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Abstract

Background: Many methods for species tree inference require data from a sufficiently large sample of genomic loci
in order to produce accurate estimates. However, few studies have attempted to use analytical theory to quantify
“sufficiently large”.

Results: Using the multispecies coalescent model, we report a general analytical upper bound on the number of
gene trees n required such that with probability q, each bipartition of a species tree is represented at least once in a
set of n random gene trees. This bound employs a formula that is straightforward to compute, depends only on the
minimum internal branch length of the species tree and the number of taxa, and applies irrespective of the species
tree topology. Using simulations, we investigate numerical properties of the bound as well as its accuracy under the
multispecies coalescent.

Conclusions: Our results are helpful for conservatively bounding the number of gene trees required by the ASTRAL
inference method, and the approach has potential to be extended to bound other properties of gene tree sets under
the model.
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Background
The genomic era presents new challenges for phylogenetic
inference studies, because evolutionary processes such as
incomplete lineage sorting can cause gene trees at dif-
ferent genomic loci to have different topologies. Many
modern techniques therefore capitalize on the indepen-
dent information available at multiple loci in order to
inform phylogenetic estimates (e.g. [1–6]).
One family of phylogenetic methods employs “consen-

sus estimation,” in which a set of gene trees on a shared
taxon set is used to infer a single consensus species
tree that summarizes the information in the input gene
tree collection [7, 8]. In a consensus method—and in
more general “summary” methods that do not necessarily
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require the taxon set to be identical across loci—for each
of a series of genomic loci, a rooted or unrooted gene tree
is first computed, and particular features of the gene tree
set are used to compute an estimate of the species tree (e.g.
[8–16]).
Consensus and summary methods are often chosen in

species tree inference studies because they typically have
desirable properties, including computational efficiency,
scalability to trees with many taxa, and conceptual sim-
plicity. This latter feature makes suchmethods suitable for
mathematical analyses, many of which have emphasized
the property of statistical consistency under a standard
model for gene tree evolution, the multispecies coalescent
[3]. In a consistent method, as the number of sampled
gene trees increases, the probability that the species tree
estimate from a random sample of gene trees produced
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under the model accords with the true species tree topol-
ogy approaches 1, irrespective of the species tree topol-
ogy and branch lengths. Many consensus and summary
methods have been shown to be consistent under the
multispecies coalescentmodel (e.g. [8, 10, 11, 13–16]), fur-
ther justifying their applicability in species tree inference
problems.
Mirarab et al. [17] developed one such method:

ASTRAL. Given a tree, a bipartition, or split, corresponds
to a cut on one of the branches of the tree, dividing the
taxa into two subsets (Fig. 1). Define a gene tree set G
on the same taxon set as the species tree to be a bipar-
tition cover of the species tree if for each bipartition in
the species tree, at least one gene tree in G possesses
the bipartition. ASTRAL—and the efficiency improve-
ment ASTRAL-II [18]—reports a species tree estimate by
searching a space of species trees that draw their biparti-
tions from a specified input set X. Choosing X to be the
set of bipartitions in G suffices to ensure that ASTRAL
is statistically consistent under the multispecies coales-
cent model [17], because as increasingly many gene trees
are included in G, the probability approaches 1 that each
bipartition in the true species tree will appear in at least
one gene tree, so that G will be a bipartition cover with
probability approaching 1.
How many gene trees are required so that a random

set of gene trees is likely to be a bipartition cover of
the species tree? For consistent methods, by definition,
asymptotically as the number of gene trees increases
without bound, the species tree estimate will be accu-
rate with probability 1. However, relatively few analytical

Fig. 1 Schematic of a species tree (black) and two gene trees (blue,
green). Coalescent events in a gene tree are constrained to occur only
once lineages are present in the same population. The red dashed
line indicates a species tree bipartition AB|CD, separating species A
and B from species C and D. The same bipartition occurs in the blue
gene tree; by contrast, the green gene tree does not contain this
bipartition, instead containing AD|BC

recommendations are available for the number of loci
required before the probability is high that specified prop-
erties of gene tree sets are achieved [8, 19–21]; in the case
of ASTRAL, the consistency proof gives no guidance on
the number of gene trees required before G is likely to
be a bipartition cover. In place of an analytical treatment,
the speed of convergence of consistent methods might
typically be examined by simulation-based evaluations
(e.g. [10, 22, 23]); although simulations can provide use-
ful insights into the number of required loci, both because
they do not produce provable findings and because their
parameter choices are inexhaustive, they can have limited
generality.
Here, we produce a general analytical upper bound for

