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Abstract

Background: Cryo-electron tomography is an important tool to study structures of macromolecular complexes in
close to native states. A whole cell cryo electron tomogram contains structural information of all its macromolecular
complexes. However, extracting this information remains challenging, and relies on sophisticated image processing,
in particular for template-free particle extraction, classification and averaging. To develop these methods it is crucial
to realistically simulate tomograms of crowded cellular environments, which can then serve as ground truth models
for assessing and optimizing methods for detection of complexes in cell tomograms.

Results: We present a framework to generate crowded mixtures of macromolecular complexes for realistically simulating
cryo electron tomograms including noise and image distortions due to the missing-wedge effects. Simulated tomograms
are then used for assessing the template-free Difference-of-Gaussian (DoG) particle-picking method to detect complexes
of different shapes and sizes under various crowding and noise levels. We identified DoG parameter settings that
maximize precision and recall for detecting particles over a wide range of sizes and shapes. We observed that
medium sized DoG scaling factors showed the overall best performance. To further improve performance, we
propose a combination strategy for integrating results from multiple parameter settings. With increasing macromolecular
crowding levels, the precision of particle picking remained relatively high, while the recall was dramatically reduced,
which limits the detection of sufficient copy numbers of complexes in a crowded environment. Over a wide range of
increasing noise levels, the DoG particle picking performance remained stable, but dramatically reduced beyond a
specific noise threshold.

Conclusions: Automatic and reference-free particle picking is an important first step in a visual proteomics analysis of
cell tomograms. However, cell cytoplasm is highly crowded, which makes particle detection challenging. It is therefore
important to test particle-picking methods in a realistic crowded setting. Here, we present a framework for simulating
tomograms of cellular environments at high crowding levels and assess the DoG particle picking method. We
determined optimal parameter settings to maximize the performance of the DoG particle-picking method.
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Background
Cryo-electron tomography (Cryo-ET) has emerged as an
effective tool for in-situ structural biology because it en-
ables the imaging of macromolecular complexes in their
native cellular environments at close to living conditions
and at nanometer scale resolution [1–7]. In principle
Cryo-ET can be used for studying the structure,

abundance and spatial distribution of large macromolecu-
lar complexes in various cellular environments [8]. How-
ever, the simultaneous identification of all detectable
macromolecular complexes in whole cell cryo-electron to-
mograms (i.e., visual proteomics) remains a considerable
challenge. A visual proteomics approach would include
the extraction of all potential complexes into individual
subtomograms (i.e., particle picking) combined with large-
scale reference-free subtomogram classification and subse-
quent averaging of subtomograms in the same class to
generate density maps at increased resolution and signal
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to noise level [9–13]. However, extracting structural infor-
mation from cell tomograms is very challenging due to
several limitations, including the relatively low signal-to-
noise ratio and distortions as a result of missing data (i.e.,
the missing wedge effect), which leads to a relatively low
and anisotropic imaging resolution [5, 14–16]. Moreover,
the crowded environment in cells makes the accurate
identification and localization of macromolecular com-
plexes an even more challenging task [2, 8, 9].
The first step in the analysis of macromolecular com-

plexes in whole cell tomograms is an efficient and reliable
automatic method for reference-free particle picking,
namely the detection and extraction of subtomograms that
likely contain individual macromolecular complexes. To
perform realistic assessment and parameter optimization
for particle picking in whole cell tomograms, one needs to
first realistically simulate cryo-electron tomograms of
crowded mixtures of macromolecular complexes. Al-
though simulated subtomograms of isolated complexes
have been used to validate template matching and sub-
tomogram classification and averaging [8, 12, 16],
simulated tomograms of crowded mixtures of macro-
molecular complexes have not been used to assess ref-
erence-free particle picking methods. Here we describe a
systematic framework for simulating cryo-electron to-
mograms of crowded macromolecular mixtures, similar
to those found in cell cytoplasm. Simulated tomograms
were generated at various crowding and signal-to-noise
(SNR) levels to perform an extensive assessment of the
reference-free Difference-of-Gaussian (DoG) particle pick-
ing method [17]. To our knowledge no study exists to date
that performed optimizations of parameter settings to
maximize the accuracy for detecting likely locations of
macromolecular complexes in crowded cellular tomograms.
Our study specifically focused on the DoG performance for
differently sized complexes of various shapes with respect
to the cellular crowding and noise levels.

Methods
This section is divided into two parts: In the first part,
we describe the method for simulating tomograms of
crowded cellular environments. In the second part, we de-
scribe how we assessed the DoG particle picking method
on simulated tomograms at various crowding levels and
signal to noise ranges.

