Elhesha and Kahveci BMC Bioinformatics (2016) 17:408
DOI 10.1186/s12859-016-1271-7

BMC Bioinformatics

@ CrossMark

Identification of large disjoint motifs in
biological networks

Rasha Elhesha” and Tamer Kahveci

Abstract

Background: Biological networks provide great potential to understand how cells function. Network motifs,
frequent topological patterns, are key structures through which biological networks operate. Finding motifs in
biological networks remains to be computationally challenging task as the size of the motif and the underlying
network grow. Often, different copies of a given motif topology in a network share nodes or edges. Counting such
overlapping copies introduces significant problems in motif identification.

Results: In this paper, we develop a scalable algorithm for finding network motifs. Unlike most of the existing studies,
our algorithm counts independent copies of each motif topology. We introduce a set of small patterns and prove that
we can construct any larger pattern by joining those patterns iteratively. By iteratively joining already identified motifs

with those patterns, our algorithm avoids (i) constructing topologies which do not exist in the target network (ii)
repeatedly counting the frequency of the motifs generated in subsequent iterations. Our experiments on real and
synthetic networks demonstrate that our method is significantly faster and more accurate than the existing methods

including SUBDUE and FSG.

Conclusions: We conclude that our method for finding network motifs is scalable and computationally feasible for
large motif sizes and a broad range of networks with different sizes and densities. We proved that any motif with four
or more edges can be constructed as a join of the small patterns.

Keywords: Biological networks, Motif discovery, Overlap graph, Subgraph isomorphism

Introduction
Biological networks describe how molecules interact to
carry out various cellular functions. One common way to
represent these networks is to use graphs, where the nodes
and the edges represent the interacting molecules and
the interactions between these molecules respectively [1].
Studying biological networks has great potential to help
understand how cells function and how they respond to
extra-cellular stimulants. Such studies have already been
used successfully in many applications. Characterizing the
variations in drug resistance of different cell lines [2], or
identifying the pathways serving similar functions across
different organisms [3, 4] are only few examples among
many.

Motifs are frequent topological patterns in a given net-
work [5]. Identifying motifs has been one of the key
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steps in understanding the functions served by biological
networks such as gene regulatory or protein interaction
networks [6—8]. Motifs can be used to uncover the basic
structure and design principles of a network [9]. They are
also often considered as the basic building blocks of a net-
work [5] and one of the network local properties [10].
Thus, they can be used to classify networks [11] into func-
tional sub-units. It is worth noting that motifs have been
used in various applications like prediction of regulatory
elements in genomic sequences [12].

Despite the fact that studying motifs is of utmost impor-
tance for network analysis, motifs identification remains
to be a computationally hard problem [13]. The roots
of the challenges behind motif discovery arise from sev-
eral reasons. First, even when the motif topology is given,
counting motif frequency (i.e. the number of occurrences
of this motif), requires solving the subgraph isomorphism
problem, which is NP-Complete [14]. Furthermore, when
the motif topology is not known in advance, trying out
all alternative topologies is infeasible as the number of
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such topologies increases exponentially with the number
of edges in the motif.

There are two ways for motif frequency formulation;
(i) allow for different copies of the same motif to overlap
(i-e., share nodes or edges) or (ii) count disjoint copies of
the motif under consideration. Most of the existing meth-
ods in the literature on motif counting follow the first
formulation. This formulation however has a fundamen-
tal drawback arising from the fact that it does not have
downward closure property. Briefly, this means that the
motif frequency does not decrease monotonically as the
motif size increases. We discuss this drawback in detail in
Sections “Summary of existing methods” along with why
it makes it impossible to determine the largest sized motif
in a given network. Several algorithms use the second for-
mulation to compute the frequency of a given motif (e.g.,
[15]). Those algorithms, however, do not scale to large net-
works. Also, they are limited to small motifs as their time
complexities grow exponentially with motif size. We elab-
orate on these methods in Section “Summary of existing
methods” as well.

In this paper, we address the problem of finding motifs
in a given network. More specifically, given a target net-
work and a motif size (i.e., number of nodes in the motif),
we aim to find the motifs of that size which have a fre-
quency above a user specified threshold in that target
network. Unlike most of the methods in the literature, we
use the second formulation of motif counting described
above, where no two copies of the same motif share an
edge, to compute the frequency.

We develop a novel and scalable algorithm to solve
the motif identification problem. The central idea of our
method, which stands out among the existing literature,
is to use a small set of patterns, called the basic build-
ing patterns. We prove that any motif with four or more
edges can be constructed as a combination of these pat-
terns. Following from this observation, our method first
finds instances of these patterns. It then iteratively grows
motifs by joining known motifs at that iteration with
the instances of these patterns. Our algorithm develops
efficient mechanisms to avoid a significant fraction of
the costly isomorphism tests while growing new motifs.
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Counting non-overlapping instances of a given motif is
a computationally challenging task that requires solv-
ing maximum independent set (MIS) problem which is
known to be NP-complete [13]. We introduce a new and
efficient strategy for this purpose. This strategy avoids
enumerating the overlapping motif instances. It does this
by algebraically computing the overlap count based on the
neighbors of the motif nodes in the target network. Our
experiments on both protein-protein interaction (PPI)
and synthetic networks demonstrate that our method is
significantly faster and more accurate than the existing
methods. In addition, the increase in the running time
of our algorithm is dramatically less than that of the
competing methods as the motif size grows.

The rest of this paper is organized as follows. We present
the key definitions needed to discuss our method and the
related literature in Section “Background” We describe
our motif discovery algorithm in Section “Methods”. We
experimentally evaluate our method and compare it to
the existing algorithms in Section “Results and discussion”.
We end with a brief conclusion in Section “Conclusions”

Background

In this section, we provide the definitions and the termi-
nology needed to describe our method (Section “Defini-
tions and notation”). We then summarize the key litera-
ture tackling similar problems to the one considered in
this paper (Section “Summary of existing methods”).

Definitions and notation

We represent a given biological network using a graph
denoted with G = (V, E). Here, the set of nodes V denotes
the set of interacting molecules, and the set of edges E
denotes the interactions among them. In the rest of this
paper, we use the term graph to denote a biological net-
work. Here, we focus on undirected graphs. Figure la
represents a graph that contains seven nodes and eight
edges.

We say that a graph is comnnected if there is a path
between all pairs of its nodes. We say that a graph § =
(Vs,Es) is a subgraph of G if Vs € V and Es C E.
In the rest of this paper, we only consider connected

(a) (b)

wp R oy

(c) (d)

Fig. 1 a A graph G that contain seven nodes {a, b, ¢, d, e, f, g} and eight edges {(a,b), (3,0), (b,c), (b,e), (ed), (e, (f.9), (e,9)}. b A pattern with two
embeddings in G, {(a,b), (3,0), (b,0)} and {(e/f), (f.9), (,9)}. € A pattern with three embeddings in G, {(a,b), (a,c
{(ef), (fq), (e,9), (b,e)}. d A pattern that has one copy in G, {(b,e), (ed), (), (f.9), (e,9)}

), (0.0), (be)l, {ef), (f.9), (e.9), (e, d)} and
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subgraphs. Thus, to simplify our terminology, we use the
term subgraph instead of connected subgraph. Notice that
a subgraph of a given graph can be uniquely determined
by the set of edges Es of that subgraph as all of its nodes
are connected.

We say that two subgraphs S1 = (Vs,,Es)) and Sy =
(Vs,,Es,) of G are identical if they have the same set of
edges. A less constrained association between two sub-
graphs is isomorphism. Two subgraphs S; and S are
isomorphic if the following condition holds: There exists
a bijection f : V5, — Vg, such that V(u,v) € Es,, <
(f (w),f(v)) € Es,.

