Tian et al. BMC Bioinformatics (2016) 17:403

DOI 10.1186/512859-016-1279-z B M C BiOinfO rmatiCS

Impact of post-alignment processing in @ oo
variant discovery from whole exome data

Shulan Tian', Huihuang Yan', Michael Kalmbach? and Susan L. Slager'”

Abstract

Background: GATK Best Practices workflows are widely used in large-scale sequencing projects and recommend
post-alignment processing before variant calling. Two key post-processing steps include the computationally
intensive local realignment around known INDELs and base quality score recalibration (BQSR). Both have been
shown to reduce erroneous calls; however, the findings are mainly supported by the analytical pipeline that
incorporates BWA and GATK UnifiedGenotyper. It is not known whether there is any benefit of post-processing
and to what extent the benefit might be for pipelines implementing other methods, especially given that both
mappers and callers are typically updated. Moreover, because sequencing platforms are upgraded regularly and
the new platforms provide better estimations of read quality scores, the need for post-processing is also unknown.
Finally, some regions in the human genome show high sequence divergence from the reference genome; it is
unclear whether there is benefit from post-processing in these regions.

Results: We used both simulated and NA12878 exome data to comprehensively assess the impact of post-
processing for five or six popular mappers together with five callers. Focusing on chromosome 6p21.3, which is a
region of high sequence divergence harboring the human leukocyte antigen (HLA) system, we found that local
realignment had little or no impact on SNP calling, but increased sensitivity was observed in INDEL calling for the
Stampy + GATK UnifiedGenotyper pipeline. No or only a modest effect of local realignment was detected on the
three haplotype-based callers and no evidence of effect on Novoalign. BQSR had virtually negligible effect on
INDEL calling and generally reduced sensitivity for SNP calling that depended on caller, coverage and level of
divergence. Specifically, for SAMtools and FreeBayes calling in the regions with low divergence, BQSR reduced the
SNP calling sensitivity but improved the precision when the coverage is insufficient. However, in regions of high
divergence (e.g, the HLA region), BQSR reduced the sensitivity of both callers with little gain in precision rate. For
the other three callers, BQSR reduced the sensitivity without increasing the precision rate regardless of coverage
and divergence level.

Conclusions: We demonstrated that the gain from post-processing is not universal; rather, it depends on mapper
and caller combination, and the benefit is influenced further by sequencing depth and divergence level. Our
analysis highlights the importance of considering these key factors in deciding to apply the computationally
intensive post-processing to lllumina exome data.
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Background

Genetic variation is associated with the etiology of human
disease and drug response [1-3]. Completely cataloguing
the variants in individual genomes, which has been pur-
sued largely through whole genome or whole exome
sequencing effort, is essential in disease diagnosis and
pharmacogenomics studies [4, 5]. Whole exome sequen-
cing is widely used in clinical settings, owing to the lower
cost compared to whole genome sequencing and the
remarkable success in identifying causative mutations
underlying Mendelian diseases [6—8].

Variants (SNPs and short INDELSs) in sequencing data
are identified mainly through mapping-based ap-
proaches [9-11], in which raw sequencing reads are
first mapped to a reference sequence and the sites dif-
fering between reads and the reference are then identi-
fied by variant calling [9, 12]. Several variant calling
algorithms have been developed, such as SAMtools
[13], the Genome Analysis Toolkit (GATK) Unified-
Genotyper and HaplotypeCaller [14], FreeBayes [15],
Platypus [8], Atlas2 Suite [16], and the SNP and INDEL
callers in the Short Oligonucleotide Analysis Package
(SOAP, http://soap.genomics.org.cn/) [17]. Of these,
FreeBayes, GATK HaplotypeCaller and Platypus are
haplotype-based callers which implement De Bruijn
graph-based local assembly [8, 14] or construct haplo-
types directly from mapped reads [15].

As outlined in the GATK Best Practices [18], some
variant discovery pipelines perform post-processing of
alignments prior to variant calling, with the expectation
that this practice would improve variant calling accuracy
[19]. The post-processing typically includes duplicate
marking, local realignment around known INDELs, and
base quality score recalibration (BQSR) [4].

Duplicates are pairs of reads that are mapped to the
same genomic location and the same strand. They are
prevalent in both whole genome and exome sequencing
data [12] and are believed to be artifacts from the poly-
merase chain reaction (PCR) amplification of the same
DNA molecule during library preparation [4]. The inclu-
sion of duplicates more likely gives rise to erroneous calls
because the presence of duplicates would alter the ratio of
reads supporting one allele versus the other at heterozy-
gous sites; duplicate reads might also carry errors intro-
duced by the PCR amplification, thus further complicating
the variant calling [17]. Duplicates can be identified using
Picard command-line tool MarkDuplicates (https://broad-
github.io/picard/command-line-overview.html), such that
only one of the duplicates will be used in the subsequent
variant calling. Marking duplication is more effective for
INDEL calling than for SNP calling [12], and in cases
when the coverage is low [20].

Reads spanning INDELs have a high chance of being
aligned incorrectly to the reference [20, 21]. A previous
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study revealed that BWA mapping generated misalign-
ment for over 15 % of the reads spanning known homozy-
gous INDELs [4]. Without correction, those misaligned
bases in reads can be easily called as spurious variants.