the minimal number of gene trees required for a gene tree
set to produce with high probability a bipartition cover
of the species tree. As a function of the number of taxa
in the species tree, a probability threshold, and a single
additional parameter describing the species tree branch
lengths, we determine an upper bound on the number
of loci needed before the bipartition set represented in a
collection of gene trees includes—with the specified min-
imum probability—all bipartitions in the true species tree.
We compare the analytical upper bound to values com-
puted using simulations under themultispecies coalescent
model. Our approach can potentially assist in obtain-
ing other, similar upper bounds for the number of loci
required before other specific features are likely to appear
in gene tree collections.

Results and discussion
Gene tree discordance and the multispecies coalescent
We begin by briefly reviewing the multispecies coales-
cent model. Under the model, the genealogical history of
orthologous lineages from k species is modeled backward
in time conditional on a fixed rooted species tree with
topology and branch lengths specified. Looking back in
time, lineages from a pair of species cannot share common
ancestry more recently than the time at which the species
share common ancestry (Fig. 1). As a result, conditional
on the species tree, not all topologies are equally likely for
the gene tree; moreover, a random sample of gene trees
that have evolved on the species tree contains information
about the species tree topology and branch lengths [24]. In
a general treatment of the model, the number of lineages
per species is arbitrary, but here we restrict attention to
one lineage per species.
Studies of the properties of inference methods applied

to sets of gene trees produced under the model can make
use of analytical formulas for the probability distribu-
tion of gene tree topologies conditional on a species tree
[22, 25]. Such formulas employ the species tree topology
and branch lengths as parameters, producing a discrete
distribution that contains a probability for each possible
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gene tree topology. This distribution is complex, poten-
tially with significant weight on gene tree topologies that
disagree with the species tree, and its properties can
differ substantially for species trees with different topolo-
gies and different numbers of species [25–28]. In general,
under the model, the extent of the disagreement of gene
tree topologies with species tree topologies increases as
branch lengths in species trees decrease [9, 25], partic-
ularly when multiple short branches occur in succession
[29].
A key quantity in evaluating gene tree probabilities is a

function gi,j(T) that computes the probability that exactly
i− j coalescent events happen in time T, beginning from i
lineages at time 0 [30]:

gi,j(T) =
i∑

k=j

e−k(k−1)T/2(2k − 1)(−1)k−jj(k−1) i[k]
j! (k − j)! i(k)

,

(1)

where a(k) = a(a+1) . . . (a+k−1), a[k] = a(a−1) . . . (a−
k + 1), and a(0) = a[0] = 1. T is measured in coalescent
time units, representing a number of generations normal-
ized by the number of gene copies of a locus present in
a population (2N for diploids, where N is the effective
population size measured as a number of individuals).

Bipartitions
A tree with k leaf nodes has 2k − 3 bipartitions: k − 3
nontrivial bipartitions in which each of the subsets has at
least two leaves, and k trivial bipartitions produced from
cuts that separate one leaf from the other k−1 leaves. The
k trivial bipartitions appear in every tree topology with
a fixed leaf label set; henceforth we assume that biparti-
tions are nontrivial unless otherwise noted. The number
of leaves in the larger of the two leaf subsets of a (nontriv-
ial) bipartition is at most k−2. The bipartition separating,
for example, taxa A and B from taxa C and D, is annotated
AB|CD (Fig. 1).
Consider a species tree and a gene tree—both on the

same taxon set—in which one gene tree lineage is sampled
per species. We say that a nontrivial bipartition φ of the
species tree is observed in the gene tree if for some internal
node of the gene tree, a cut on that branch produces the
bipartition φ of the leaf nodes. For a set G of gene trees, if
each of the k − 3 nontrivial bipartitions of a species tree S
is observed for at least one gene tree in the set, we say that
G is a bipartition cover of S.
For gene trees and species trees sharing the same set of

k taxa, our goal is to study the probability that a random
gene tree set G containing n gene trees sampled under
the multispecies coalescent model is a bipartition cover

of a species tree S. We then use this calculation to set an
upper bound on the number of loci n required so that with
a specified minimum probability, a random n-locus gene
tree set is a bipartition cover of S.