We say that two subgraphs S; and Sy overlap if they
share at least one edge (i.e., Es; N Es, # ). In Fig. 1a,
consider the four subgraphs S;, Sz, S3, and Sy defined by
the set of edges {(a,b), (a,c), (b,c), (b,e)}, {(e,f), (£g), (e,g),
(e,d)}, {(ef), (£:g); (e:8), (bse)} , and {(bse), (de), (ef), (e,g)}
respectively. S; and S are disjoint as they do not share any
edges. S1 and S3 overlap as they share the edge (b,e). Sim-
ilarly So and S3 overlap. All three subgraphs S;, Sz, and
S3 are isomorphic as they have the same topology. S; and
S4 are non-isomorphic as they do not satisfy the bijection
function defined above.

Notice that isomorphism is a transitive relation. Thus,
for a given subgraph S of G, the set of all subgraphs of G
which are isomorphic to S defines an equivalence class.
We represent the subgraphs in each equivalence class with
a graph isomorphic to those in that equivalence class
and call it a pattern. Figure 1c shows the pattern that
represents the equivalence class {S1, S, S3}.

There are alternative definitions of the frequency of a
pattern in a given graph. The classical frequency defini-
tion is the number of all subgraphs of the target graph
which are isomorphic to the given pattern. This definition,
also known as the F1 measure [16], counts all the sub-
graphs regardless of whether they overlap with each other
or not. There are two other frequency definitions which
avoid overlaps between different subgraphs. F2 measure
counts the largest subset of subgraphs in a given equiva-
lence class which do not share any edges with the rest of
the subgraphs in that subset. It however allows them to
share nodes. F3 measure is more stringent as it requires
that no two subgraphs can share a node. Consider the
pattern in Fig. 1c and the target graph in Fig. 1a. The fre-
quency of this pattern in the target graph according to the
F1 measure is three as it has three embeddings ({S1, S2,
S3}). On the other hand F2 is two {S1, S»}, and F3 is one
(S1 or Sy or S3). From here on, we denote the F1, F2, and
F3 counts of a motif M in graph G using the notations
F1g(M), F2g(M), and F3g(M) respectively.

The downward closure property states that the fre-
quency of a pattern should monotonically decrease as this
pattern grows (by inserting new nodes or edges to it).
More specifically, consider a function f () that operates on
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a pattern and returns a real number. Let us denote two
patterns with P; and P,. We say that the function f() has
downward closure property if and only if f(Py) < f(P1)
for all (P, P5) pairs where P; is a subgraph of P;.

Under the light of these definitions, next we show that
F1 measure is not downward closed. Consider the pat-
tern P; in Fig. 1b. The frequency of P; is two in the target
graph in Fig. 1a. Now consider the pattern P, in Fig. 1c
which contains Pj. Although P; is a subgraph of Py, the
frequency of P, is three in the same graph (i.e., more than
that of P;). Next, consider the pattern P in Fig. 1d. P3 con-
tains Py, and its frequency is only one (i.e., less than that of
P,). This example demonstrates that the F1 measure not
only fails to monotonically decrease, but it also fluctuates
(i.e., its value may go up or down) as we grow the pattern
(see [17, 18] for further discussions on this issue).

Unlike the F1 measure, F2 is downward closed. In the
following, we formally prove this.

Theorem 1.1 Assume that we are given a graph G.
Given two patterns M and M where M C M, we have
F26(M) = F26(M).

Proof To prove this, we consider the placement of each
embedding of M in G according to F2 measure (i.e. non-
overlapping embeddings). Notice that each embedding of
M contains M as M C M. From each of these embed-
dings, we remove the edges that are in M — M. This leads
to one embedding of M for each embedding of M. Thus,
the number of non-overlapping embeddings of M in G is
at least as much as that of M in G. Therefore, F2g(M) >
F26(M). O

Similarly, we say that F3 measure which also counts
non-overlapping embeddings, is also downward closed.

Failure to satisfy the downward closure property has
major implications on the correctness of motif identifi-
cation. Traditional motif identification algorithms often
grow a motif starting from an initial motif of a small num-
ber of edges (see Section “Summary of existing methods”).
Should they employ the F1 measure, these algorithms can-
not have an early stopping criteria as they grow motifs.
This is because the frequency can go up as we grow motif
even when the current motif frequency is low. Next, we
formally define the problem considered in this paper.

Problem definition Given an input graph G = (V,E),
the number of nodes in the target motif 1, and frequency
threshold «, we aim to find all patterns of i nodes which
have frequency at least « in G under the frequency mea-
sure F2. The method we develop in this paper can how-
ever be easily extended to F3 as well (see Section “Finding
MIS: Going from F1 to F2”).
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Summary of existing methods

We classify the literature on motif identification and
counting, based on the underlying frequency measure.
This is because the frequency measure dramatically
changes the cost of counting motifs as well as how we can
interpret the frequency of the underlying pattern. Most of
the existing studies use F1 frequency measure to count the
embeddings of a pattern in a given graph (e.g., [19-24]).
These methods carry the drawbacks inherent in the F1
measure. First, F1 ignores the fact that different copies of
the same motif can overlap due to the nodes and the edges
they share. This can lead to artificially massive number of
motif embeddings as the same node or edge can partic-
ipate in multiple embeddings. To understand this better,
consider the pattern and the graph in Figs. 1c and 1la
respectively. F1 counts three copies of the pattern (S, So,
and S3). Different nodes and edges however contribute to
this count at different numbers. The edge (a, b) appears
only in S; while (b, ) appears in both S; and S3.

Second and more importantly, the F1 measure is not
downward closed. This is because as we grow a pattern
by including new edges or nodes, its count as computed
by F1 is not monotonic; it may decrease, stay the same,
or increase. Lack of downward closure property makes
it nearly impossible to decide if the motif found is the
largest one in size while growing a pattern. Thus, using
F2 is essential for the tractability of identifying frequent
patterns. We use the F2 measure in this paper. Thus, the
studies limited to the F1 measure are out of the scope of
this paper.

Several algorithms tackle the problem of finding fre-
quent patterns in multiple graphs. FSG [25] is one of the
key methods in this class. These methods, however, do
not count the number of occurrences of a pattern in each
graph. They rather check if the given pattern appears at
least once in each graph. Vanetik et al. [17] also addressed
the same problem.

Finding frequent patterns or counting them without
overlaps (i.e., using F2 or F3 measures) have received
little attention in the literature. One of the existing algo-
rithms in this category is SUBDUE [15]. Flexible Pattern
Finder Algorithm (FPF) [16] detects frequent patterns
using both F2 and F3. Two algorithms were proposed by
Kuramochi and Karypis [26], named hSiGraM, vSiGraM.
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However, these algorithms are computationally expensive
and do not scale to large graphs or motifs. We evaluate
SUBDUE and FSG experimentally in Section “Results and
discussion”

Methods

In this section we describe our method. Section
“Algorithm overview” presents an overview of our algo-
rithm. Section “Joining patterns to find larger patterns”
explains the mechanism we use to grow motifs by joining
smaller motifs. Section “Finding MIS: Going from F1
to F2” describes how we count disjoint motif instances.
Section “Accelerating our algorithm through efficient fil-
ters” presents filtering techniques we implement to avoid
costly isomorphism tests. Section “Complexity analysis”
discusses the complexity analysis of our method.

Algorithm overview

In this section, we provide an overview of our method
for discovering motifs. At the heart of our method lie
four unique graph patterns. We call them the basic build-
ing patterns for we use them as guide to construct larger
motifs of arbitrary sizes and topologies. Figure 2 presents
these basic building patterns. We explain why we use these
four specific patterns in Section “Joining patterns to find
larger patterns” in detail.