Finally, the confidence level in variant calling depends
on the accuracy of both base calling and base quality
score [22]. The latter measures the probability that a
base is called incorrectly [23], with a Phred-scale qual-
ity score of Q ideally corresponding to an error rate of
10" Y0 [22]. However, the raw quality score does not
truly reflect the base-calling error rate; instead, it varies
with multiple factors including sequencing platform,
the number of machine cycles at which a base is se-
quenced, and the sequence composition [4, 22]. For ex-
ample, the bases at the 3" end of a read are typically
more error prone than those at the 5 end [17]. The
GATK BaseRecalibrator and PrintReads commands can
be used to recalibrate the quality score, thereby to im-
prove variant calling accuracy [22].

The effect of local realignment and BQSR has been
assessed using both whole genome and whole exome
sequencing data, mostly for BWA together with GATK
UnifiedGenotyper, GATK HaplotypeCaller and SAM-
tools [2, 4, 12, 20]. However, the results are inconsist-
ent. The earliest study revealed that local realignment
corrected misalignments at approximately 1.8 million
sites in the whole genome data and over 100,000 sites
in the whole exome data from NA12878 [4]. They
found that duplicate marking, local realignment and
BQSR together removed about 2.5-6.0 % of the raw
SNP calls, of which the vast majority were false posi-
tives. Using exome data from breast cancer patients, a
similar effect was detected for local realignment but
not for BQSR in GATK UnifiedGenotyper and SAM-
tools calling [20]. Furthermore, using high (55-65x)
coverage whole genome sequencing data in NA12878,
Li [12] found no effect from both local realignment and
BQSR for the above three callers. As local realignment
and BQSR were evaluated only for a few variant discovery
methods, their effectiveness for other mappers and callers
remains unexplored. Local realignment is a computation-
ally intensive process. In principle, haplotype-based callers
apply local de novo assembly (like GATK HaplotypeCaller
and Platypus) or build haplotype directly from mapped
reads (like FreeBayes), raising the question whether local
realignment is indeed needed for these callers.

Finally, in BQSR, the algorithm needs to identify a list of
supposedly non-polymorphic sites that do not overlap
with any known polymorphic sites (like those in dbSNP)
and that do not match the reference sequence either. It
then builds a linear model taking into account the raw
base quality score, base position in the reads (i.e., sequen-
cing cycle), as well as the dinucleotide composition of
those non-polymorphic sites, by which the recalibrated
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quality score is computed [4, 22]. While it is relatively
straightforward to identify non-polymorphic sites in or-
dinary genomic regions where sequence diverges at the
level of only about 0.1 % [24], difficulty arises in regions of
high divergence. In the latter case, a portion of the non-
polymorphic sites likely represents true variants. In fact,
there are over one hundred highly divergent regions in the
human genome [25], and some reach the level of 10-15 %
divergence between haplotypes [26]. Many are clinically
important, including the well-known human leukocyte
antigen (HLA) region on chromosome 6p21 that is impli-
cated in more than 100 diseases [27-29]. Thus, the effect
of BQSR on variant calling in such highly divergent
regions needs to be assessed separately.

In this study, we sought to examine the impact of
local realignment and BQSR across a panel of 25 vari-
ant discovery methods on simulated data and 30
methods on real exome data, taking into account both
coverage depth and divergence level. We began with
simulated data and extended to five public exome-seq
data in NA12878, which were generated using two ex-
ome capture kits on three Illumina HiSeq platforms.
We found that local realignment mainly impacts
INDEL calling and BQSR largely affects SNP calling. In
INDEL calling, noticeable effect of local realignment
was restricted to only a few methods, with no effect on
INDEL detection from Novoalign alignment and minor
effects on the three haplotype-based callers. In the lat-
ter, BQSR reduces SNP calling sensitivity for many of
the methods. Thus, consideration should be given to
both mapper and caller when applying post-processing
to Illumina exome data.

Methods
Simulation of exome-seq reads
Simulation of reads provides an ideal approach for initial
assessment of individual methods in a controlled situ-
ation where the “true” variants are predefined [30]. We
focused on chromosome 6p21.3, which contains the
highly divergent HLA region. To simulate exome-seq
reads from this chromosome, we generated candidate re-
gions by merging hgl9 refGene exons (as of 12/10/2013,
extended by +/-100 bp) with regions interrogated by any
of the four Agilent SureSelectXT Human All Exon Kkits
(All Exon 50Mbp, All Exon V4, All Exon V4 + UTRs,
and All Exon V5 + UTRs, http://www.agilent.com).
Simulation was done using Dwgsim v0.1.11 (https://
github.com/nh13/DWGSIM/wiki) at six mutation rates
(0.05, 0.01, 0.5, 1, 5 and 10 %). Illumina paired 100-base
reads were simulated to an average per-base coverage of
100x, which were down-sampled to 40 and 5x coverage.
Dwgsim was run with the following parameter settings:
SNP-to-INDEL ratio of 9:1 per mutation rate, outer
distance of 200 bp between paired reads, no error, no
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random DNA and a random seed of 123. Instead of pro-
viding a list of candidate mutations (parameter -v), we
generated random mutations by specifying a mutation
rate (parameter -r) and the fraction of INDELs over the
total mutations (parameter -R), with an equal probability
of insertions and deletions and a geometric distribution
of INDEL sizes. To enable the assessment of BQSR, ra-
ther than relying on the dummy base quality scores
assigned by Dwgsim, we instead gave each read a string
of empirical base quality scores randomly taken from a
pool of real Illumina sequencing data. These came from
our internal 100-bp exome-seq data in chronic lympho-
cytic leukemia patients. A similar approach was adopted
by the sequence simulation tool ART, which uses base
quality scores from real sequencing data [31].