Exact computation for four-taxon species trees
We first calculate for four-taxon species trees the exact
probability that a gene tree set is a bipartition cover of
a species tree. A four-taxon species tree S has only one
nontrivial bipartition (Fig. 1), which appears in five of
the 15 rooted gene tree topologies. Consider a species
tree whose nontrivial bipartition is AB|CD. This biparti-
tion appears in the gene trees with topologies ((AB),(CD)),
(((AB),C),D), (((AB),D),C), (((CD),A),B), and (((CD),B,A)).
We compute the probability that a set G of gene trees

is a bipartition cover for a four-taxon species tree S with
bipartition AB|CD. Because the species tree has only one
nontrivial bipartition, all that is required is for one of the
gene trees in G to have one of the five topologies with
the bipartition AB|CD. For four-taxon species trees, it is
straightforward to calculate the probabilities under the
multispecies coalescent model of each of the 15 gene tree
topologies [27]. The probability that a gene tree possesses
the species tree bipartition and hence is a bipartition
cover is the sum of the probabilities of the five gene tree
topologies with bipartition AB|CD.
We must consider two cases, in which S represents the

symmetric (Fig. 2a) or asymmetric species tree topology
(Fig. 2b). Employing tabulations of gene tree probabili-
ties for four-taxon species trees ([27], Tables 4 and 5),
we examine both species tree topologies, denoting the
probability that a gene tree has bipartition AB|CD in the
symmetric case by Ps1 and in the asymmetric case by Pa1 .
The subscript 1 indicates that this quantity is for a sin-
gle gene tree; we will generalize to sets of n gene trees
in the next step. Labeling the species tree branch lengths
in coalescent time units by T1 and T2 as in Fig. 2, in the
symmetric case,

Ps1 =
[
g2,1(T1)g2,1(T2) + 1

3
g2,1(T1)g2,2(T2)

+ 1
3
g2,2(T1)g2,1(T2) + 1

9
g2,2(T1)g2,2(T2)

]

+
[
1
3
g2,1(T1)g2,2(T2) + 1

18
g2,2(T1)g2,2(T2)

]

+
[
1
3
g2,1(T1)g2,2(T2) + 1

18
g2,2(T1)g2,2(T2)

]

+
[
1
3
g2,2(T1)g2,1(T2) + 1

18
g2,2(T1)g2,2(T2)

]

+
[
1
3
g2,2(T1)g2,1(T2) + 1

18
g2,2(T1)g2,2(T2)

]
.
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Fig. 2 Two species tree topologies with four taxa. a Symmetric
topology. b Asymmetric topology. Times T1 and T2 denote the
species tree internal branch lengths

For the asymmetric case,

Pa1 =
[
1
3
g2,1(T1)g2,2(T2) + 1

9
g2,2(T1)g3,2(T2)

+ 1
9
g2,2(T1)g3,3(T2)

]

+
[
g2,1(T1)g2,1(T2) + 1

3
g2,1(T1)g2,2(T2)

+ 1
3
g2,2(T1)g3,1(T2) + 1

9
g2,2(T1)g3,2(T2)

+ 1
18

g2,2(T1)g3,3(T2)

]

+
[
1
3
g2,1(T1)g2,2(T2) + 1

9
g2,2(T1)g3,2(T2)

+ 1
18

g2,2(T1)g3,3(T2)

]

+
[
1
18

g2,2(T1)g3,3(T2)

]
+

[
1
18

g2,2(T1)g3,3(T2)

]
.

The five terms demarcated by brackets in Ps1 and Pa1
give the probabilities of the five gene tree topolo-
gies with bipartition AB|CD: ((AB),(CD)), (((AB),C),D),
(((AB),D),C), (((CD),A),B), and (((CD),B,A)), respectively.
Simplifying these equations using Eq. 1, we find that

Ps1 = 1 − 2
3
e−(T1+T2) (2)

Pa1 = 1 − 2
3
e−T1 . (3)

Note that these two equations are similar in that in each
case, the quantity in the exponent, T1 + T2 or T1, cor-
responds to the length of the only internal branch of the
unrooted species tree (Fig. 2).
Equations 2 and 3 give the probabilities that a single

gene tree is a bipartition cover of the species tree, in the
symmetric and asymmetric cases, respectively. Recall that
our goal is to calculate the probability that a set G of n
gene trees is a bipartition cover, or that the species tree
bipartition is observed in at least one of n sampled gene
trees. This quantity—Psn in the symmetric case and Pan in
the asymmetric case—is 1 minus the probability that the
bipartition is observed in none of the n trees. Because each

gene tree is independent conditional on the species tree,
we have

Psn = 1 − (1 − Ps1)
n (4)

Pan = 1 − (1 − Pa1)
n. (5)