Algorithm 1 presents the pseudo-code of our method.
We elaborate on each key step of our method in sub-
sequent sections. The algorithm takes a graph G, the
number of nodes of the target motif u, and the minimum
acceptable motif frequency as input «. For each of the four
basic building patterns, it first locates all subgraphs in G
that are isomorphic to that pattern (Line 1). Let us denote
the set of instances of the ith pattern (i € {1, 2, 3, 4}) with
S;. In each set S;, it is possible to have overlapping sub-
graps. It then extracts the maximum set of edge-disjoint
subgraphs in each set S; (Line 2) (see Section “Finding
MIS: Going from F1 to F2” for details). Let us denote the
resulting set with S; for the ith pattern. Notice that the car-
dinalities of the sets S; and S; are the F; and F, measures
of the ith pattern respectively. The union of all the sets S;
constitutes the current motif instances as well as the basic
building pattern instances at this point (Line 3). The algo-
rithm then iteratively grows the current motif set. At each

YO

@ M1 (b) M2

RUAp:

© M3 d M4

Fig. 2 The four basic patterns used by our algorithm which represent all patterns of two (@) or three undirected edges (b, ¢, and d)
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iteration, it joins the current motif set with the basic build-
ing pattern set (Line 9). More specifically, a motif instance
and a basic building pattern join if they share at least one
edge. Joining two such subgraphs either creates a pattern
which already exists in the current set (Line 10) or a new
pattern (Line 12). At each iteration, after growing the cur-
rent set, it filters the overlapping subgraphs to identify
MIS for each pattern (Line 18). The algorithm removes all
patterns with frequency lower than the user supplied cut-
off (Line 21). It reports the frequent subgraphs that have
as many edges as the target motif size (Line 23). The algo-
rithm terminates when the current set can not be grown
to have any other patterns which satisfy the target motif
(i.e. each pattern in the current set is either larger than the
target motif size or its frequency is lower than the user
specified frequency).

Algorithm 1 Motif Discovery algorithm
Input:

e Target motif size u
e Frequency threshold «
e Input graph G = (V,E)

output:

e Motif topologies, and their instance subgraphs, that each
have same number of nodes as u and its F2 > «

: BPSf1 = getAllSubgraphs-Isomorphic-to-BasicPatterns()

: BPS = extract-maxDisjointSubgraphs-PerPattern(BPSf1)

. CurrentSet (CS) = BPS

: newSet (NS) = ¢

: while CS has new patterns and at least one of them with
number of nodes < u and its F2 > « do

6 for each pattern pl in CS do

7: for each pattern p2 in BSP where p2 # pl do

8‘

9

Qs W N =

for each subgraph sl € pl and s2 € p2 do
$3 = join(s1, s2)

10: if s3 € existing pattern P then

11: add s3 € P in NS if not duplicate

12: else

13: Create Py with s3 topology, add s3 €
Pyey in NS

14: end if

15: end for

16: end for

17: end for

18: CS= extractmaxDisjointSubgraphsPerPattern(NS)
19: for each pattern pl € CS do

20: if F2 of p1 < « then

21: Delete p1 and all subgraphs € p1

22: else if number of nodes of p1 = u then

23: put p1 and all subgraphs € p1 in the output
24: end if

25: end for

26: NS=¢

27: end while
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Joining patterns to find larger patterns

Here, we describe one join iteration of our method; the
process of joining the subgraphs of current set of pat-
terns with the subgraphs of the basic building patterns
to construct larger patterns. At the end of the iteration,
the resulting set of subgraphs becomes the current set of
subgraphs for the next join iteration.

Recall that we join two subgraphs only if they share at
least one edge. Joining two such subgraphs either yields a
pattern that is isomorphic to one of the existing patterns
or a new one. In the former case, we consider the set of
subgraphs S isomorphic to that pattern. We check if the
new subgraph is already in S. If it is in S, we discard it. Oth-
erwise, we store it in S. In the latter case (i.e., the pattern is
observed the first time), we save this as a new pattern and
also keep the corresponding subgraph.

Notice that, although the subgraphs in S do not overlap
prior to join, this may no longer hold after new subgraphs
are inserted into S. At the end of each join iteration, we
select the MIS for each pattern. We defer the discussion
on how we do this to Section “Finding MIS: Going from F1
to F2” We then remove the patterns with F2 values below
the user supplied frequency threshold, «. This eliminates
non-promising patterns, and thus, reduces the number
of candidate patterns for the next join iteration. Using
the F2 measure ensures that patterns maintain downward
closure property. Thus, non-frequent patterns will never
grow to yield frequent patterns.

Why do we need different equivalence classes? If the
motif frequency is measured using F1, it is sufficient to
join the subgraphs belonging to existing patterns with only
those which belong to the same equivalence class of the
simple pattern with two edges (see Fig. 2a) to construct
any larger pattern. This however is not true when F2 (or
F3) is used to count the motif frequency. To understand
the rationale behind this, recall that each equivalence class
represents a set of disjoint isomorphic subgraphs. As a
result, no two subgraphs from the same equivalence class
join for they do not share any edges. Therefore we need
more than one equivalence class to construct new and
larger patterns.

Given that we need multiple patterns, next, we seek the
answer to the following question: What is the smallest set
of patterns which can be used to produce arbitrary large
topologies by joining them? Here we outline the key steps
of the proof that the four basic building patterns, pre-
sented in Fig. 2, suffice to construct any larger pattern.
That said, we do not guarantee to find all copies of such
patterns in the target network.

Before we discuss our induction steps, we explain our
strategy on a specific motif size of four to improve the
clarity of the discussion on induction. Figure 3 shows all
the possible patterns which can be constructed with undi-
rected four edges. A careful inspection shows that each
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represents pattern with four nodes and four edges

Fig. 3 All patterns which can be constructed with four undirected edges. a, b, and d represent patterns with 4 edges and 5 nodes while b

P

(© (d)

one is an overlapping combination of two of the basic
building patterns. For instance, the pattern in Fig. 3a can
result from joining the basic pattern in Fig. 2a with the
basic pattern in Fig. 2c. It is worth noting that we can
construct some of the patterns in Fig. 3 by joining two dif-
ferent pairs of basic building patterns. This redundancy
ensures we can still locate a specific pattern even if one
of those pairs does not exist. Therefore, our method can
construct any pattern with four edges from patterns with
three or two edges.

We conduct our proof for the arbitrary pattern size by
induction.

Basis The four basic patterns in Fig. 2 constitute all
possible graph topologies with two or three edges.

Induction step We assume that our method can con-
struct any pattern with up to k edges (k > 3). We next
show that any pattern with k + 1 edges can be constructed
by joining a pattern with k edges with one of the basic
building patterns.

Recall that the downward closure property states that
those smaller patterns have at least as much frequency as
the larger one according to F2 (see Theorem 1.1). This
means that if a pattern with k + 1 edges is frequent, then
so is any of the k edge patterns obtained by removing an
edge from that pattern.

Consider a graph G and a copy of a pattern P1 of size k
edges in G, S1. Also, consider a copy of a pattern P2 with
k + 1 edges such that P2 contains P1 and one additional
edge. Let us denote this additional edge with (a,b). We
need to show that P2 can be obtained from P1 by joining
it with at least one of the basic patterns.

Since both P1 and P2 are connected graphs, at least one
of the two nodes a and b has an edge in P1. Without violat-
ing the generality of the proof, let us assume that b has an
edge (b, ¢) in P1. Figure 4a illustrates the two edges (a, b)
and (b, ¢).