Mapping and post-processing of simulated reads
Simulated reads were aligned to the hgl9 human reference
sequence using five mappers, including BWA-backtrack
(referred to as BWA) [13], GSNAP [32], NextGenMap
[33], Novoalign (http://www.novocraft.com/), and Stampy
[24]. Unlike BWA, the other four mappers could map
reads to highly divergent regions. The parameter settings
for each mapper were provided in Additional file 1.
Alignments in the sequence alignment/map (SAM) for-
mat were converted into the binary alignment/map
(BAM) format using SAMtools [34], and sorted by
coordinate using the SortSam command in the Picard
tools  (http://broadinstitute.github.io/picard/). Align-
ments from all chromosomes were processed sequen-
tially through duplicate marking, local realignment and
BQSR.

Duplicates were marked using the Picard MarkDuplicates
command. We then performed local realignments
around 90 % of all simulated INDELs using GATK
IndelRealigner command. We chose 90 % by consider-
ing the fact that, in real exome data, only known rather
than all INDELs are used for local realignment. Subse-
quently, the GATK BaseRecalibrator and PrintReads
commands were used in BQSR using 90 % of simulated
variants. To investigate how these two post-processing
steps impact variant calling, variants were identified
both before and after each step, as below.

Variant calling from simulated data

We selected five popular variant callers, including
GATK UnifiedGenotyper and HaplotypeCaller [4, 14],
FreeBayes [15], SAMtools mpileup with BCFtools
consensus-caller (referred to as SAMtools) [34], and
Platypus [8]. The parameter settings for each of the
callers were provided in Additional file 1. To increase
the comparability among these callers, the multiple-
nucleotide polymorphisms (i.e.,, multiple SNPs within
five bases that are reported as a single event) reported by
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Platypus and FreeBayes were decomposed into individual
variants using GATK walker VariantsToAllelicPrimitives.
Considering that the boundaries of INDELSs are difficult to
define precisely, overlap was inferred if an INDEL was
called within five bases of a permuted INDEL.

Variant calling sensitivity and precision rate were esti-
mated using GATK walker GenotypeConcordance, where
sensitivity is estimated as “true positive/(true positive +
false negative)” and precision rate as “true positive/(true
positive + false positive)”. Here, true positive refers to
the number of true (simulated) variants identified by a
method, false negative represents the number of true
variants missed by a method, and false positive repre-
sents the number of called variants that do not overlap
the true variants. The effect of local realignment was
measured as the change in sensitivity and precision rate
before and after local realignment; BQSR effect was
measured similarly.

Variant calling from exome-seq data in NA12878

We further assessed local realignment and BQSR using
exome-seq data from NA12878, in which several call sets
have been generated from whole genome and exome se-
quencing data. We first compiled a list of “true” variants
(referred to as public call set) by combining the two vari-
ant lists below. Those variants were identified through
whole genome and whole exome sequencing, involving
seven sequencing platforms, seven mappers and four
callers. A high-confidence call set was generated through
integrative analyses of 11 whole genome and 3 exome
sequencing data (ftp://ftp-trace.ncbi.nih.gov/giab/ftp/
data/NA12878/analysis/GIAB_integration/NIST_RTG_-
PlatGen_merged_highconfidence_v0.2.primitives.vcf.gz)
[35]. To minimize bias toward a specific analytical
pipeline, seven mappers together with three callers,
Cortex [36], GATK UnifiedGenotyper and GATK
HaplotypeCaller, were used. The second list represents a
union of three call sets, which were generated using
Cortex, DISCOVAR and GATK HaplotypeCaller from a
PCR-free genomic library sequenced to 250 base pairs
(ftp://ftp.broadinstitute.org/pub/crd/DiscovarManuscript/
vcf/) [5]. Although we also used GATK UnifiedGenotyper
and HaplotypeCaller, the bias toward these two callers
should be minimal because the public call set also used
other callers and we assessed the effect of post-alignment
processing based on the change of sensitivity rather than
the sensitivity itself.

We downloaded five paired-end exome-seq data in
NA12878 (66-100x coverage; Additional file 2: Table S1).
The datasets were chosen to represent two different cap-
ture kits and three Illumina sequencing platforms. The
Roche SeqCap EZ Human Exome kit has 64 megabases
of capture regions, versus only 37 megabases interro-
gated by the Illumina Nextera Rapid Capture Exome kit.
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For the two 150-bp datasets, only the first 100 bases
were used. To understand how the effect of post-
processing varies across different coverage depths, each
full (66-100x) dataset was down-sampled to 40, 20 and
10x coverage using SAMtools.

