between RNAseq and SAPAS expres-
sion values is significant but not perfect and in addition
to this the correlation between SAPAS results obtained
with Illumina or 454 sequencing is significant but weak,
underlining how technical issues could be a source of
differences. There could also be a biological source of vari-
ation, as long as cancer cell line heterogeneity both from a
genetic and phenotypic (i.e. expression levels, [44]) point
of view is a known issue and the data used for our com-
parisons comes from two sets of independent clones from
different laboratories. To further investigate the sources
of differences we asked ourselves if there are some differ-
ences in terms of expression levels between the four sets
of genes (detected as shortened by both approaches, only
by roar, only by SAPAS or not significant - see Additional
file 4: Figure S1) and this is indeed the case: genes identi-
fied as shortened only by Fu et al. [13] are less expressed
than those (Mann-Whitney U test p-value 0.0012) found
only by roar or by both approaches. This is not surprising
as long as roar statistical power is limited by the number
of reads obtained on 3’UTR while the SAPAS approach
is less sensitive to this problem. There is one last issue
that should always be considered when considering over-
laps of methodologies that involve a cutoff on a p-value
to identify significant results: controlling for false posi-
tives inevitably leads to false negatives whose prevalence
is not easily controlled, and thus we always expect the
overlap between results obtained with different statistical
approaches to be partial. Similar technical and biological

mechanisms could be behind the testes-brain comparison
but the significance of the overlap supports the validity of
using roar as a cost effective first line tool.
Limiting analyses to a single APA for every gene instead

of considering all the reported APA sites reduces the com-
putational burden of the study (on the testes vs brain
dataset the multiple analysis is 10 times slower than the
single APA one) but gives a slight disadvantage in terms
of overlaps with other shortening detection methods - we
decided to offer both possibilities because in the perspec-
tive of a “first line” analysis tool in many cases choosing a
single APA will be sufficient. Nonetheless we believe that
the possibility to efficiently analyse all the reported APA
for genes is useful, especially for genes with long 3’UTRs.
We decided to separately obtain m/M and roar values for
each APA choice assigning reads every time either to a
single PRE or POST portion to avoid over-complicating
our model and falling back to the complex issue of tran-
script structure inference - choosing the most significant
Fisher test is sufficient to focus one’s attention on themost
robust signal to detect shortening.
One last point that could foster further work in future

releases of the package is related to library depth normal-
ization: the algorithm is based on the Fisher test to detect
significant results - this is an exact test that does not need
balancing between the columns of its 2x2 tables there-
fore our results are robust from this point of view. The
question about m/M and roar calculation is slightly more
complex: for comparisons without replicates we work on
two m/M values that derive from ratios of read counts
in the samples being compared therefore we do not need
to apply a correction on library depth. When there are
replicates we perform reads counts averages therefore
normalization could be an issue but it is not straightfor-
ward to tackle because simply correcting using total read
counts is considered outdated [45]. Trying to understand
how to correct m/M values for multiple samples settings
with high library depth imbalance is an interesting prob-
lem that could be addressed in a future release of the roar
package.

Conclusion
Our tool can be a useful component of the arsenal for
first line analyses of RNAseq experiments because it is
able to detect whether alternative polyadenylation is a
phenomenon that is relevant in the comparison of two
different biological conditions without needing a specific
experimental setup or the read depth usually required
for the analysis of alternative isoforms. A crucial element
that makes this possible is the use of polyadenylation
databases as an annotation source, which greatly reduces
the required depth compared to methods which attempt
to determine the APA sites directly from the data and
allows instead the use of datasets of the size typically
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used for differential expression analysis. The results of
roar could then be used to decide whether to refine the
experimental and computational investigations in order to
study alternative polyadenylation in a more complete way,
possibly involving the detection of new, unannotated APA
sites.

Availability and requirements
• Project name: roar
• Project home page: http://bioconductor.org/

packages/release/bioc/html/roar.html,
https://github.com/vodkatad/roar/

• Operating systems: any operating system
supporting R

• Programming language: R
• Other requirements: working R and Bioconductor

installation
• Licence: GNU GPL-3
• Any restriction to use by non-academics: none

Endnote
1The multiple test correction takes place for the genes

that are considered expressed and with a defined value of
roar.

Additional files

Additional file 1: Lists of samples (GSE and GSM identifiers) with
microarray data for human brain and testes. (TXT 5 kb)

Additional file 2: Concordant results using different annotation sources
and single or multiple APA analyses Spreadsheet reporting the genes
reported as shortened or lengthened with roar using either the APASdb or
PolyA_DB annotation with the single or multiple APA analyses and
overlaps between the lists. (ZIP 7 kb)

Additional file 3: Multiple APA analyses results with PolyA_DB:
comparisons with other approaches. (XLS 8 kb)

Additional file 4: MCF7/MCF10 comparisons vs Fu - density plots of
FPKMPRE values for different classes of genes: “Common” are genes
detected as shortened by both approaches, “Only roar” and “Only Fu” are
genes identified by only either one of the approaches, “N.S.” are genes not
significantly identified as shortened. FPKMPRE values are averaged between
the MCF7 and MCF10 samples. (PDF 456 kb)
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