First, we consider using the basic pattern M1 in Fig. 2a in
the join operation. In this case, a copy of M1, {(a, b), (b, ¢)}
will join with S; having a common edge (b, ¢) which will
result in the pattern P2 with k+1 edges. This join however
occurs only if the subgraph {(a, b), (b, ¢)} is included in the
F2 counts of M1 (i.e. within the chosen non-overlapping
copies of M1).

If this condition fails, we consider the degrees of the two
nodes b and ¢ in pattern P1. We start with node c. Let
us denote the degree of a node with function deg() (e.g.
deg(c) is the degree of node c in pattern P1).

If deg(c) > 1, then ¢ has at least one more edge on top
of (b,¢). Let us denote this edge with (c,d) (see Fig. 4b).
In this scenario, we join a copy of the motif M4 (Fig. 2d),
{(a, D), (b, ¢), (c,d)} (if this copy exists in the F2 count of
M4) to obtain P2.

(a)

@ § bzc
& @ E—@
(b) (c)

Fig. 4 a A subgraph S, in a hypothetical graph G. S; is isomorphic to a pattern P2 of size k + 1 edges. If we remove the additional edge (a, b) we
obtain S; which is isomorphic to P; where P; C P,. Notice that Sy could have arbitrary k — 1 edges rather than (b, ¢). Here we obtain S, as a result of
joining Sy with the subgraph {(a, b), (b, ¢)} which belongs to M1 equivalence class (see Fig. 2a). b Failure to accomplish the join in (a), we seek to
inspect deg(c) and deg(b) in S1. The first possibility is that deg(c) > 1. This means that the subgraph {(b, ), (¢, d)} exists. We then can join 1 with
the subgraph {(a, b), (b, ¢), (¢, d)} which belongs to M4 equivalence class (see Fig. 2d) to obtain S, which is isomorphic to a pattern P2 of size k + 1
edges. € The second possibility is that deg(b) > 1. This means that the subgraph {(b, ¢), (b, d)} exists. We then can join Sy with the subgraph

{(a,b), (b,0), (b,d)} which belongs to M3 equivalence class (see Fig. 2c) to obtain S,
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Finally, if deg(c) = 1, it is guaranteed that deg(b) > 1.
This is because if both nodes b and ¢ have degree one, S1
cannot be a connected subgraph. Let us denote one of the
additional edges of b with (b, d) (see Fig. 4c). In this case,
we join the subgraph that isomorphic to the pattern M3,
{(a, b), (b, ), (b,d)}, with §; to obtain P2. We can do this
if this copy exists in the F2 count of M3.

In summary, we conclude that any pattern P2 with k +1
edges can be constructed by joining a pattern P1 with k
edges (or k — 1 edges) and one of the basic building pat-
terns to obtain the additional edge (or edges) if at least one
of the many possible scenarios hold. We however cannot
guarantee that the joins will find all of the instances of the
k + 1 edge pattern on the target graph.

Recall that as we aim to calculate the frequency of a
given motif using F2, there is no self join of any pattern.
Thus, the basic building patterns set is the smallest set of
patterns as we can not construct one of those four pat-
terns using the three other patterns. More specifically, this
means that we can not use only one of those four basic
building patterns to construct larger patterns by joining
pairs of subgraphs belong to that pattern’s equivalence
class. This is because if we join the embeddings of a sin-
gle motif topology (such as the first pattern in Fig. 2a)
we cannot get any larger pattern as they do not share any
edge(s).

Finding MIS: Going from F1 to F2

Here, we explain how we compute the F2 frequency for
a given pattern. We use two algorithms for this purpose.
We explain why we have two separate algorithms later in
this section after describing the two algorithms. The first
one is a heuristic used in the literature [16]. This algorithm
constructs a new graph, called the overlap graph for each
pattern as follows. Each node in the overlap graph of a pat-
tern denotes an embedding of that pattern in the target
graph. We add an edge between two nodes of the over-
lap graph if the corresponding embeddings represented by
those nodes overlap in the original graph. Once the over-
lap graph is constructed, the algorithm starts by selecting
the node with the minimum degree (i.e. overlaps with the
minimum number of embeddings) in the overlap graph.
We include the subgraph represented by this node in the
edge-disjoint set. We then delete that node along with all
of its neighboring nodes in the overlap graph. We update
the degree of the neighbors of the deleted nodes. We
repeat this process of picking the smallest degree node
and shrinking the overlap graph until the overlap graph is
empty.

The algorithm described above works well for pat-
terns with small number of embeddings. It however
becomes computationally impractical as the number of
embeddings of the underlying pattern gets large. This is
because both constructing the overlap graph (particularly
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identifying its edges) and updating it are computation-
ally expensive tasks. Therefore, we use this algorithm for
all patterns except for the basic building patterns (where
number of embeddings are often too large).

The second algorithm addresses the scalability issue of
the the first one. This scalability issue is imposed by the
expensive task of calculating the degree of each node in
the overlap graph (i.e. the number of overlaps of each
embedding). Recall from the previous algorithm that this
number is considered as a loss value when selecting the
node (i.e. embedding) with minimum degree (i.e. num-
ber of overlaps) to include in the final MIS of the pattern
under consideration. Briefly, the second algorithm we
introduce here avoids the expensive task of calculating
number of overlaps for each embedding. The algorithm
performs this by algebraically computing such numbers
instead of performing actual overlapping tests. Once we
compute node degrees of the overlap graph, this algo-
rithm selects the disjoint embeddings the same way as the
former algorithm described before. More specifically, the
algorithm selects the node with the minimum degree and
includes its corresponding embedding in the final MIS.
It then removes neighboring nodes to that node from
the overlap graph. It repeats this process until the over-
lap graph is empty. Next, we explain how we compute
the degree of a node in the overlap graph for the pat-
tern M1 in Fig. 2a. Our computation is similar for the
other three basic building patterns, yet tailored towards
their specific topologies (derivation is shown in Additional
file 1: Appendix). Figure 5 shows a hypothetical subgraph
S1 ={(a,¢), (b,¢)} in the input graph G which is isomor-
phic to M1. This subgraph is represented by a node in
the overlap graph of M1’s embeddings. Let us denote the
degree of a node in the original graph G with function d()
(e.g. d(v;) is the degree of node v;). Another embedding
of M1 in G overlaps with S; only if it contains the edge
(a,c), or (b,c). Any edge in G connected to the middle

@ M1

o (3

Fig. 5 a One of the basic building patterns. b A hypothetical graph
that contains subgraphs isomorphic to the pattern M1 in (a)
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node ¢ forms two overlapping embeddings, one with the
subgraph that has edge the (a,¢) and the other with the
subgraph that has the edge (b,¢). We exclude the edges
belong to S; (i.e. the embedding we want to calculate its
number of overlaps) itself from the potential edges of G
that considered in the overlapping embeddings with S;.
Thus, by excluding the two edges (a, ¢) and (b, ¢) from c’s
degree, node ¢ yields 2 x (d(c) - 2) overlaps. In addition,
any edge that belongs to node a forms an embedding when
combined with the edge (a, c). Excluding the edge (g, ¢),
node a yields d(a) - 1 overlaps. Similarly, node b produces
d(b) - 1 overlaps. Thus, the total number of overlaps for
the embedding S; = {(4, ¢), (b, ¢)} combined from edges of
its three nodes {(a, b, ¢)} is

2(d(c)—2)+d(a)—1+d(b)—1 = 2d(c)+d(a)+d(b)—6

Notice that unlike the first algorithm, the second one
requires a unique derivation for each pattern. Thus, we
apply it only to the basic building patterns, for their
topologies do not depend on the input graph. Also, it
is worth noting that typically the basic building blocks
have much larger number of embeddings as compared
to the patterns derived by joining them. Thus, the effi-
ciency of the second algorithm is needed for them more
than the patterns obtained in subsequent iterations (see
experimental results).