Reads mapping, post-processing and variant calling
followed the procedure used in the simulated data, with
two modifications in local realignment and BQSR. First,
local realignment was performed around the Mills and
1000G gold standard INDELs (Mills_and_1000G_gold_
standard.indels.hg19.vcf.gz). Second, BQSR was conducted
using known variants in dbSNP v135 (downloaded as part
of the GATK bundle) together with the Mills and 1000G
gold standard INDELs. In addition to the 5 callers and 5
mappers used for simulated data, we also assessed the ef-
fects of local realignment and BQSR for the BWA-MEM
algorithm [37] and SAMtools/BCFtools multiallelic-caller
(parameter settings in Additional file 1). Released in
February 2013, BWA-MEM was developed mainly for
aligning sequences from 70 bp up to 1 Mbp. It outper-
forms the BWA-backtrack algorithm in mapping long
(>=70-bp) reads [37]. The earlier releases of SAM-
tools/BCFtools (v0.1.19 or older, with consensus-caller)
assume biallelic sites without handling multiallelic variants
properly. They only take the strongest non-reference allele,
which may not be optimal for more complex genomes,
such as a cancer genome (http://samtools.sourceforge.net/
mpileup.shtml). The multiallelic calling model is recom-
mended in the later release.

The GRCh38 (hg38) reference assembly presents a bet-
ter representation of the human genome by filling many
gaps and including 261 alternate loci across 178 regions
(http://www.ncbi.nlm.nih.gov/projects/genome/assembly/
grc/human/). However, many of the mapping tools are not
capable of handling the alternate loci; thus, the inclu-
sion of alternate loci in the reference would cause more
reads to have an “ambiguous” mapping status. In this
study, we attempted to assess the effects of local realign-
ment and BQSR on hg38. The hg38 full assembly together
with the hs38d1 decoy, the HLA sequences and ALTs
were downloaded from ftp://ftp.1000genomes.ebi.ac.uk/
voll/ftp/technical/reference/ GRCh38_reference_genome/.
We mapped reads from NA12878_01 and NA12878_04
(approximately 100x coverage; Additional file 2: Table S1)
to the hg38 reference using the ALT-aware aligner BWA-
MEM (v0.7.12). BWA-MEM alignments were first proc-
essed using the script “bwa-postaltjs” available in the
bwakit (v0.7.12) software package (https://github.com/lh3/
bwa/tree/master/bwakit). This script re-assigns mapping
quality scores for reads with hits in the ALT contigs.
Duplicates were marked by the Picard MarkDuplicates
command. Local realignment and BQSR were performed
using the commands (IndelRealigner, BaseRecalibrator
and PrintReads) available in GATK v3.3-0. The known
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INDELSs used for local realignment were combined from
two sources: ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/
technical/reference/GRCh38_reference_genome/other_

mapping_resources/ALL.wgs.1000G_phase3.GRCh38.ncbi
_remapper.20150424.shapeit2_indels.vcf.gz and ftp://ftp.
1000genomes.ebi.ac.uk/voll/ftp/technical/reference/GR
Ch38_reference_genome/other_mapping_resources/Mills

_and_1000G_gold_standard.indels.b38.primary_assembly.

vcf.gz. The list of known SNPs used for BQSR was
downloaded from ftp://ftp.1000genomes.ebi.ac.uk/voll/
ftp/technical/reference/GRCh38_reference_genome/other
_mapping_resources/ALL_20141222.dbSNP142_human_

GRCh38.snps.vcf.gz.

While post-processing was performed genome-wide
across all chromosomes, variants were identified only from
chromosome 6. Variants with a phred-scale quality of at
least 20 were retained, which were separated into “known”
and “novel” ones by intersecting with dbSNP v138 (ftp://gsa-
pubftp-anonymous@ftp.broadinstitute.org/bundle/2.8/hg19/
dbsnp_138.hg19.vcf.gz, for hgl9) or dbSNP v142 (for hg38).
The public call set was also split into “known” and “novel”.
Hgl9 to hg38 liftover was performed using CrossMap
[38]. By treating the known SNPs in the above public call
set as “true” positives, the sensitivity for known SNPs was
estimated as “true positive/(true positive + false negative)”.
The true positive refers to the number of known SNPs
identified by a method that are in the public call set; false
negative represents the number of known SNPs missed by
a method but are in the public call set. The sensitivity for
known INDELSs was estimated similarly.

Results and discussion

We used both simulated reads from exonic regions of
chromosome 6 and five exome data in NA12878. We eval-
uated, for each of the variant discovery methods, how
local realignment and BQSR might impact the outcome
across different divergence levels and coverage depths.

Impact of local realignment in simulated data

We assessed a total of 280 cases from five mappers, five
callers, two coverage depths (5 and 40x), and six diver-
gence levels. BWA was excluded at 5-10 % divergence.
Local realignment had nearly no impact on SNP calling
sensitivity (Additional file 2: Table S2) and increased pre-
cision rate slightly (0.2—-0.3 %) in 11 cases involving GATK
UnifiedGenotyper and Platypus (Additional file 2: Table
S2). Next, we sought to understand to what extent local
realignment might impact INDEL calling. We observed a
0.4-1 % increase of precision rate in 16 (5.7 %) cases in
INDEL calling (Table 1). These cases used SAMtools or
GATK UnifiedGenotyper calling from Stampy alignment
(Additional file 1: Figure S1). Little or no effect was de-
tected in the other cases, including all from the three
haplotype-based callers (Table 1; Additional file 1: Figure
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Table 1 Effect of local realignment in INDEL calling