In Fig. 3, we plot Pan as a function of the number of loci
n for several fixed values of T1; the behavior of Psn is anal-
ogous, except with T1 replaced by T1 +T2. For each value
of T1, Pan increases with n, approaching 1 as n → ∞.
For larger T1, the initial probability that a single gene tree
has bipartition AB|CD is greater, so that the number of
gene trees required before Pan achieves a specified value
is smaller. As T1 → 0, gene trees approach a scenario in
which the gene lineages from species A, B, and C persist
into the common ancestor of the three species. Each pos-
sible sequence of coalescences among these three lineages
is equally likely, and the probability that a random gene
tree contains the nontrivial bipartition AB|CD is Pa1 = 1

3 .
Pn then approaches 1 − ( 23 )

n.

A general upper bound for k-taxon species trees
For k > 4, the number of nontrivial bipartitions in a k-
taxon species tree exceeds 1, and the event that a random
gene tree possesses a nontrivial species tree bipartition φ1
is not independent of the event of its possessing a second
such bipartition φ2. To perform a comparably simple cal-
culation in the general k-taxon case to that achieved in the
four-taxon case, we focus on deriving a lower bound on
the probability that a random n-locus gene tree set G is a
bipartition cover of a k-taxon species tree S.
Let S be a rooted k-taxon species tree with fixed topol-

ogy and branch lengths. Denote the k − 3 nontrivial
bipartitions of S by φ1,φ2, . . . ,φk−3. Denote the k − 2
internal branches of S by e1, e2, . . . , ek−2, with associated
lengths T1,T2, . . . ,Tk−2. If one side of the root of S has
only a single leaf, then the internal branch immediately

Fig. 3 The probability (Pn) that a random set of n gene trees under
the multispecies coalescent is a bipartition cover of a four-taxon
asymmetric species tree, as a function of n. Points represent the exact
probability computed at each n, for several values of T1 (Eq. 5)
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descended from the other side is associated with a triv-
ial bipartition. We indicate this internal branch by ec, with
c ∈ {1, 2, . . . , k − 2}, and we denote its associated branch
length Tc. If both sides of the root of S each have at least
two descendant leaves, then each of the k − 2 internal
branches is associated with a nontrivial bipartition, and
the two branches immediately descended from the root
share the same bipartition. We indicate by {1, 2, . . . , k −
2} \ c the set of indices for internal branches that produce
nontrivial bipartitions, understanding that if the two sides
of the root each have at least two descendant leaves so that
ec does not exist, this index set reduces to {1, 2, . . . , k− 2}.
Let Ei,n be the event that bipartition φi is observed at

least once in a set G of n random gene trees, and letQi,n =
P[Ei,n] be the associated probability that at least one of n
random gene trees possesses φi. Then En = E1,n ∩ E2,n ∩
· · · ∩ Ek−3,n is the event that a gene tree set G with n gene
trees is a bipartition cover of S. Denote by Qn = P[En]
the probability that a random gene tree set is a bipartition
cover: that among n gene trees, all bipartitions of S appear
at least once.
The Qi,n have a complex dependence, so that if a gene

tree possesses one of the bipartitions φi, its conditional
probability of possessing another bipartition φj might sub-
stantially increase in relation to the unconditional prob-
ability. Our strategy for bounding the desired probability
Qn from below amounts to supposing that each bipartition
φi is as improbable as the least-probable bipartition and
bounding the probability of the least-probable bipartition
from below (Lemma 1). We then disregard the depen-
dence among the Qi,n to bound from below the joint
probability that all of the Ei,n are observed in a gene tree
set (Theorem 2).
Let Tmin = mini∈{1,2,...,k−2} Ti denote the length of the

shortest internal branch in the species tree S. We obtain a
lower bound onQi,n, which we then use to boundQn. Our
lower bound for Qn is a function of only k, Tmin, and n,
and it can be inverted to produce an upper bound on the
smallest n that achieves a desired minimal value for Qn.

Lemma 1 mini∈{1,2,...,k−3} Qi,n ≥ 1−[ 1− gk−2,1(Tmin)]n.