To adapt our method to count non-overlapping embed-
dings of each pattern according to F3 instead of F2, we
only need to change how we calculate the MIS of this
pattern. More specifically, we change the criteria which
states that “two subgraphs overlap if they share at least one
edge” to “two subgraphs overlap if they share at least one
node” (see Section “Definitions and notation”). This will
result in changing the overlap graph constructed using the
first method we explain in this section. In addition, it will
also have slight change in calculating the total number
of overlap of each embedding using the second method
we discuss in this section. Practically, we expect the over-
lap graph to be denser when we use the F3 measure as
compared to that for the F2 measure. To illustrate this,
consider the graph G in Fig. 1a and the pattern in Fig. 1c.
This patter have 3 embeddings in G which are S, Sy, and
S3 defined by the set of edges {(a,b), (a,c), (b,c), (be)},
{(e,f), (£g), (e,8), (e,d)}, {(e,f), (£g), (e,g), (b,e)} respectively.
Figure 6a and Fig. 6b represent the overlap graph of this
pattern based on F2 and F3 measures respectively.

Accelerating our algorithm through efficient filters

Recall that at each iteration, our algorithm generates new
subgraphs. For each of these subgraphs, it checks if this
subgraph is isomorphic to one of the patterns constructed
till that iteration. Isomorphism test is a computationally
expensive task. Next, we describe how we avoid a large
fraction of these tests.
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Y 6 =2

S S

(a) (b)

Fig. 6 a The overlap graph of the pattern in Fig. 1c based on f;
measure of this pattern in the graph in Fig. 1a. b The overlap graph of
the same pattern based on F3 measure

We develop two canonical labeling strategies for pat-
terns. Canonical labeling assigns unique labels to the
nodes of a given pattern [27]. If two patterns are isomor-
phic, then they have the same canonical labeling. The
inverse is however not true. Unlike isomorphism test,
comparing the canonical labeling is a trivial task. Fol-
lowing from this observation, when we construct a new
subgraph, we first compare its canonical labeling to those
of existing patterns. We then limit the costly isomorphism
test to only those patterns which have the same canonical
labeling as the new subgraph.

The first canonical labeling counts the degree (i.e. num-
ber of incident edges) of each node in the given pattern.
It then sorts those degrees and keeps them as a vector we
call the degree vector. If two patterns have different degree
vectors, then they are guaranteed to have different topolo-
gies. Despite its simplicity, this labeling filters out a large
fraction of patterns. To test its efficiency, we have tested
it on random graphs generated using Barabasi—Albert
model [28]. We generate 1000 pairs of graphs where each
pair is non-isomorphic and have the same number of
nodes and edges. The degree vector successfully filters 85
% of the 1000 experiments.

The second canonical labeling extends on the first one.
It was first introduced by [29]. Consider a pattern P =
(V,E). Let us define the distance between two nodes v;,
vj € V as the number of edges on the shortest path that
connects v; and v; and denote it with x;;. Let us define the
diameter of P as the maximum distance between any two
nodes, and denote it with x. Using this notation, we assign
label to node v; as: Z;EV 2%=%=4() Once we compute the
labels of all the nodes in the given pattern, we sort them.
We call the resulting vector the nodes vector. Similar to the
first labeling above, two isomorphic graphs are guaran-
teed to yield the same labeling. We compute and compare
the nodes vector with only the patterns which cannot be
eliminated using the first canonical labeling. We then con-
sider the patterns with identical canonical labels for graph
isomorphism.
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Complexity analysis

Here we analyze the complexity of our method. We refer
to Algorithm 1 as we discuss the steps of our method. For
each steep, we explain its complexity. We then summarize
the complexity of all steps to denote the overall complexity
of our method. These steps are

¢ Find all subgraphs isomorphic to each of the four
basic patterns (Line 1): In this step, we analyze each
of the four basic patterns separately since they have
different topologies. For the pattern M1 in Fig. 2a, to
get all subgraphs isomorphic to this pattern, we
consider all edges connected to each node in the
underlying network. We select any two edges
combination connected to every node. Here, we
denote the degree of a node with function d() (e.g.
d(v;) is the degree of node v;). Thus, the complexity
of collecting subgraphs that are isomorphic to M1 is
D ey (d(v’ )- Similarly, for the pattern M3 in Fig. 2c,
we select any three edges combination connected to
each node in G. Thus, the complexity of constructing
subgraphs which are isomorphic to M3 is
> eV (d(;")). For the pattern M2 in Fig. 2b, we
consider each edge e; in G with two nodes v; and v;.
We collect edges of both nodes. We then select one
edge connected to v; and one edge connected to v;
(on the condition that these two edges are connected
from the other end) along with e;; to form a subgraph
isomorphic with M2. Thus, the complexity of
constructing subgraphs that are isomorphic to M3 is
Zei,eE d(vi)d(v;). Similarly to M2, we perform the
same operation to get isomorphic subgraphs to the
pattern M4 in Fig. 2d. Only this time we make sure
that the two edges belong to v; and v; are not
connected with each other from the other end. Thus,
the complexity of constructing subgraphs that are
isomorphic to M4 is Y ejeE d(v;)d(vj). Collectively,
the complexity of performing this step is
O(ZWGV dw)? + ZeijeE d(v;)d(vj)). Notice that,
theoretically, the worst case scenario happens when
d(v;) = O(n). In this scenario, the complexity of this
step becomes O (n*).

e Extract maximum disjoint set for basic patterns
(Line 2): In this step, we use the algebraic algorithm
described in Section “Finding MIS: Going from F1 to
F2” (second one) to calculate the number of overlaps
of each subgraph belonging to each pattern
equivalence class. This process takes constant time.
We calculate this algebraic equations as we construct
subgraphs in the previous step. We then sort those
subgraphs within each equivalence class in
decreasing order of their number of overlaps. This
process has complexity equal to O(mlog(m)) where
m is the number of subgraphs in each equivalence
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class. Recall from previous step that this number is
O (Syser 400 + oyep d0)A()). Thus, the
complexity of this step is O ((Zvie\/ d(v,')3)

log (X yyev 400?) + Loy A1) )

log (Loye A1)

Join Iterations (Lines 5-27): In this step, we analyze
the complexity of one join iteration. We then
summarize the complexity of all join iterations. Let us
denote the number of current patterns in iteration i
with x;. Notice that, for the first iteration x; = 4.
Recall that in each join iteration, we increase the size
of each of the current patterns with one or two edges.
In addition, the patterns of the first join iteration are
at least of size 2. Thus, the size (i.e. number of edges)
of each of the current patterns in iteration i is at least
i + 2. The number of subgraphs isomorphic to each
of the current patterns is at most |+‘ since they are
non-overlapping subgraphs. Recall that the subgraphs
of the basic patterns are non-overlapping within each
pattern. Thus, the number of subgraphs of the
patterns M1, M2, M3, and M4 are %‘, |§|, EI, and IE'
respectively. Collectively, the number of subgraphs of
the basic patterns is O(|E|).