Metrics Change Cases
(o) No. %

Sensitivity -51--4 2 0.71
Sensitivity -4 -3 5 1.79
Sensitivity -3--2 5 1.79
Sensitivity -2 -1 17 6.07
Sensitivity -1--02 34 12.14
Sensitivity -0.2-0.2 129 46.07
Sensitivity 0.2-1 53 1893
Sensitivity 1-2 19 6.79
Sensitivity 2-3 12 4.29
Sensitivity 3-4 4 143
Precision rate -0.2-0 33 11.79
Precision rate 0-0.2 219 78.21
Precision rate 0.2-04 12 4.29
Precision rate 04-06 8 2.86
Precision rate 06-0.8 5 1.79
Precision rate 0.8-1 3 1.07

Alignments were subjected to duplicate marking and then to local realignment.
A total of 280 cases were evaluated, which represent combinations among five
mappers, five callers, six divergence levels and two coverage depths (5 and 40x),
excluding 20 cases with BWA mapping at 5-10 %. In each case, the change of
INDEL calling sensitivity is calculated as the sensitivity after local realignment
using 90 % simulated INDELs, subtracted by that after duplicate marking. The
change in precision rate is calculated in the same way

S1). On the other hand, local realignment led to an obvi-
ous gain or loss of sensitivity (by 1-5 %) in approximately
one-fifth of the cases (Table 1). The change of INDEL call-
ing sensitivity depended on multiple factors (Fig. 1), which
we described in detail below.

In INDEL calling, the impact of local realignment on
sensitivity is mapper-, caller- and coverage-dependent.
As for the mappers, NextGenMap was affected the most
and Novoalign the least (Fig. 1). For Novoalign, nearly
no changes in sensitivity were detected at low divergence
(Fig. 1), likely reflecting the optimal alignments achieved
by the underlying full Needleman-Wunsch algorithm.
On the other hand, local realignment increased the sen-
sitivity of NextGenMap with SAMtools (Fig. 1c and h)
but decreased its sensitivity with Platypus (Fig. 1d and i)
and GATK UnifiedGenotyper (Fig. 1le and j). A previous
study showed that local realignment improved GATK
UnifiedGenotyper calling accuracy on BWA alignment
[4]. We indeed found that it generally increased sensitivity
for BWA with all the callers at low (0.05-1 %) divergence,
more obvious at 5x coverage (Fig. 1a-e). For GSNAP, local
realignment increased the sensitivity at 5x but decreased
the sensitivity at 40x coverage in GATK UnifiedGenotyper
calling (Fig. 1e and j). Of the callers, overall GATK Haplo-
typeCaller, Platypus and FreeBayes were less affected at
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40x coverage and low divergence, compared to the other
two callers (Fig. 1f-j). A similar finding was reported
for GATK HaplotypeCaller in exome-seq data [39].
These haplotype-based callers are capable of alleviating
alignment ambiguity around INDELSs internally through
local de novo assembly [8, 18] or direct construction of
haplotypes from alignments [15]. For these callers, the
benefit of applying local realignment in GATK Best
Practices would be minimized.

The role of local realignment in INDEL calling also
depends on divergence. At 0.05-1 % divergence, 33
cases showed increase of sensitivity (> =1 %) after local
realignment, versus only 2 cases (NextGenMap + SAM-
tools) at 5-10 % divergence. Whereas, of the 29 cases
whose sensitivity decreased by >=1 %, about half were
from 5-10 % divergence. In summary, local realign-
ment mainly affects INDEL calling sensitivity, more
conspicuous at low coverage. When the coverage and
divergence are both low, local realignment tends to in-
crease the sensitivity. At high coverage and low diver-
gence, local realignment has nearly no impact on the
haplotype-based callers. Of the five mappers, Novoalign
is least affected, in contrast with BWA that generally
shows an increase of sensitivity.

Impact of BQSR in SNP calling of simulated data

We evaluated the effect of BQSR by measuring the
change in sensitivity and precision rate between BQSR
and local realignment. To ensure meaningful compari-
son, we limited the analysis to a subset of the cases. In
assessing the change in sensitivity, we required that the
sensitivity prior to BQSR (after local realignment) should
exceed 35 %, while in assessing the change in precision
rate, we further required that the sensitivity should not
be decreased by more than 15 % after BQSR.

The impact of BQSR on SNP calling is striking at low
coverage and high divergence (Fig. 2). We observed a
trend of decrease in sensitivity by BQSR following the
increase in divergence. However, at low divergence and
40x coverage, of the five callers, only GATK Unified-
Genotyper showed a small (0.3-0.5 %) decrease in
sensitivity at 0.5—1 % divergence (Fig. 2d and e; Table 2).
Nevertheless, at 5x coverage the effect was more obvi-
ous for several callers (Fig. 2a and b; Table 2). More
specifically, BQSR largely increased the sensitivity at
0.05-0.1 % divergence; at 0.5-1 % divergence, it in-
creased the sensitivity for GATK HaplotypeCaller but
decreased the sensitivity for GATK UnifiedGenotyper
and Platypus. At 5-10 % divergence, BQSR reduced the
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sensitivity in vast majority of the cases (Fig. 2c and f;
Table 2); at 5x coverage, sensitivity was decreased by
15.5 % (median), versus 1.5 % at 40x coverage (Table 2).
There were only a few cases where BQSR altered the
precision rate. Overall the effect was negligible at 0.05-
5 % divergence (Table 2). At 10 % divergence, we excluded
22 cases whose sensitivity was decreased by over 20 %
after BQSR. In the remaining 18 cases, all at 40x coverage,
only SAMtools and GATK UnifiedGenotyper showed a
0.2-0.5 % increase and Platypus (with GSNAP and Next-
GenMap) showed an 1-1.5 % increase in precision rate.