Proof Consider Qi,n for some i. Qi,n is the probability
that bipartition φi is observed in at least one of n ran-
dom gene trees that are conditionally independent given
the species tree. It therefore equals 1 minus the probabil-
ity that φi fails to be observed in all n gene trees: Qi,n =
1 − (1 − Qi,1)n. Because for fixed n ≥ 1, the function
1 − (1 − x)n increases monotonically in x on [ 0, 1],

min
i∈{1,2,...,k−3}

Qi,n = min
i∈{1,2,...,k−3}

[ 1 − (1 − Qi,1)
n]

= 1 −
(
1 − min

i∈{1,2,...,k−3}
Qi,1

)n
. (6)

To produce a lower bound on mini∈{1,2,...,k−3} Qi,n, it
remains to bound mini∈{1,2,...,k−3} Qi,1 from below. A suf-
ficient condition for bipartition φi to be observed in a
gene tree is for all the lineages descended from the inter-
nal branch eφi associated with φi in the species tree to
coalesce to a single lineage on that branch. In case φi is
associated with two internal branches—the two imme-
diately descended from the root on opposite sides—it is
sufficient for the lineages on one side to coalesce to a sin-
gle lineage on the internal branch associated with that
side. Supposing that ki is the number of taxa descended
in S from branch ei and Ti is the branch length for ei, the
probability Qi,1 that φi is observed in a single gene tree is
therefore bounded below by gki,1(Ti), and:

1 −
(
1 − min

i∈{1,2,...,k−3}
Qi,1

)n

≥ 1 −
[
1 − min

i∈{1,2,...,k−2}\c
gki,1(Ti)

]n
.

(7)

In this step, although the species tree has k − 3 nontrivial
bipartitions, it has k − 2 internal branches, one of which
possibly produces a trivial bipartition. If cuts on two of
the k − 2 internal branches, say j1 with kj1 descendant leaf
nodes and j2 with kj2 descendant leaf nodes, produce the
same (nontrivial) bipartition φi, thenQi,1 ≥ gkj1 ,1(Tj1) and
Qi,1 ≥ gkj2 ,1(Tj2).
The quantity gki,1(Ti)—the probability that ki lineages

coalesce to 1 lineage during time Ti—decreases mono-
tonically with increasing ki, and increases monotonically
with increasing Ti. Because a species tree internal branch
associated with a nontrivial bipartition has at most k −
2 descendant leaves, and because the shortest internal
branch length is Tmin,

gki,1(Ti) ≥ gk−2,1(Ti) ≥ gk−2,1(Tmin). (8)

This condition applies to each of the k − 2 internal
branches—including both immediately descended from
the root in the case that the root does not have a pendant
edge as one of its descendants.We take the minimum over
internal branches that produce nontrivial bipartitions to
obtain

min
i∈{1,2,...,k−2}\c

gki,1(Ti) ≥ gk−2,1(Tmin). (9)

We can connect inequalities 6, 7, and 9 to conclude

min
i∈{1,2,...,k−3}

Qi,n ≥ 1−[ 1 − gk−2,1(Tmin)]n . (10)

We thus have the desired result.

The approach of this proof amounts to replacing the
species tree S with STmin , a tree with the same topology
as S but with all internal branch lengths set to Tmin, the
minimum branch length in S. Next, it is noted that each
bipartition is at least as probable as the least probable
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bipartition. The probability of the least probable biparti-
tion is then bounded from below by computing a lower
bound on one specific way of observing an arbitrary bipar-
tition: the probability of a bipartition is at least as great
as the probability that all of the lineages for leaves that
descend from its associated internal edge coalesce on that
edge.
Now that we have a lower bound for the probability

of an arbitrary bipartition, it remains to simultaneously
consider all k − 3 bipartitions.

Theorem 2 Qn ≥ 1 − (k − 3)[ 1 − gk−2,1(Tmin)]n.

Proof As the probability of an intersection, Qn can be
written Qn = P[En]= P[

⋂k−3
i=1 Ei,n]. The minimal prob-

ability of the intersection of a set of possibly dependent
events can be bounded by Bonferroni’s inequality [31]. It
follows that

Qn ≥ 1 −
k−3∑

i=1
P[Ei,n] , (11)

where Ei,n is the complement of event Ei,n.
We then have

Qn ≥ 1 −
k−3∑

i=1
(1 − P[Ei,n] )

=
⎛

⎝
k−3∑

i=1
Qi,n

⎞

⎠ − (k − 4)

≥ (k − 3)
(

min
i∈{1,2,...,k−3}

Qi,n

)
− (k − 4).

(12)

We invoke Lemma 1 to obtain mini∈{1,2,...,k−3} Qi,n ≥
1−[ 1 − gk−2,1(Tmin)]n, from which

Qn ≥ 1 − (k − 3)[ 1 − gk−2,1(Tmin)]n . (13)

This completes the proof.