In the join iteration, we start by joining subgraphs of
current patterns with the subgraphs of the basic
patterns (Lines 6-9). Thus, the total number of joins

we perform at iteration i is O (IEI l 2x,> . For each

join, we compare the resulting subgraph against all
patterns (Line 10). Recall that, we use filters to avoid
this costly isomorphism check (see

Section “Accelerating our algorithm through efficient
filters”). Thus, the complexity of this operation is
O(x;). If this subgraph is isomorphic to one on the
current patterns, we check whether this subgraph is a
duplicate of one of the subgraphs which already exists
in this equivalence class (Line 11). We search an

indexed list of those subgraphs in O (log ( lﬂ))

Collectively, we obtain the complexity of performing
all joins at iteration i by multiplying the three

complexities above and get (|E | ‘Ellex,log ( | ))

i+2
which equals© ( 121?2 log (zﬂ))

Upon completing all join operations, our algorithm
extracts the MIS for each pattern (Line 18) using the
overlap graph algorithm described in

Section “Finding MIS: Going from F1 to F2” (first
one). Notice that we perform this operation for the
new set of patterns, x;y; (current patterns of next
iteration) for which the number of patterns is at most
i'% (This is because each pattern is of size i + 3 and
no two patterns overlap). For each pattern, we collect
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the overlapped subgraphs of each subgraph in

o (Y h he subgraphs i
(m> . We then sort the subgraphs in

decreasing order of their number of overlaps in

O (llflg log (Jﬂ)) time. Thus we extract the MIS for

all patterns in O (x,_H (Ma) log (Lﬂ,)))

Finally, we check each resulting pattern (Line 19-25)
and delete it if its frequency is less than the threshold
a. We perform this step in O(x;41) time.

Recall that in each join iteration, we increase the size
of each of the current patterns with one or two edges.
Also recall that we start the with patterns of at least
of size 2. Thus, total number of join iterations we
perform until we reach to all patterns are at least of
the target motif size is u — 2. Thus, the complexity of
all join iterations is O ( Zl ( zz‘ilz log ( l‘flz) + Xit1

=

(%) log (,E‘g) +xi+1)> or simply

@ (lg [x, |EL|2 log (;ﬂ)] [x,- + 'L%'] + xi+1>

In summary, the complexity of our method considering all
the previous steps is

o ((Zviev d(vi)3> (1 +log (Zvie\/ d(v,-)?’))
+ <Zequ d(Vi)d(V/)) <1 + log <Zequ d(vi)d(vj))>

(e (5] [+ ] )

Notice that x; here depends significantly on the topology
and the density of the given network G. To the best of our
knowledge, there is no closed formula that calculates x;
(i.e. the number of unique topologies of certain size in a
given graph G).

E2
Llo

Results and discussion

In this section, we experimentally evaluate the perfor-
mance of our motif discovery algorithm on synthetic and
real graphs (Section “Evaluation of running time”). We
measure the running time and accuracy of our algorithm.
We compare our algorithm to two state of the art algo-
rithms, FSG [25] and SUBDUE [15] (Section “Comparison
with existing methods”). We evaluate the statistical sig-
nificance of the most abundant motif in each of the real
graph (Section “Evaluation of statistical significance”). We
present a case study of the motifs identified by our method
on Human herpesvirus PPI network (Section “Case study
on Human herpesvirus”). In all of our experiments, we
report the motif frequency using the F2 measure.
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Data set We use real and synthetic datasets in our
experiments. The real graphs are the PPI networks of
seven organisms taken from the MINT database [30] (see
Table 1 for details). We first remove the nodes and edges
of these graphs which are guaranteed to not be a part of
the motif to be found. To do that, we filter a subset of the
nodes of each network as follows. We first identify con-
nected subgraphs of each graph. Let us denote the size of
the motif we aim to find with x. We remove the connected
subgraphs with less than u nodes. Table 1 lists these net-
works and their sizes after filtering them for i = 5 (which
is the smallest motif size in all of our experiments).

In addition to the real dataset, we construct synthetic
graphs. The purpose of having synthetic dataset is to sys-
tematically evaluate our method by varying network char-
acteristics (network size and density) in a controlled envi-
ronment. We build this dataset using the Barabasi—Albert
model [28] for it captures the connectivity patterns of
real networks [31-33]. Moreover, this model has been
frequently used in the literature to simulate real networks.

Implementation and environment We implement our
algorithm in C++ and perform experiments on a com-
puter equipped with AMD Opteron(tm) Processor 1.4
GHz CPU, 500 GBs of main memory running Linux oper-
ating system.

Evaluation of running time

In this experiment, we evaluate the running time of our
motif discovery algorithm. Our goal here is to observe
the effect of varying parameters; graph size, graph density,
and motif size on the running time of our algorithm.

Effect of graph and motif size

We evaluate the running time of our method under vary-
ing graph and motif sizes using both synthetic and real
datasets.

Results on synthetic graphs We generate synthetic
graphs of varying size (i.e. number of nodes) from 100 to

Table 1 The size (number of Proteins and interactions) of the PPI
networks selected from the MINT database

Network name Network Number of Number of
code proteins interactions
Human herpesvirus8 hhv-8 48 82
Campylobacter jejuni cje 109 117
Treponema pallidum tpa 108 173
Rattus norvegicus mo 535 643
Helicobacter pylori hpy 717 1472
Escherichia coli eco 616 1561
Plasmodium falciparum pfa 1221 2577
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1000 at increments of 100. We fix the graph density to two
edges per node on the average (i.e., mean node degree is
set to four). We set the minimum desired motif frequency,
a = 10. We run experiments for motif sizes u© = 5, 10,
and 15 and report the running time. Figure 7 presents the
results.

The results demonstrate that our method scales well
with growing graph and motif sizes. The running time
grows with increasing graph and motif sizes, yet it remains
practical for very large graphs. For motif sizes of 5 and
10, it runs in only several minutes even for the largest
input graph. As the motif size grows, the cost increases.
However, our method can identify very large motifs in a
little over a day for massive networks. We observe that
the motif size has more influence on the performance of
our method than the input graph size. This is because the
number of alternative motif topologies grow exponentially
with the motif size. This is an inherent characteristic of the
underlying computational problem. However, even when
the motif size is 15 our method remains to have a practical
running time.

Results on real graphs Next, we test our method on real
dataset. We set the minimum desired motif frequency,
a = 5. We run experiments for motif sizes © = 5, 10,
and 15 and report the running time. Figure 8 presents
the results. Similar to the synthetic dataset results, our
method scales to large graph and motif sizes on the real
dataset. Note that the number of alternative motif topolo-
gies grows exponentially with the motif size. Furthermore,
the cost of subgraph isomorphiosm also grows expo-
nentially with the motif size. Despite these two major
complicating factors, the running time of our method
increases only by about an order of magnitude when we
increase the motif size by five. Finally, the parallel between
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Fig. 8 The total running time of our method for the real PPl networks.
Network numbers 1 to 7 on the x-axis correspond to hhv-8, cje, tpa,
o, hpy, eco, and pfa PPl networks respectively. The positions of the
PPI networks on the x-axis indicate the sizes of the input graphs (see

Table 1). The y-axis shows the running time in seconds

these results and those in Fig. 7 suggests that synthetic
graphs generated by Barabdsi—Albert model have similar
structural properties as the real PPI graphs.