Impact of BQSR in INDEL calling of simulated data

Compared to the three haplotype-based callers, GATK
UnifiedGenotyper and SAMtools are less sensitive in
INDEL calling (Tian et al., unpublished results). In
assessing the impact of BQSR on sensitivity, we ex-
cluded 40 cases from the two callers due to their low

(<35 %) sensitivity, mainly at 5x coverage. In two-thirds
of the remainder, including all those at 0.05-1 % diver-
gence and 40x coverage, BQSR had little effect on sensitiv-
ity (<=0.3 % change, Table 2). In the other one-third,
BQSR either increased (39 cases, by 0.7-2.8 %) or de-
creased (39 cases, by 0.5-75.3 %) sensitivity (Table 2). The
former was predominantly from 5x coverage and 0.05—
1 % divergence (Fig. 3a and b) and the latter from high
divergence (Fig. 3c and d), which we discussed below.

For GATK UnifiedGenotyper, the analysis was limited to
the 40x coverage (see Methods). For GATK UnifiedGen-
otyper (with Stampy only) and Platypus, BQSR decreased
the sensitivity only at 10 % divergence (Fig. 3c and d).
FreeBayes and GATK HaplotypeCaller were similarly im-
pacted; BQSR increased the sensitivity at 5x coverage and
<=1 % divergence (Fig. 3a and b), but decreased the sensi-
tivity at 5x coverage and 5-10 % divergence (Fig. 3c) and
at 40x coverage and 10 % divergence (Fig. 3d). Finally, for
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Table 2 Effect of BQSR in SNP and INDEL calling
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Type Metric Div 5x coverage 40x coverage

(%) Case Min Max Mdn Case Min Max Mdn
SNP Sensitivity 0.05-0.1 50 0.1 1.6 06 50 0 0.2 0
SNP Sensitivity 0.5-1 50 -4.5 09 -0.6 50 -05 0.1 -0.1
SNP Sensitivity 5 20 -114 -26 -9.8 20 -18 0.2 —-0.5
SNP Sensitivity 10 20 -578 -195 -323 20 -894 3 =71
SNP Precision rate 0.05-1 100 —-0.1 0.3 0 100 -0.2 0.1 0
SNP Precision rate 5 20 0 0.3 0.1 20 0 0.2 0
SNP Precision rate 10 0 - - - 18 -0.3 1.5 0.2
INDEL Sensitivity 0.05-0.1 40 =15 1.8 04 50 -0.2 0 0
INDEL Sensitivity 0.5-1 40 -0.3 1 0.1 50 -0.1 0.1 0
INDEL Sensitivity 5 12 -6.4 -0.1 -14 20 -09 28 0
INDEL Sensitivity 10 12 =519 -24 -34.6 16 -753 0.1 -9.7
INDEL Precision rate 0.05-1 80 -0.1 0 0 100 -0.1 0.2 0
INDEL Precision rate 5 12 0 0.3 0 20 0 08 0
INDEL Precision rate 10 0 - - - 13 -0.2 32 0

Between 5 and 25 mapper-caller combinations were assessed at each of the six divergence levels and two coverage depths in simulation, excluding combinations

with BWA at 5-10 % divergence. They were selected to have a sensitivity of at least

35 %; to estimate the change in precision rate, we also required that sensitivity

should not decrease by more than 15 % after BQSR. Div divergence, Mdn median

SAMtools, however, BQSR increased the sensitivity at 40x
coverage and 5 % divergence (Fig. 3d) but generally re-
duced the sensitivity at 5x coverage and 0.05-0.1 %
divergence (Fig. 3a). On the other hand, 95 % of the cases
showed nearly no (<0.1 %) change in precision rate
(Table 2).

Impact of local realignment in NA12878 exome data

Given the limitations in simulated data [12], we further
assessed local realignment and BQSR over five exome-
seq data in NA12878. To evaluate the impact of coverage
in the post-processing, each full dataset (66-100x) was
down-sampled to generate three subsets with 40, 20 and

~

0.05%/0.1% 0.5%/ 5%I10% 5%I110%
20-A 5x 12-B 5x|  104C 5x 104D 40x
1A A A A a i i _
g 167 104 ¢ e S s —fgf%*f*é*
> 124 VeV 4y a ¥ y 1V vV vy 7 A
g 1V v v 0.8 _ A -10 -10 v
2 gs] A ¥ - 1vio vy
@ Y01t v v v - -20 A -20
8 04l 06 - Je i
3 - - -30- A -30
L 00-4-6--0--0--0--0-| 04- 4V gV -
a a v
Z _g4d ¢ . . - =40 -40
5 . ¢ 0.2 - 50 - * A -
] -50 -50 —
g 0871° 1 0.2 0.8..2 . * .
c B . - L — - a0 0
g 1.2 B 1° 60- 60 5
164 i -0.2 - . ¢ -70- -70 -
i R . . - - *
-2.0+ -0.4 - -80 - -80
T T T o| *l T T T QI *I 1 1 Io I§ T T Io I*
F RN Q8 R RN R RS Q8 R R &
0$ q,‘\y.(‘\‘s o'»\ .@6\ °$ rf,‘\y.(s‘s o'b\\ \'b& a}g.@ 04}\ -@& q"\?'o@ o"}\ \'zﬁ\
Cres @ S 2 e 2 Pl 2
49 49 RS FSRY
() () () (2
A A ™ ™
Mapper Mapper Mapper Mapper
Divergence @ 0.05% ® 01% @ 05% 1% @ 5% @ 10%
Caller VvV FreeBayes A GATKHC & SAMtools = o Platypus X  GATK UG
Fig. 3 Change of INDEL calling sensitivity after BQSR. a-c Datasets with 0.05-0.1, 0.5-1 and 5-10 % divergence, respectively, at 5x coverage. d Datasets
with 5-10 % divergence and 40x coverage. Datasets with 0.05-1 % divergence and 40x coverage were not displayed, since there was nearly no change
in sensitivity after BOSR. See Fig. 2 legend for more information




