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Abstract

Background: Digital PCR (dPCR) is a technique for estimating the concentration of a target nucleic acid by loading
a sample into a large number of partitions, amplifying the target and using a fluorescent marker to identify which
partitions contain the target. The standard analysis uses only the proportion of partitions containing target to estimate
the concentration and depends on the assumption that the initial distribution of molecules in partitions is Poisson.
In this paper we describe a way to extend such analysis using the quantification cycle (Cq) data that may also be
available, but rather than assuming the Poisson distribution the more general Conway-Maxwell-Poisson distribution
is used instead.

Results: A software package for the open source language R has been created for performing the analysis.
This was used to validate the method by analysing Cq data from dPCR experiments involving 3 types of DNA
(attenuated, virulent and plasmid) at 3 concentrations. Results indicate some deviation from the Poisson
distribution, which is strongest for the virulent DNA sample. Theoretical calculations indicate that the
deviation from the Poisson distribution results in a bias of around 5 % for the analysed data if the standard
analysis is used, but that it could be larger for higher concentrations. Compared to the estimates of
subsequent efficiency, the estimates of 1st cycle efficiency are much lower for the virulent DNA, moderately
lower for the attenuated DNA and close for the plasmid DNA. Further method validation using simulated
data gave results closer to the true values and with lower standard deviations than the standard method, for
concentrations up to approximately 2.5 copies/partition.

Conclusions: The Cq-based method is effective at estimating DNA concentration and is not seriously affected
by data issues such as outliers and moderately non-linear trends. The data analysis suggests that the Poisson
assumption of the standard approach does lead to a bias that is fairly small, though more research is needed.
Estimates of the 1st cycle efficiency being lower than estimates of the subsequent efficiency may indicate
samples that are mixtures of single-stranded and double-stranded DNA. The model can reduce or eliminate the
resulting bias.

Keywords: Bayesian, MCMC, Conway-Maxwell-Poisson distribution, CMP distribution, Amplification efficiency,
ssDNA

Background
Digital Polymerase Chain Reaction (dPCR) is a technique
first published in [1] that is used to quantify deoxyribo-
nucleic acid (DNA) and other nucleic acids such as ribo-
nucleic acid (RNA) for a variety of applications such as
absolute quantification [2], copy number variation [3] and
rare mutation detection [4]. It is now being used as a ref-
erence method to assign the copy number concentration

of reference materials [5]. Samples are loaded onto a chip
in a large number of separate partitions and then a series
of cycles of the Polymerase Chain Reaction (PCR) are used
to amplify the nucleic acid in the partitions. Fluorescent
markers are used to detect which partitions contain nu-
cleic acid.
The most basic data produced by this process are the

counts of positive and negative reactions. These count
data are sufficient, under the standard assumption [1]
that the molecules in the partitions are initially inde-
pendently distributed following a Poisson distribution
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[6], to calculate an estimate of the concentration of the
target nucleic acid. The estimate for the mean molecules
per partition based on the Poisson assumption is

~μ ¼ − log
n0
n

� �
ð1Þ

where n0 is the number of negative partitions out of a
total of n and log refers to the natural logarithm. This
estimate follows the classical statistics (also called fre-
quentist statistics) method of maximum likelihood. If
the Poisson distribution assumption is invalid then the
estimate is likely to be biased.
In some dPCR instruments, the fluorescence is mea-

sured after each PCR cycle in what is known as real-
time dPCR. The data are processed to produce the
amplification curve for each partition, which for posi-
tive partitions includes a phase of exponential growth
and, eventually, a plateau with no further growth. This
provides a measure of fluorescence as a proxy for the
amount of the target at each cycle, and is used to calcu-
late the quantification cycle (Cq) for each positive parti-
tion. This is defined as the cycle at which fluorescence
reaches a fixed threshold [7], with cycle treated as a
continuous variable. The threshold is chosen so that it
is crossed during the phase when fluorescence is grow-
ing exponentially. A common method is to fit a curve
to the data and calculate the point at which it crosses
the threshold. Such data have the potential to provide
more information than the counts do, particularly
about the value and uncertainties of the relevant
concentration.
One approach to analysing Cq data is the retroflex

method described in [8], where a continuous extension
of the Poisson distribution is used to approximate the
distribution of the data. In this paper we describe and il-
lustrate a method of analysing Cq data from dPCR ex-
periments that is appropriate for concentrations up to
approximately 2.5 copies/partition, and that allows for
possible departures from the Poisson distribution.