Effect of graph size and density

Here, we evaluate the effect of varying input graph size
and density on the running time of our algorithm. We
use synthetic dataset in order to control the graph density
in this experiment. We generate synthetic graphs varying
network size from 100 to 1000 at increments of 100. We
set the desired motif frequency @ = 5 and the motif size
u = 10. We vary graph density from one to four which
covers broad range of biological networks [34]. For each
input graph and density value, we report the total running
time. Figure 9 presents the results.
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Fig. 7 The total running time of our method for varying graph size
and motif sizes (number of nodes). Motif size varies from 5 to 15. The
x-axis shows the input graph sizes varying from 100 to 1000. The
y-axis shows the total running time in seconds
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Fig. 9 The total running time of our method for the synthetic graphs
with different graph sizes (number of nodes) and varying graph
densities from 1 to 4. The x-axis shows the input graph sizes. The
y-axis shows the total running time in seconds
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We observe that the running time increases with grow-
ing graph density. As the graph density increases, the
number of alternative embeddings of a given motif grows
as well. This also increases the number of overlapping
subgraph pairs, which in turn increases the cost of find-
ing MIS for each pattern to calculate its F2 frequency
(see Section “Finding MIS: Going from F1 to F2”). Despite
these major complications inherent in the nature of the
motif counting problem, our method remains scalable
with respect to growing density. These results suggest that
our method is reliable and computationally feasible for a
broad range of networks with different sizes and densities.

Comparison with existing methods

Here, we compare our method against two methods in
the literature which are tailored towards a problem simi-
lar to the one considered in this paper, namely SUBDUE
and FSG. We measure the running time and accuracy. We
compute accuracy in terms of three parameters, the num-
ber of unique motifs found, the average frequency per
motif in the target graph, and the frequency of the most
abundant motif.

Of these two methods, for SUBDUE, we only report the
accuracy of the result as we observe that for most datasets
and motif sizes, SUBDUE fails to identify motifs (results
shown later in this section). For FSG, we only report the
running time. This is because FSG finds motifs in multi-
ple graphs, limited to at most one embedding per graph.
In other words, it cannot find multiple embeddings of the
same motif in a single graph. Therefore, FSG would yield
very low accuracy when applied to a single graph. In the
rest of the paper, we will refer to our method as MD (Motif
Discovery) for simplicity.

Comparison with SUBDUE

In this experiment, we analyze the effect of varying input
graph and motif sizes on the accuracy of our method as
compared to that of SUBDUE. We use real dataset in this
experiment (see Table 1). SUBDUE does not allow the user
to set a minimum allowable motif frequency parameter. It
finds all subgraph topologies of a given size even for those
subgraphs that appear only once. Due to this limitation
of SUBDUE, to have a fair comparison, we set « = 1 for
our method as well. We follow our earlier definition (see
“Definitions and notation”), and use motif size u to denote
the number of nodes in the given motif topology. We run
both methods on each input graph using motif sizes u =
5, 10, and 15. We report the accuracy of our method as
well as SUBDUE. Figures 10, 11, and 12 present the results
of u =5, 10, and 15 respectively.

Our results for ¢ = 5 (Fig. 10) demonstrate that both
methods identify similar number of unique motifs, yet our
method outperforms SUBDUE significantly in terms of
the average frequency per motif in all cases (see Fig. 10b).
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Fig. 10 The accuracy of our method (MD) and SUBDUE in terms of
three measures a the number of unique motif topologies found, b
the average frequency per motif in the target graph, and c the
frequency of the most abundant motif. Results are for the motif size
1 =5 on the real dataset (see Table 1)
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the average frequency per motif in the target graph, and c the
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When we focus on the most abundant topology of each
method, we observe a similar pattern; our method always
finds patterns with much higher frequency than SUBDUE
in all the experiments (see Fig. 10c). It is worth nothing
that motif discovery problem gets exponentially harder
with growing motif size. As a result, we expect most algo-
rithms tailored for motif identification to perform well for
small motif sizes such as © = 5. Next, we observe how our
method and SUBDUE perform for large values of .

As we grow the motif size to © = 10 (Fig. 11), the
results suggest that the gap between our method and SUB-
DUE grows rapidly in terms all three accuracy measures.
More importantly, the results also show that in half of
the cases, particularity where the input graph size is large,
SUBDUE could not find any motifs while our method con-
tinue to locate patterns with high frequency. For example,
our method was capable of finding motif topologies with
frequency over 100 while SUBDUE could not locate any
motif (see Fig. 11c).

For few cases (see Fig. 11b), (hhv-8, cje, and tpa), the
average frequency per motif of SUBDUE is slightly higher
than that of our method. This is because, we set the
minimum frequency « = 1. Our method locates many
topologies which exist only once while SUBDUE fails to
locate them. For example, our algorithm finds thousands
of unique motif topologies while subdue outputs only 8
motif topologies for the hhv-8 organism (see Fig. 11a).
As a result, these unique topologies pull the average
frequency down. That said, Fig. 11c confirms that our
method can identify motifs which are more frequent than
those found by SUBDUE even for those organisms.

As we further increase the motif size to 4 = 15 (Fig. 12),
the significance of our method becomes more prevalent.
We observe that SUBDUE could not find any motifs in any
of the graphs accept for tpa’s PPI network. On the other
hand, our algorithm not only identifies a massive number
of patterns (see Fig. 12a), but also some of these patterns
have very large frequencies (see Fig. 12c).

In summary, the results demonstrate that our method
scales to large input graph and motif sizes and continue to
locate patterns with high frequency for a broad range of
motif and input graph sizes while SUBDUE fails to do so.

Comparison with FSG

In this experiment, we compare the effect of different
input graph and motif sizes to the running time of our
algorithm and that of FSG. We use real dataset in this
experiment (see Table 1). FSG method requires multi-
ple graphs as input. It defines the frequency of the motif
topology as number of different graphs that this motif
appears within. Since our method operate on one input
graph , we set the desired motif frequency « = 1 to be
consistent with FSG. FSG defines motif size as the number
of edges in the given motif. To be consistent with FSG, we
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use u to denote the number of edges in the motif in this
experiment. We run both methods on each input graph
using motif sizes © = 7, 8, and 9. We report the running
time of our method (MD) as well as FSG. We do not run
experiments for ;1 > 9 as FSG fails to scale to large motif
sizes unlike our method. Figure 13 presents the results.

We observe that our method (MD) is orders of magni-
tude faster than FSG, particularly in large motif sizes. The
running time of our method increases slowly with both
motif size and the graph size. On the other hand, the run-
ning time of FSG increases slowly with the input graph
size, but very rapidly with the motif size. Only for a few
cases of small motif sizes (i.e < 7 edges) FSG performs
better than our method. This is due the overhead of cal-
culating F2 for the basic building patterns where number
of overlapped embeddings is huge. That said, the run-
ning time difference in those cases are negligible. These
results suggest that our method outperforms FSG in terms
of running time for a broad range of input real biological
networks with different sizes. This performance advan-
tage is further magnified by the fact that our method
can find multiple embeddings of each motif while FSG
finds only one. The two main reasons behind the fact that
our method is significantly faster than FSG is that our
method (i) does not calculate the frequency of the each
new pattern by locating the copies of this pattern in the
network using subgraph isomorphism as FSG does, and
(ii) it ensures that every generated pattern exists at least
once in the underlying graph.