Tian et al. BMC Bioinformatics (2016) 17:403

10x coverage, respectively. To take into account the se-
quence divergence, we limited the analysis to chromosome
6 and split it into the HLA region (4-Mb, 29,500,000-
33,500,000 bp, hgl9; 29,532,223-33,532,223 bp, hg38) of
high sequence divergence and the flanking non-HLA re-
gions with low sequence divergence.

In SNP calling, the impact of local realignment on sen-
sitivity is only marginal (<=0.5 % change), as observed in
the simulated data (Additional file 2: Table S2). In both
HLA and non-HLA regions, over 97 % of the cases
showed < =0.2 % change in sensitivity. In INDEL calling,
the effect of local realignment depends on mapper, caller
and coverage. Since the trend is highly comparable
across all the five NA12878 datasets, only the results
from NA12878_04 are displayed (Fig. 4a and b).

Of the six mappers, Novoalign was impacted the least
by local realignment. As for the callers, local realignment
had little effect on the sensitivity of GATK Haplotype-
Caller in INDEL calling, but a more obvious effect was
observed using SAMtools and GATK UnifiedGenotyper,
consistent with our observation on simulated data. For
these two callers, local realignment generally increases the
sensitivity on the alignment from GSNAP and NextGen-
Map. However, the two callers are less effective in INDEL
detection (Tian et al., unpublished results). SAMtools/
BCFtools (v1.2) provides two modes of variant detection:
consensus-caller described above that assumes only bialle-
lic sites in the genome and multiallelic-caller. We tested
local realignment for SAMtools/BCFtools multiallelic-
caller. As shown in Additional file 1: Figure S2A, local re-
alignment had similar effects on the two calling modes,
with the change of INDEL calling sensitivity being highly
correlated (R*=0.941). Further work is needed to test
whether the same pattern will be observed in the cancer
genome, where more complex structure variation would
be generally expected.

INDELs are more difficult to detect and often under-
reported [40]. On chromosome 6, the ratio of known
INDELSs to SNPs is roughly 1-10 in the non-HLA regions
and 1-20 in the HLA region based on the public call set
[5, 35]. Thus, there are only small changes in the number
of INDEL calls, with the exception of Stampy+ GATK
UnifiedGenotyper. This method showed the most striking
increase in sensitivity across the full range of coverage.
Thus, the benefit of local realignment in INDEL calling is
not universal but mapper- and caller-dependent.

Impact of BQSR in NA12878 exome data

In SNP calling from simulated data, we observed a general
decrease of sensitivity at low coverage and/or high diver-
gence (Fig. 2). Using the NA12878 exome-seq data, we
found that BQSR decreased SNP calling sensitivity (i.e.,
missed known SNPs annotated in the public call set) for
majority of the methods, especially at low coverage (Fig. 4c
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and d; Additional file 1: Figure S3A—H). The pattern in
the change of SNP sensitivity across different methods
was highly consistent across all five datasets, showing that
BQSR had the greatest impact on SAMtools, followed by
FreeBayes and Platypus. At full coverage, the effect of
BQSR was much reduced in both HLA and non-HLA re-
gions; only SAMtools still showed a noticeable loss of
sensitivity in the HLA region. The two SAMtools/
BCFtools calling modes showed similar trends in the
change of SNP calling sensitivity after BQSR (R*=
0.969; Additional file 1: Figure S2B), with multiallelic-
caller being slightly less affected than the consensus-
caller. Two previous studies also revealed little effect of
BQSR in high-coverage whole genome and exome se-
quencing data [12, 20].

Since BQSR tended to reduce SNP calling sensitivity,
we then ask whether loss of sensitivity would be com-
pensated by an increase in precision rate. Precision rate
is difficult to estimate for real sequencing data as the
false positives are not known. Assuming that some of
the novel SNPs represent false positive calls, if BQSR re-
duces novel SNP calls, it should be an indication of im-
provement in precision rate. Therefore, we assessed the
impact of BQSR on the detection of known versus novel
SNPs in all the five datasets. This analysis revealed two
general trends, and we illustrated such trends on two of
the datasets: NA12878_01 (Additional file 1: Figure
S4A-D) and NA12878_04 (Fig. 5a—d).