Methods
Model
The standard method requires the assumption of a sin-
gle parameter distribution such as the Poisson distribu-
tion because the simple count data only provide
information about whether the numbers of initial mole-
cules in partitions are either zero or at least one. The
justification for the Poisson distribution comes from the
Poisson limit theorem which in part depends on the in-
dependence of the positions of the DNA molecules
within the fluid. If there are significant dependencies, for
example due to molecules sticking together or repelling
each other, then there may be some deviation from the

Poisson distribution. This may depend on factors such
as the length of the DNA strands and the partition size.
The Poisson distribution has probability mass function

P X ¼ x; μð Þ ¼ e−μ
μx

x!
; x ¼ 0; 1;…; μ > 0: ð2Þ

A less restrictive distribution is the Conway-Maxwell-
Poisson (CMP) distribution [9], which has probability
mass function

P X ¼ x; λ; νð Þ ¼ 1
Z λ; νð Þ

λx

x!ð Þν ; x ¼ 0; 1;…; λ > 0; ν≥0;

ð3Þ

where Z(λ, ν) is the normalising constant. For ν = 1 it is
equivalent to the Poisson distribution, and the variance
equals the mean. For ν < 1 the variance is greater than
the mean and for ν > 1 the variance is less.
Figure 1 provides a comparison between the Poisson

and CMP distributions, where P(X = 0) is the same for
each. The means are 1.40 (CMP with v = 0.8), 1.50
(Poisson) and 1.62 (CMP with v = 1.2).
Our model of Cq data first requires a model of the

growth of the number of molecules over the PCR ampli-
fication cycles. If the number of molecules at cycle c is
given by N(c), then for c > 0

NðcÞ ¼ Nðc − 1Þ þ BinomðNðc−1Þ; EcÞ ð4Þ

where Binom(n, p) represents a binomial random vari-
able with n trials and probability p of success and Ec is
the efficiency at cycle c. This is because each of the
N(c – 1) molecules from the previous cycle is duplicated
with probability Ec.

Fig. 1 Comparison of Poisson and CMP distributions with P(X = 0)
the same for each. Probabilities are given by (1) for the Poisson
distribution and (2) for the CMP distribution, with λ chosen so
that P(X = 0|λ, ν) = e− 1.5
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In the model the efficiency for the first cycle is E1
but for subsequent cycles is E. Equation (4) can be
used with Eq. (3) as the initial distribution of mole-
cules to calculate the distribution after a chosen mod-
est number of cycles. The distribution after further
growth is modelled as following a normal distribution.
The fact that Eq. (4) represents a Galton-Watson
branching process [10] is used to derive the mean and
variance. The introduction of the parameter A, defined
as the relative fluorescence per molecule, leads to a
distribution for relative fluorescence. This can then be
used to derive an approximation for the distribution of
Cq data for a given threshold value h.
The default Cq values provided by the data analysed

later show clear trends. Additional analysis suggested
that the trends could be removed through normalising
the amplification curves and then calculating the Cq

values (see Additional file 1). This approach could not
be properly tested as the amplification curves generally
appeared to be a few cycles short of reaching the plat-
eau stage. It is not obvious what causes the differing
plateaus, though one potential factor is varying
temperature across the panels. The trends appear ap-
proximately linear in many cases, and so a linear trend
is included in the model.
Censoring may be required for outliers, as they can

represent some technical deviation from the model.
The exclusion of such values that are inconsistent with
the model should improve the performance of the ana-
lysis and the accuracy of the results. High outliers may
be caused by a problem in amplifying the molecule.
Our model censors high outliers, treating them as par-
titions with one molecule, rather than using the Cq

values. The model could be similarly extended to deal
with low outliers by treating them as counts of parti-
tions with more than one molecule, though this was
not done for the present study. As discussed later, low
outliers do lead to spurious results for one of the ana-
lysed data sets.
The full vector of variables is θ = (μ, ν, E, E1, A, bx, by),

where μ is the mean number of initial molecules per
partition. The overall likelihood is