Evaluation of statistical significance

In this experiment, we evaluate the statistical significance
of the most abundant motif identified by our method in
each of the six PPI networks (see Table 1). We compute the
statistical significance of the abundance of the most fre-
quent motif of a given size in two alternative approaches.
Each of these two approaches measures a different aspect
of the significance.

e The first approach measures the statistical
significance of the frequency of most abundant motif
with respect to the abundances of all motifs with the
same size in the same graph. More specifically, given
a target graph G = (V, E) and motif size i, we first
find all motifs of size u in G. Assume that there are
totally m such motifs. Let us denote the frequency of
these motifs with x1, x3, ..., %y, with x1 being the
largest among all. Let us denote the mean and
standard deviation of these m frequency values with
X and 0. We report the z-score of the frequency of
the most abundant motif as *-%.

e The second approach measures the statistical
significance of the frequency of the most abundant

motif in the original graph with respect to those in
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Fig. 13 The total running time of our method (MD) and FSG for the
real PPl networks (see Table 1). The y-axis shows the running time in
seconds for three motif sizes; a. motif size = 7, b. motif size =8, and ¢.

motif size =9

the random ensemble of graphs of the same size and
degree distributions. More specifically, given a target
graph G = (V, E) and motif size u, let us denote the
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frequency of the most abundant motif of this size in
G with x. We construct a set of n random networks
from G through degree preserved edge shuffling [35,
36]. Note that degree preserved edge shuffling is an
iterative technique, which is often used in the
literature to construct random network topologies
with same size and degrees as a given target graph

G = (V,E). At each iteration of this technique, we
randomly pick two edges from E. Let us denote these
edges with (v1, v2) and (i1, u2), where v1, va, u1,

up € V. We remove these two edges from E and
insert two new edges (v1, u3) and (u1, v2). This way as
the network topology evolves randomly, we ensure
that the degrees of all the nodes remain unchanged.
We repeat these iterations large number of times
(exactly 10 x |E| times) to randomize the entire
network. Using the strategy above, we generate 100

random graphs, denoted with Gy, G, ..

., G100. For

each random graph G;, we measure the frequency of
the most abundant motif of size u. Let us denote this
number as x;. Let us denote the mean and standard
deviation of these 100 frequency values with x and o.
We report the z-score of the frequency of the most

abundant motif as "G;"

For both of the approaches above, we assume that a
z-score above 2 or below -2 implies high statistical signifi-
cance (i.e., two standard deviations away from the mean).
The larger the magnitude of z-score is, the more signifi-
cant the result is. Tables 2 and 3 present the z-score for
each of the six PPI network and three motif size (u =5, 10,
15) combinations using the first and the second approach

described above respectively.

Table 2 suggests that, for small motif size (i.e. © = 5), the
most abundant motif is not significantly more frequent
than other motifs of the same size. However, as motifs get
large in size (i.e. © = 10 and 15), the gap between the
frequency of the most abundant motif and the rest of the
motifs becomes highly significant. This implies that larger
motifs characterize topological properties of PPI networks
better than small motifs. This is because when motif size

Table 2 The z-scores that represent signifncance of the most
abundant motif aginast other motifs in in the same network in
each PPl network usig three motif size

Network code Motif size =5 Motif size = 10 Motif size =15
hhv-8 152 14.00 4.67

dje 141 553 1212

tpa 1.45 7.19 3.36

mo 1.58 431 9.74

hpy 1.54 13.70 9.003

pfa 1.87 3532 743
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Table 3 The z-scores that represent signifncance of the most
abundant motif aginast most abundant motifs in 100 random
networks in each PPl network usig three motif sizes

Network code Motif size =5 Motif size = 10 Motif size =15
hhv-8 2.79 -0.54 -2.83

cje 2.32 0.99 -0.82

tpa 321 527 283

mo -0.49 -4.02 -4.83

hpy 2242 8.61 6.15

pfa 10.53 5.16 4.80

is small different motifs have similar frequency values,
and this cannot be statistically different in abundance
than each other. On the other hand, for large motif size,
although the number of unique motif topologies is large,
they vary a lot in their abundances; the most frequent one
gets significantly more abundant than the rest.

Table 3 shows that, for most of the PPI network and
motif size combinations, the most abundant motif is
highly over-represented in the original network compared
to random networks. In three cases (Rattus norvegicus,
u = 10 and 15, and Human herpesvirus8, u = 15), we
observe that the most abundant is significantly under-
represented. These results demonstrate that the motif
abundance in PPI networks is not random for nearly
all combinations we tested. Thus, studying these struc-
tures has great potential to help understand how these
networks function. Among the six PPI networks, Rat-
tus norvegicus stands out to be the one with consistently
under-represented or random motif abundance. The PPI
of Helicobacter pylori consistently has the most significant
motif abundance for all motif sizes. This indicates that
the interactions in this network follow a regular pattern
repeating themselves at different locations of the network.
Finally, notice that the two z-score values reported in
Tables 2 and 3 do not follow the same pattern (that is a
high z-score according to one measure does not imply a
high value for the other). This implies that the frequencies
of different motifs (i.e., including the ones which are not
most abundant) in these PPIs differ from those in random
networks. In other words, the PPI networks topologically
deviate from random networks.

Case study on Human herpesvirus

Here we briefly analyze the motifs identified by our
method on the hhv-8 PPI network which causes Kaposi’s
sarcoma disease. We choose this organism in our case
study as it has the smallest PPI network among the organ-
isms in our database (see Table 1). Notice from Fig. 11c
that despite its small size (48 nodes and 82 edges), hhv-
8 has four disjoint embeddings of a very large motif
with 10 nodes, covering a significant fraction of its PPI
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network. This begs the question whether there is a fun-
damental recurring function that hhv-8 serves and is
covered through evolutionary process with high redun-
dancy. Figure 14 presents the structure of those four
embeddings. Each row of Table 4 lists the Uniprot ids of
the ten proteins that contribute to each of those embed-
dings. Analysis of these proteins in the Gene Ontology
database [37] reveals that three of those four embed-
dings, each contains two proteins one responsible for viral
DNA packaging (040944 and P88919) and one responsi-
ble for virion assembly (P88954). Without either process,
no infectious progeny virus could be formed [38]. Sev-
eral studies use these two processes as targets to identify
effective inhibitors. The existence of these two process in
each of the three instances reflects the functional impor-
tance of the motif topology found. These results suggest
that our algorithm can find significant and valuable motifs
which can be use to detect key functions governed by the
network processes.

Conclusions

In this paper, we developed a scalable method to solve
the motif identification problem given an input graph,
desired motif size , and minimum frequency of desired
motif «. We proposed a set of small patterns, we call basic
building patterns each containing two or three edges. We
proved that any motif with four or more edges can be
constructed as a join of these patterns. Our method first
locates instances of the basic building patterns. It then
iteratively grows known motifs at that iteration by joining
them with the instances of these patterns. We developed
efficient mechanisms to avoid a significant fraction of the

Fig. 14 The organization of the four isomorphic subgraphs of 10
nodes in the hhv-8 PPl network. Each supgraph has different color
and pattern
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Table 4 Each row lists the Uniprot IDs of the proteins in an embedding of the most abundant motif of size 10 found by our method in

hhv-8 PPl network

040944 p8g947 p88935 P88951 P88960
040910 040944 P88947 P88929 P88920
P88918 P88919 P88929 P88948 P88920
040944 Q98141 P88920 P88951 P88954

p88940 P90489 p88918 P90495 p88902
P88925 P88927 P90486 P88918 P88954
P88950 036551 p88942 Q98141 P88954
p8g89o47 P88948 P88958 P88939 p88944

costly isomorphism tests. We also introduced a new and
efficient strategy for solve the MIS extraction problem.
We analyzed the time complexity of our method based
on the number of nodes and edges in the target net-
work and the number of frequent motifs at each iteration.
Our experiments on PPI networks from MINT compre-
hensively demonstrated that our method is significantly
faster and more accurate than the existing methods. Fur-
thermore, we observed using synthetic networks that the
running time of our algorithm is reasonable with grow-
ing the size of the target network and network density. We
also showed using PPI networks that the increase in the
running time of our algorithm is dramatically less than
that of the competing methods as the motif size grows. We
evaluated the statistical significant of the most abundant
motif of PPI networks resulting from our algorithm.

Additional file

Additional file 1: Appendix 1. This appendix shows the algebraic
derivation of number of embeddings for each three of the four basic
building blocks (see Section 1). In addition, the appendix lists further
experimental analysis. Appendix file is attached as PDF file. (ZIP 151 kb)
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