Note that given the species tree S, for small values of n,
it is possible for (k−3)[ 1− gk−2,1(Tmin)]n ≥ 1, so that the
theorem produces a negative value for the lower bound on
Qn. BecauseQn is a probability, in these cases, we have the
trivial result Qn ≥ 0. As n increases, however, eventually
(k − 3)[ 1− gk−2,1(Tmin)]n < 1, so that in the theorem, Qn
is bounded from below by a positive quantity.
By solving for n, for a specified probability q, Eq. 13 can

be used to calculate an upper bound on the minimal value
of n for which Qn ≥ q. Setting Qn = q for 0 < q < 1,

n = log[ (1 − q)/(k − 3)]
log[ 1 − gk−2,1(Tmin)]

. (14)

Equation 14 gives an upper bound on the number of
sampled gene trees required for a random gene tree

set to be a bipartition cover with probability at least q.
It applies irrespective of the species tree topology and
branch lengths.

Influences on the upper bound
For fixed values of q, we numerically computed the num-
ber of gene trees n required for achieving Qn ≥ q in
Eq. 14. In Fig. 4, we plot log10(n) as a function of the num-
ber of taxa k for a range of minimum branch lengths and
q = 1 − 10−2 and q = 1 − 10−5.
WhenTmin = 1 orTmin = 0.5, so that the shortest inter-

nal branch length in the species tree has a value of 1 or
0.5 coalescent time units, n grows slowly as a function of k
and remains less than 104 for species trees containing up
to 30 species. By contrast, when Tmin = 0.2 or Tmin = 0.1,
species trees with up to k = 8 taxa have n < 104, but the
number of gene trees n grows rapidly and exceeds 104 for
larger k. The patterns are fairly insensitive to the value of
q, as q contributes to Eq. 14 only via the logarithmic term
log(1 − q).

Accuracy of the upper bound
We next compared our upper bound on the number of
loci required to produce a bipartition cover with proba-
bility q (Eq. 14) to values of this number of loci obtained
in stochastic simulations under the multispecies coales-
cent. The simulations allow us to quantify the extent to
which our upper bound overestimates the true number of
required gene trees.
Simulations were conducted using COAL [25] to com-

pute the exact multinomial distribution of gene tree
topologies for “caterpillar” species trees in which all
branch lengths were set to Tmin. The caterpillar case rep-
resents a difficult scenario for species tree inference, as
the extent of gene tree discordance can be greater with
caterpillar species trees than other species tree topolo-
gies [28, 29, 32, 33]. For fixed values of ns, the number of
simulated gene trees in gene tree sets, we resampled 104
independent gene tree sets from this exact multinomial
distribution, identifying for each gene tree set all gene tree
clades that appeared in at least one of the random gene
trees. This clade identification step was conducted using
Biopython [34].
Next, we recorded the empirical proportion of simula-

tions in which the ns gene trees produced a bipartition
cover of the species tree. Treating this empirical probabil-
ity of a bipartition cover as an estimate of Qns , we then
computed the number of loci n in Eq. 14 using the esti-
mated Q̂ns for q, denoting this number of loci nb. The ratio
nb
ns represents the factor by which our upper bound on the
minimum number of loci required for producing a bipar-
tition cover exceeded the actual number of loci required
in simulated gene tree sets. A value of nb

ns = 1 indicates
that our upper bound is accurate; values larger than 1
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Fig. 4 Upper bound on the number of gene trees required for a random set of n gene trees to have probability at least q of being a bipartition cover
of a k-taxon species tree with smallest internal branch length Tmin. The plot uses Eq. 14. a q = 0.99. b q = 0.99999. The maximal number of
independent gene trees in a genome is on the order of 104 to 105

indicate that our upper bound overestimates the number
of required gene trees by a factor of nb

ns .
Figure 5 presents nb

ns as a function of q. In each panel,
representing different values of Tmin, nb

ns is relatively close
to 1 for k = 4 taxa, indicating a reasonably accurate
upper bound. As k increases, nb

ns progressively increases
as well. For small k, with relatively few internal branches,
fewer ways exist for coalescent events to occur other
than on the internal branch of minimum length, so that
our consideration of only those coalescences in obtaining
the bound disregards fewer alternative ways of producing
bipartitions. It hence produces a more accurate nb.
Comparing the three panels of Fig. 5, we see that nb

ns is
smaller and the bound nb is therefore tighter when Tmin is
large than when Tmin is small. For small Tmin, it is unlikely
that all lineages below a species tree branch of length Tmin
will coalesce on the branch, so that our consideration of
only the case in which such coalescences occur in produc-
ing Eq. 14 is less accurate. For each Tmin value, the level of
overestimation does not strongly depend on the value of
q, especially for q near 1.