L θ; c; x; y;nð Þ∝ p 0; 0; μ; νð Þn0p 0; 1; μ; νð Þn1

�
Y

j¼1

n2
X m2c0

i¼1
p i; c0; μ; ν; E;E0ð Þ Φ h; iAGc0j

; iA2Gc0j

1−E
1þ E

� �
Gc 0j

−1
� �� ���

−Φ h; iAGc 0j þδ ; iA
2Gc 0j þδ

1−E
1þ E

� �
Gc 0j þδ−1
� �� ��	

ð5Þ

where c'j= cj − bx(x − 0.5nx) − by(y − 0.5ny) are the detrended
Cq data, Gc ¼ 1þ Eð Þc−c0 , Φ is the distribution function of
the normal distribution and p(j, c; μ, ν) is the probability of
there being j molecules at cycle c in a partition given

parameters μ and ν. The values of p(j, c; μ, ν) are calculated
from Eq. (3) for c = 0 and then through repeated application
of Eq. (4) for cycles up to c0. The value c0 = 6 was chosen as
it is the smallest value required to achieve sufficient preci-
sion (see Fig. 2), and computational time increases rapidly
as c0 increases further. See Additional file 2 for the deriv-
ation and more details.
The data comprise n = (n0, n1) where n0 is the count

of partitions with no Cq value (no molecules), and n1
is the count of high censored Cq values (one mol-
ecule), c ¼ c1;…; ; cn2ð Þ the other Cq values along with
x ¼ x1;…; ; xn2ð Þ and y ¼ y1;…; ; yn2


 �
the x- and y-

locations of the associated partitions. The only other data
that is required is the threshold value h. All the data can
be extracted from the dPCR experiment itself.
This model is a very good approximation as shown in

Fig. 2, where a density plot of simulated data (using Eqs.
(3) and (4)) almost entirely obscures the associated dens-
ity plot (Eq. (5)) of the model with the same parameters.
As a Bayesian approach is being used, prior distribu-

tions are required for the parameters. We used non-
informative uniform priors for μ and ν. Where suitable
prior information is available gamma distributed priors
could be used instead. Prior information about the effi-
ciency E can be provided by preliminary quantitative
PCR (qPCR) experiments. However these estimates for
the qPCR efficiency are imprecise [11] and need not be
the same as dPCR efficiency. For E we used qPCR

Fig. 2 Density plot of simulated data superimposed on model
density. Simulation was performed using the rcq function from the R
package edpcr for N = 106 partitions with E = .95, E1 = .85, ν = 1.2, μ =
1.5 and c = 25.5 (a location parameter used to calculate A). This used
Eq. 3 to select N(0) and repeated applications of Eq. 4 to simulate
subsequent growth. Cq values were calculated based on exponential
growth between the cycles immediately before and after the
threshold was crossed. The density plot of the simulated Cq values
uses a Gaussian kernel with a bandwidth of 0.01. The model density
is calculated using Eq. 5 with the same parameters
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estimates of efficiency to select a prior of Beta(190, 10)
which has a mean of 0.95 and has 95 % of its mass be-
tween 0.92 and 0.98. For E1 lower values are more plaus-
ible and so a prior of Beta(18,2) was used, with mean 0.9
and 95 % of its mass between 0.74 and 0.99. For the
remaining parameters there is little prior information,
and so we use the non-informative priors π(A)∝A− 1,
π(bx)∝ 1 and π(by)∝ 1.

Single-strand adjustment
There are various reasons why E1 could be different to
E. For example the initial molecule may be more difficult
to amplify than the replicates of the target sequence be-
cause of its extra length or because of degradation. On
the other hand efficiency may decrease as PCR reagents
become degraded or are consumed.
Another possible factor is the presence of single-

stranded DNA. In the first amplification cycle it can only
be amplified to double-stranded DNA molecules, which
is equivalent to double-stranded DNA failing to amplify.
The standard method counts single-stranded DNA as
full molecules and so if they are present it will tend to
overestimate μ [12]. If the difference between E and E1
is entirely because of this issue, then the estimated pa-
rameters Ê and Ê1 can be used to estimate the propor-
tion of single-stranded DNA. This leads to an estimate
for μ given by multiplying its original estimate μ̂ by an
adjustment factor that is between 0.5 and 1:

μ̂adj ¼
μ̂

2
1þ min 1;

cE1

Ê

 ! !
ð6Þ

Data
Full experimental details are given in [13]. Data were gener-
ated in an experiment performed by LGC on a BioMark
48.770 machine made by Fluidigm Corporation. The raw
data produced by this experiment comprised fluorescence
measurements made at the end of each of the 40 cycles for
each partition on several chips. The chips contained 48
panels, each with 770 partitions arranged in 70 rows and 11
columns. The raw data were converted into Cq values for
positive partitions by the ‘Fluidigm Digital PCR analysis’
software using an algorithm that is not publicly available.
TheCq data are provided in Additional file 3.
The experiment was performed using 3 types of DNA:

Attenuated genomic DNA (gDNA), Virulent gDNA and
linearised plasmid DNA. The attenuated type was M.
Tuberculosis (MTb) H37Ra gDNA, while the virulent
type was MTb H37Rv gDNA. These were both sourced
from ATCC and have lengths 4,419,977 bp and
4,411,532 bp respectively. The plasmid DNA comprised
a genetic construct containing the full sequences of the
16S rRNA and rpoB genes of MTb H37Rv synthesised

and inserted into a pUC19 plasmid vector. It had length
8486 bp. We shall refer to these types as A, V and P re-
spectively. Assays Jiang_16S and UCL_16S were used for
the amplification of the 16S gene and their primers are
described in [14] and [15], while assays GN_rpoB1 and
GN_rpoB2 were used for the amplification of the rpoB
gene and their primers were designed using Primer Ex-
press (Applied Biosystems). Both targets were present
once in the genomes of each of the different DNA types.
There were 4 mastermixes, but only Gene Expression

Mastermix (Life Technologies) was used for the present
analysis. There were three dilutions (identified as 2A, 2B
and 3). True values for their concentrations were not
available. There were three replications of each combin-
ation of dilution, DNA type and assay, with each DNA
type tested on a different chip. The fluorescent marker
used was FAM and the passive reference ROX was used
to normalise the measurements. ‘No template control’
panels were included and showed no issues. See [13] for
more information, including the MIQE checklist [16].

Analysis
Numerical methods are required in order to perform
analysis using the model we have described. We have
produced the software package edpcr for the software
platform R, which was used to perform the analyses and
create the plots in this paper. R can be freely down-
loaded from [17] and the package can be installed from
within R using the command install.packages(“edpcr",re-
pos = “http://R-Forge.R-project.org”).
The first stage of analysis is to calculate the mode of the

posterior distribution via an optimisation algorithm. If a
frequentist analysis is being performed rather than a
Bayesian one, then no prior distributions are used and the
mode is the MLE estimate for the parameters. For different
initial values of E and E1 the optimisation algorithm may
find different local maxima. We used the combinations {E,
E1} = {0.9, 0.9}, {0.9, 0.75}, {0.85, 0.9}, {0.85, 0.75}, {0.9, 0.6}
and {0.8, 0.9}, with the mode having the highest value
selected as the overall mode.
A sample from the posterior density may then be pro-

duced by the random walk Metropolis algorithm [18].
The Geweke diagnostic [19] can be used to help confirm
convergence.
For more information on the method of analysis see

Additional file 4.

Results and discussion
Figure 3 contains plots of the Cq data and density plots
of the detrended Cq data for 3 data sets. Each density
plot is overlaid by the density function of the model
using the posterior mode parameter estimates. The data
sets are for the different dilutions and molecule types,
but are each for the Jiang_16Ss assay. The model fits
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well to the data sets, though less well at the highest con-
centration, dilution 2A.
Figure 4 provides the posterior mode estimates of the

parameters μ, ν, E and E1. The estimates are generally
similar for the same type and dilution; however there are
outliers, which are clearest for the E and E1 estimates.