For SAMtools (Fig. 5a; Additional file 1: Figure
S4A) and FreeBayes calling (data not shown) in the
non-HLA regions, BQSR resulted in a marked loss of
both known and novel SNPs at 10 and 20x coverage,
but less so at 40x and full (66-100x) coverage. In the
HLA region, however, the loss was much more obvi-
ous for known SNPs than for novel ones across all
the coverage depths (Fig. 5b; Additional file 1: Figure
S4B). Over 90 % (median) of the known SNPs missed
by BQSR in the HLA and non-HLA regions over-
lapped the public call set, supporting the reliability of
those missed calls. Thus, in the non-HLA regions,
when the coverage is less optimal, BQSR increases
the precision rate with sacrifice in sensitivity, indicat-
ing a trade-off between these two measurements.
However, when the coverage is sufficient, the impact
of BQSR becomes much less conspicuous. On the
other hand, in the HLA region, BQSR reduces the
sensitivity but with little gain in precision rate. On
the other hand, for Platypus (Fig. 5¢ and d; Add-
itional file 1: Figures S4C and D), GATK UnifiedGen-
otyper and HaplotypeCaller (data not shown), BQSR
led to a much larger loss of known SNPs than novel
SNPs, particularly at 10 and 20x coverage. For these
three callers in SNP detection, the role of BQSR is
actually adverse rather than beneficial.
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We also investigated the impact of BQSR on INDEL

calling. A total of 500 cases were assessed, which repre-
sent combinations among 5 NA12878 exome data, 4
coverage depths, 5 mappers (BWA-MEM not included)
and 5 callers. In each of the 500 cases, INDELs were first
grouped into known (in dbSNP v138) and novel, and

both were then split into those that overlap the public
call sets and others that are method-specific. For each of
the four groups of INDELs in each case, we checked the
change in the number of INDELs before and after BQSR
(Additional file 1: Figures S5A-D). For FreeBayes, GATK
UnifiedGenotyper, Platypus and SAMtools, the number
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of INDELs differed by no more than two in nearly all
the cases in the HLA region and in 95-100 % of the
cases in the non-HLA regions. Slightly more changes
were observed for GATK HaplotypeCaller in the non-
HLA regions, more notably (up to 10 INDELSs) for novel
ones that are unique (missed in the public call set) to
this caller. Overall, BQSR resulted in little or no changes
in INDEL calls in both HLA and non-HLA regions.

Taken together, our analysis suggested that the effect
of BQSR depends on caller, coverage and sequence di-
vergence. In both high and low divergence regions,
BQSR reduced SNP calling sensitivity for all the callers.
However, it improved the precision rate only for FreeBayes
and SAMtools in the lowly divergent regions when the
coverage is insufficient. On the other hand, INDEL calling
appears to be less impacted.
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Local realignment and BQSR in hg38 genome reference
Human hg38 reference sequence includes 525 ALT con-
tigs from the HLA region. To evaluate the effect of local
realignment and BQSR in this new genome build, we
mapped all NA12878 01 and NA12878_04 reads to hg38
using BWA-MEM. We also tested Novoalign (v3.02.04),
but it is very slow when ALT contigs are included in the
reference (data not shown). The other four aligners are
not able to map reads to hg38 if ALT contigs are included.
We found that the effect of local realignment on INDEL
calling was not markedly different between the two refer-
ences (Additional file 1: Figure S6A and B). For both refer-
ences, in the HLA region there was nearly no change (0—
1) in the number of known INDELs after local alignment.
In the non-HLA regions, local alignment increased the
number of known INDELs by 0-5 in hgl9 and by 0-3 in
hg38, with a difference of < =2 between them. As revealed
for hg19, at the full (100x) coverage BQSR mainly reduced
the SNP sensitivity of SAMtools when reference hg38 was
used (Additional file 1: Figure S6C and D); the effect was
more obvious in the HLA region.

Conclusions

Post-alignment processing is frequently applied in current
protocol of variant discovery. Using exome data we re-
vealed that local realignment and BQSR did not always
enhance variant detection as one would expect. Instead,
their roles are mapper and caller dependent, often varying
with coverage depth and level of divergence.

Local realignment and BQSR mainly impacted INDEL
and SNP calling, respectively. Local realignment overall in-
creased INDEL calling sensitivity with NextGenMap align-
ment but had little impact on Novoalign. On the other
hand, compared with the haplotype-based callers, the effect
was more obvious on SAMtools and GATK UnifiedGen-
otyper that are less effective in INDEL detection. For major-
ity of the methods, BQSR reduced the SNP calling
sensitivity, more obvious at lower coverage. In the low di-
vergence regions, when the coverage is not sufficient, SAM-
tools and FreeBayes showed decrease in sensitivity but
increase in precision rate by BQSR. In other cases, the loss
of sensitivity was not associated with an increase in preci-
sion rate, which argues against the application of BQSR in
those instances. Our analysis offers a broad view about the
impact of post-alignment processing in exome-based
variant discovery. Thus, consideration should be given
to both mapper and caller when deciding whether to
apply post-processing to [llumina exome data.

Additional files

Additional file 1: Figure S1. Change of INDEL calling precision rate
following local realignment. Figure S2: Local realignment and BQSR for
SAMtools/BCFtools consensus-caller and multiallelic-caller. Figure S3:
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of known and novel SNPs in NA12878 after BQSR. Figure S5: Change of
known and novel INDELs in NA12878 by BQSR. Figure S6: Local realign-
ment and BQSR with hg19 versus hg38. (PDF 769 kb)

Additional file 2: Table S1. Five public exome-seq data in NA12878.
Table S2: Change of SNP calling sensitivity and precision rate after local
realignment. (PDF 49 kb)
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