Conclusions
We have derived a general analytical upper bound under
the multispecies coalescent on the number of gene trees
required for observing with a specified probability q all

bipartitions of a species tree. In addition to the num-
ber of taxa and the probability q, our upper bound
(Eq. 14) depends on a single parameter, the shortest inter-
nal branch of the true species tree. This simplicity enables
general applicability of a bound that is relatively straight-
forward to calculate. We find that only a small number
of gene trees is required, provided the minimum species
tree branch length is not much shorter than the coalescent
time scale (Tmin � 0.5). Even when the shortest branch
is small relative to the coalescent time scale (Tmin ≈ 0.1),
genomic studies of ≈104 loci in k � 8 species will pro-
duce a bipartition cover of the species tree with high
probability. Because our upper bound is a conservative
overestimate, it is likely that the bipartition covers useful
in the ASTRAL method [17, 18]—which relies on observ-
ing all bipartitions of the true species tree in a set of input
gene trees—can often be achieved in realistic scenarios
with considerably fewer loci.

Species tree branch lengths
Because our upper bound depends on Tmin, to assess the
number of gene trees required for producing bipartition
covers in practical studies, we can examine the proper-
ties of Tmin in models in which not only the gene trees
are modeled conditional on fixed species trees, but in
which the species trees are modeled as random quanti-
ties as well. Stadler & Steel ([35], Theorem 3.3) showed

Fig. 5 The ratio nb
ns

of the upper bound on the minimum number of gene trees required to obtain a bipartition cover with probability q (Eq. 14) to
the corresponding number of simulated gene trees required to obtain a bipartition cover with probability q. The ratio is plotted as a function of q,
for several values of the number of species k. a Tmin = 0.2. b Tmin = 0.5. c Tmin = 1.0. The y-axis is plotted on a logarithmic scale. Irregular spacing of
q values is a result of our simulation procedure, in which each q is determined from 104 simulations at a fixed ns in the set {1, 2, 3, 5, 10, 20, 50, 100,
200, 500}. Note that for some large values of ns at a fixed Tmin, all 104 simulations produced a bipartition cover, meaning that Q̂ns = q = 1. In these
cases, nb computed from Eq. 14 is infinite and we do not plot nb

ns
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that in the Yule pure birth process for speciation, in which
each species lineage speciates forward in time at rate
λ, an arbitrary internal branch length has an exponen-
tial distribution with rate 2λ. The k − 2 internal branch
lengths in a species tree with k taxa are independent and
identically distributed under the model. Hence, Tmin, as
the minimum value of k − 2 independent exponentially
distributed random variables, each with rate 2λ, is expo-
nentially distributed with rate

∑k−2
i=1 2λ = 2(k − 2)λ. The

expected minimum species tree branch length under the
Yule model is then E[Tmin]= 1/[ 2(k − 2)λ].
To perform numerical calculations, we chose a range

of values of λ on the basis of empirical studies; in the
great apes, internal branch lengths of the species tree are
consistent with a speciation rate of λ ≈ 0.5 events per
coalescent time unit [36, 37], and for primates, Stadler et
al. [37] produced an estimate of λ ≈ 0.28. In warblers,
Bokma [38] estimated the rate of speciation to be 0.36
per million years. Assuming an effective population size
of Ne = 5 × 104 and a generation time of 1 year [39], we
arrive at λ ≈ 0.14 events per unit of time.
In Fig. 6a, we plot E[Tmin] under the Yule model of spe-

ciation, as a function of the number of taxa k and the
speciation rate λ.When speciation happens rarely relative
to the coalescent timescale (λ ≤ 0.2), for up to k = 15
species, E[Tmin]≥ 1/(2 × 13 × 0.2) ≈ 0.19. When speci-
ation events happen more frequently (λ = 0.5), however,
E[Tmin] goes below 0.19 at k = 8 species, and E[Tmin]<
0.19 for k = 5 when λ = 1.
Figure 6b plots the value of n in Eq. 14 that is required

to obtain a bipartition cover with probability q = 0.99,
as a function of the expected minimum branch lengths
from Fig. 6a. When speciation is slow (λ ≤ 0.2, e.g. war-
blers), species trees with k = 15 taxa achieve the high
probability of 0.99 of producing bipartition covers with
a number of gene trees comparable to the scale of the
number of independent loci that might be present in a
genome (n = 104 to 105).Withmore frequent speciations,
however (λ ≥ 0.5), our upper bound on the required num-
ber of gene trees suggests an impractical number of gene
trees. Recall that this scenario of large k and small Tmin

is precisely the case in which our upper bound is most
conservative (Fig. 5), so that a stricter upper bound might
indicate that the true required number of gene trees is in
fact in a range that is practicable in principle.