If E1 is close to 1 then the peak for 1 molecule not
amplified in the first cycle is small, in which case there
is a risk that the parameter estimates will misalign the
peaks. This appears to be the situation for the point
plotted as a cross, from the type P, dilution 2A data
which has a very low E1 estimate, while the other

Fig. 3 Plots of Cq data (left) and density plots of Cq data with fitted model (right). Model fit (red) shows posterior mode parameters. Data are for
dilution 2A and type A (a), dilution 2B and type V (b) and dilution 3 and type P (c). Assay is Jiang_16S. Density plots (blue) are for detrended data
(defined immediately after Eq. (4)) and use Gaussian kernels with bandwidth = 0.01. They include vertical lines representing proportion of
negative partitions
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estimates from within the same group are close to 1. In
that case a local mode for different starting values of E
and E1 was consistent with the estimates for the other
type P, dilution 2A data sets.
There is another outlier plotted as an unfilled circle

for which the estimate of E is very low and the estimate
of E1 is high. This appears to be due to some low out-
liers in the data causing a misfitting of the model, as
when the mode was rerun with them censored (treated
as a count of more than one molecule) the estimates
were consistent with those of the other data sets.
Other possible causes of misfitting are the presence of

trends that are not taken into account by the simple lin-
ear trends of the model and changes in variability. These
features are typically present in the data sets to varying
degrees (see changes in gradient and variability in Fig. 3),
but misfitting is avoided through reasonably informative
priors for E and E1.

Deviation from poisson distribution
The estimates of ν shown in Fig. 4 provide insight about
deviation from the Poisson distribution. They appear to
depend on the DNA type, but not on other variables
such as dilution. The medians of the estimates for the
different DNA types, which are insensitive to the

outliers, are 1.02 for A, 1.14 for V and 0.95 for P. Ex-
cluding the 2 outliers, the differences in the means from
1 are strongly significant for V and P with t-test p-values
10−4and 0.02 respectively, but not for A where the t-
test p-value is 0.45.
Figure 5 illustrates the theoretical relative bias that would

exist for an estimate of μ using the standard method due to

Fig. 4 Posterior modes for μ, ν, E and E0. Ordered first by type (A, V, P), then dilution (2A, 2B, 3), then assay (Jiang_16S, UCL_16S, GN_rpoB1 and
GN_rpoB2), then replicate (1–3). The line at ν = 1 represents the value ν takes for the Poisson distribution. The unfilled circles represent the outlier
with a low mode for E and the cross represents the outlier with a high mode for E1

Fig. 5 Relative bias in μ calculated assuming Poisson distribution for
different values of ν. Plot is of (μ − [−log(P(X = 0; μ, ν))])/μ
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ν actually taking the value 0.8, 0.9, 1.1 or 1.2. It is a plot of
(μ − [−log(P(X = 0; μ, ν))])/μ where − log(P(X = 0; μ, ν)) is the
estimate of the mean based on the Poisson distribution
when the distribution is actually CMP with mean μ and dis-
persion ν. For example, if the true concentration is μ = 2.0
and ν = 1.2 then P(X = 0; μ, ν) = 0.162 so that the count-
based estimate of μ is − log(0.162) = 1.82 and the relative
bias is 0.09. The differences between the count-based and
Cq-based estimates of the concentration in Fig. 6 are con-
sistent with these results with respect to size and sign. The
issue of outliers due to misfitting the model of Cq

data (see earlier discussion) does not affect the count-
based estimates.
Figure 5 indicates that the theoretical bias due to devi-

ation from the Poisson distribution ranges up to about
5 % over the range of concentrations examined. We have
not examined concentrations above about 2.5 mole-
cules/partition, but if similar deviation from the Poisson
distribution exists for higher concentrations then based
on the theoretical analysis the bias should increase. We
cannot rule out greater deviation from the Poisson dis-
tribution with more substantial biases for other experi-
ments and DNA types. In particular, It is not possible to
predict how big the bias will be for droplet digital PCR
(ddPCR) as the different method of partitioning the sam-
ple could lead to different values of ν. For ddPCR the Cq

approach is impractical for estimating ν, but an indirect
method for detecting the bias could be used by examin-
ing the difference in the estimate of μ for a range of
dilutions. The retroflex method in [8] is not based on

count data, and the effect of deviation from the Poisson
distribution is likely to be more limited.

Efficiencies
Figure 4 shows that the estimates for E are very con-
sistent, while the estimates for E1 appear to depend
on type and dilution. The biggest effect is from type.
For P the estimates of E1 are close to the respective
estimates for E, while the estimates of E1 for type A
are lower, and the estimates for type V are lower still.
It makes sense that the E1 estimates are higher for
the plasmid DNA type as it is much shorter than the
others. It is not possible to determine from the data
alone how much of the differences between E and E1
are due to the single-strand issue. As an illustration of
the effect on the estimates if the full difference are due to
the single-strand issue, the adjusted estimates of μ (using
Eq. (6)) are presented in Fig. 6 along with the count-based
and Cq-based estimates.

MCMC results
MCMC samples can provide information about the
posterior distribution beyond the mode, such as esti-
mates of the mean, variance and quantiles. They can
also indicate when there is a poor fit of the data,
such as for the outlier with the low estimate of E
(the unfilled circle in Fig. 4). Figure 7 contains trace
and density plots for μ, ν, E and E1 from MCMC
samples for that outlier data set and one of the other
two replicates. The trace plots for the outlier move

Fig. 6 Estimates of μ ordered by dilution and then type. Count-based estimates use Eq. (1), Cq-based estimates are the posterior modes for Eq. (5),
while the Cq-based estimates with single-strand adjustment are adjusted based on Eq. (6). Outliers correspond to the outliers in Fig. 4
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significantly from the initial values, which shows that
the optimisation algorithm failed to find the mode
and suggests the possibility of poor data leading to
poor estimates of the mode. Examination of the data
shows low outliers, and if these are censored as dis-
cussed earlier then the problems are resolved.

Simulation
Data were simulated using the rcq function from the edpcr
package. This uses Eqs. (3) and (4), with Cq values calcu-
lated based on exponential growth between the cycles im-
mediately before and after the threshold was crossed. 100
data sets were simulated for each combination of μ = 0.5,
1.5, 2.5 or 3.5, E1 = 0.9 or 0.75 and ν = 0.8, 1, or 1.2. Each
data set was for 770 partitions. Posterior modes for uni-
form priors (equivalent to MLEs) were found using Eq. (5),
but excluding the linear trend parameters bx and by.
Results are presented in Table 1. For μ = 0.5 and 1.5

the Cq-based estimates consistently have lower bias (the
means are closer to the true values) and have lower
standard deviation than the count-based estimates, ex-
cept for μ = 1.5 and ν = 1.2 where the standard deviation
is higher. The bias and standard deviation are generally
better for μ = 2.5 and generally worse for μ = 3.5. This

indicates good performance for concentrations up to
about 2.5 copies/partition.

Conclusions
The standard method of dPCR analysis only uses count
data. In this paper we have introduced a new method of
analysis that also uses the Cq data often produced by
dPCR experiments. This method estimates the concen-
tration of the target without the standard assumption
that the initial distribution of the target is Poisson. It
also produces estimates of E1 the 1st cycle amplification
efficiency and E the subsequent amplification efficiency.
Low estimates of E may be useful for identifying prob-
lems with the reagents. If the estimate of E1 is less than
that of E then this may be an indication of the sample
being a mixture of single-stranded and double-stranded
DNA. The estimates can be used to take this into ac-
count via Eq. (6).
Our Cq-based method was validated by simulation and

demonstrated by applying it to data from different types
and dilutions of DNA. Deviation from the Poisson distri-
bution was identified for virulent and plasmid gDNA.
We believe that this the first time that the Poisson distri-
bution assumption has been tested. The bias from
assuming the Poisson distribution was small for this