Extensions
Our analysis of the effect of the speciation rate λ on the
number of gene trees required for observing a biparti-
tion cover highlights both the utility and the limitations of
our approach. The results apply irrespective of the num-
ber of species and the species tree topology and branch
lengths; however, to obtain this generality, we have relied
on approximations that make our bound conservative. To
compute the probability that a gene tree set is a bipartition
cover, in Lemma 1, we have assumed that each bipartition
is only as probable as the least likely bipartition. Further,
considering only the least likely bipartition has amounted
to assuming that all branches have the same length as the
shortest branch. We have also used a conservative lower
bound for the probability of the least likely bipartition. In
Theorem 2, we have conservatively assumed that the pres-
ence in a gene tree of one species tree bipartition does not
affect the presence of another bipartition. By incorporat-
ing more parameters for the species tree rather than only
the number of species andTmin, each of these assumptions
can potentially be relaxed to produce a more accurate
upper bound on the number of gene trees required for
obtaining a bipartition cover.
For example, consider our lower bound for the probabil-

ity of the least likely bipartition, which assumes that k − 2
lineages coalesce to a single lineage on the shortest species
tree internal branch. Most species trees have no internal
branch from which k − 2 species descend; further, it is
unlikely that if such a branch does exist that it is the short-
est internal branch. Even in this scenario, many ways exist
for the bipartition to be realized by a gene tree other than
by all k − 2 lineages coalescing on the shortest branch.
With the species tree branch lengths and topology taken

into account, we can in fact calculate the probability of
the least likely bipartition. Suppose a bipartition φ of the
species tree separates the k taxa into two species groups,

Fig. 6 Tmin under the Yule pure birth process for speciation at rate λ speciation events per coalescent time unit. a E[ Tmin] as a function of the
number of species k. The y-axis is plotted on a logarithmic scale. b The number of gene trees n required in Eq. 14 for obtaining with probability q all
species tree bipartitions in a gene tree set, as a function of E[ Tmin] values from a. The value of q is fixed at 0.99. Note that the maximal number of
independent gene trees in a genome is approximately 104 to 105
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Tφ and T φ . The probability that bipartition φ is observed
in a gene tree is then the same as the probability that the
gene lineages of the species in either Tφ or T φ (or both)
are monophyletic:

P[Eφ,1]= PM(Tφ) + PM(T φ) − PRM(Tφ , T φ), (15)

where PM is the probability of monophyly of a set of gene
lineages, PRM is the probability of reciprocal monophyly
of a pair of sets of gene lineages, and P[Eφ,1] is the prob-
ability that the bipartition φ is observed in a random gene
tree (by abuse of notation, we identify the gene lineages
of species set Tφ with Tφ , and similarly for T φ). Recently,
Mehta et al. [40] derived formulas for PM and PRM for
arbitrary gene lineage sets conditional on arbitrary fixed
species trees with topology and branch lengths specified;
using these formulas, it would be possible to exactly calcu-
late the probabilities of each of the k − 3 bipartitions, and
to replace our lower bound on the probability of the least
likely bipartition in Lemma 1 with the exact minimum.
We note than in addition to ASTRAL, other methods

(including in problems with gene duplication and loss
rather than incomplete lineage sorting [41]) employ simi-
lar constrained search algorithms relying on bipartitions.
Some methods have the property that if the input gene
tree set is a bipartition cover of the species tree, the true
species tree lies in the search space and is feasible to
produce as an estimate [12, 42]. Our work thus provides
guidance on the maximum number of loci required before
the true species tree enters the search space. As a cal-
culation applicable to arbitrary species trees, considering
single features and then examining their joint probability
by use of a Bonferroni inequality, our approachmight thus
be applicable in other problems that require a lower bound
on the probability that a property is achieved by a gene
tree set, or an upper bound on the number of gene trees
required for achieving the property. Though it disregards
detailed information that might be available about the
species tree, the generality of the approach has potential to
provide useful bounds on probabilities that are otherwise
difficult to evaluate.

Methods
The methods are described throughout the Results and
discussion section.
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