μ μ

ν ν

Fig. 7 Trace and density plots for MCMC samples of posterior distributions. Data are for two of the replicate experiments for dilution 2A, type V,
assay GN_rpoB1. a Plots for replicate 2. b Plots for replicate 3, for which the parameter estimates in Fig. 4 are the outliers represented by the
unfilled circles in Figs. 4 and 6
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particular case and on that basis the count-based
method is still appropriate for routine applications, and
the potential bias could reasonably be ignored. We do
recommend caution with respect to estimates involving
high concentrations, as the theoretical calculations sug-
gest the bias could be higher (see Fig. 5). Where highly
accurate quantitation is required, if the count-based
method is used then an uncertainty contribution for the
bias should be considered for any overall uncertainty.
Further use of the Cq-based method and other research
is required to better establish the size of the biases
across different types of sample and experiment, and to
determine when the Cq-based method may be prefere-
able. If the Cq-based method is used, then it should only
be used for concentrations up to about 2.5 molecules/
partition. Application of the method could also be used
as a diagnostic to identify whether ν is close to 1, and
whether E1 is close to E.
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Table 1 Sample means and standard deviations of μ, ν and adjustment factor estimates for simulated data

μ (molecules/partition) ν .5(1 +min(1,E1/E))

True
value

Count-based
mean

Cq-based
mean

Count-based s. d. Cq-based s. d. True
value

Cq-based
mean

Cq-based s. d. True
value

Cq-based mean Cq-based s. d.

0.5 0.487 0.503 0.026 0.023 0.8 0.864 0.171 0.974 0.972 0.010

1.5 1.390 1.501 0.066 0.044 0.8 0.799 0.078 0.974 0.974 0.008

2.5 2.265 2.488 0.110 0.078 0.8 0.823 0.075 0.974 0.995 0.009

3.5 3.118 3.133 0.174 0.308 0.8 1.080 0.163 0.974 0.980 0.070

0.5 0.487 0.502 0.027 0.027 0.8 0.864 0.195 0.895 0.893 0.014

1.5 1.388 1.499 0.064 0.048 0.8 0.806 0.092 0.895 0.895 0.011

2.5 2.270 2.505 0.107 0.081 0.8 0.804 0.083 0.895 0.915 0.020

3.5 3.107 3.053 0.168 0.337 0.8 1.094 0.176 0.895 0.987 0.028

0.5 0.498 0.500 0.027 0.025 1 1.033 0.174 0.974 0.972 0.009

1.5 1.508 1.500 0.064 0.040 1 1.022 0.090 0.974 0.974 0.006

2.5 2.511 2.490 0.122 0.062 1 1.016 0.082 0.974 0.990 0.011

3.5 3.534 3.281 0.232 0.210 1 1.172 0.110 0.974 0.988 0.050

0.5 0.502 0.500 0.031 0.028 1 1.059 0.195 0.895 0.894 0.015

1.5 1.498 1.499 0.069 0.048 1 1.012 0.090 0.895 0.894 0.013

2.5 2.511 2.541 0.120 0.159 1 0.979 0.102 0.895 0.899 0.030

3.5 3.565 3.180 0.237 0.314 1 1.169 0.125 0.895 0.976 0.038

0.5 0.515 0.501 0.030 0.025 1.2 1.222 0.183 0.974 0.973 0.009

1.5 1.613 1.503 0.075 0.043 1.2 1.215 0.088 0.974 0.974 0.008

2.5 2.773 2.496 0.152 0.059 1.2 1.222 0.080 0.974 0.983 0.012

3.5 3.911 3.153 0.243 0.579 1.2 1.296 0.114 0.974 0.978 0.042

0.5 0.510 0.499 0.031 0.026 1.2 1.208 0.167 0.895 0.895 0.013

1.5 1.613 1.523 0.086 0.171 1.2 1.192 0.137 0.895 0.895 0.019

2.5 2.731 2.522 0.125 0.173 1.2 1.174 0.113 0.895 0.896 0.030

3.5 3.961 3.210 0.272 0.449 1.2 1.238 0.135 0.895 0.951 0.050

Sample means and standard deviations of the count-based estimates of μ, using Eq. (1) and the Cq-based estimates of μ, ν and the adjustment factor .5 (1 +min(1,E1/E))
from Eq. (6). Each row relates to the estimates for 100 sets of data simulated with E= 0.95 and a different combination of μ, ν and E1. E1 is either 0.95 (.5(1 +min(1,E1/E)) =
0.974) or 0.75 (.5(1 +min(1,E1/E)) = 0.895). Boldface is used for the Cq-based means when they are closer to the true values than the count-based means and for the Cq-
based s. d.’s when they are smaller than the count-based s. d.’s
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