Simulating tomograms of cell-like environments
Generating cell-like environments
Selection of benchmark set To represent the crowded
cellular environment we collected a total of 21 abun-
dant macromolecular complexes of varying sizes and
shapes from the Protein Data Bank (PDB) [18] (Methods,
Fig. 1a). The electron optical density of a complex is pro-
portional to its electrostatic potential, which is determined

by its atomic structure [15, 19]. For each complex, density
maps are generated at 4 nm resolution and with voxel size
of 1 nm using the PDB2VOL program of the Situs2.0
package [20].

Generating crowded mixtures with random positions
and orientations of all complexes We then generated a
composite density map of a crowded mixture of randomly
placed and oriented complexes at high crowding levels,
which mimicked the environment found in crowded cellu-
lar cytoplasm (Fig. 1). This density map then served as the
input sample for simulating the cryo-electron tomography
imaging process at different SNR levels.
To generate a crowded random mixture of complexes,
we first represented each complex by its bounding sphere,
which enclosed each complex. Then each complex was
given a random copy number to define the composition of
complexes in the mixture. After randomly positioning the
corresponding spheres in a volume we used molecular dy-
namics simulations and simulated annealing for packing
the crowded sphere mixture in a volume while preventing
sphere-sphere overlaps. Then density maps of complexes
were positioned in the corresponding spheres at a random
orientation. The resulting composite density map of the
crowded mixture was then used as the input sample to
simulate the tomographic imaging of micrographs at
different tilt angles followed by the reconstruction of
the 3D density map to generate realistically simulated
cryo-electron tomograms. These simulated tomograms
contained imaging distortions from noise, missing wedge
effects and effects from the Contrast Transfer Function
(CTF). The computational details for each step are de-
scribed in following subsections.

Minimum spherical bounding
We defined a minimum bounding sphere as the sphere
with the smallest radius that entirely encloses the density
map of the macromolecular complex at a given contour
level. The contour level is a threshold to define a volume
region of the complex [21]. We defined the contour level
threshold as a proportion of the maximum density value
in a density map. By inspection of the initial density maps
for the 21 complexes, we empirically set the contour level
ratio as L = 0.2, which resulted in a contour volume that
best matches the van der Waals volume of the complexes.
We then defined a subset of voxels (R) with density values
larger than the contour level defined as:

R xð Þ ¼ ∀x ∈ ℕ3jD xð Þ ≥ Lm
� �

Where D(x) with x = (x1, x2, x3) ∈ℕ
3 is the density

map, m =max(D(x)|x ∈ℕ3) is the maximum density
value of D, Lm is the contour level. L is the contour level
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ratio (i.e., the fraction of the maximum density value
that defines the contour level).
Next, we calculated the convex hull for points located

at all voxel locations with D(x) > 0 in R using the Quic-
kHull algorithm [22]. The voxels in the interior of the
convex hull regions were then used to calculate the
minimum bounding sphere of the complex. The Emo
Welzl’s algorithm was adapted to calculate the minimum

bounding sphere for the set of voxels defined by the
convex hull of the complex [23]. The minimum bounding
sphere was used to simulate crowded mixtures of com-
plexes. A minimum spherical bounding model has several
advantages in comparison to other geometric bounding
models such as cubic or cylinder models [24, 25]. The
spherical bounding model is defined by only two descrip-
tive parameters, the center and radius of the sphere, which

Sphere Bounding models

Composite density maps

Crowding level 3Crowding level 1

Crowding level 3Crowding level 1

A B

C

Fig. 1 Framework for realistically simulating cryo-electron tomograms of crowded cellular environments. a The minimum bounding sphere radius
(upper panel) and frequency (lower panel) for each of the 21 different types of macromolecular complexes in our benchmark set. Shown also are
PDB ID of each complex (see Additional file 1: Table S1 for details) [18]. b Isocontour level representation (upper panels) and density plots (lower
panels) of two complexes. The minimum bounding sphere of each complex enclosing each complex is also shown. c Crowded mixture of 2000
macromolecular complexes at 11 % (crowding level 1) and of 8000 macromolecular complexes at 44 % (crowding level 3) volume occupancy.
Positions of spheres has been randomized and optimized to prevent sphere-sphere overlap. Each bounding sphere has been replaced by the
corresponding complex’ randomly oriented density map. The composite density map serves as the input for simulating the cryo electron tomogram
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simplifies the scoring function in the subsequent molecu-
lar dynamic simulations to minimize sphere-sphere over-
laps. Also, in the subsequent replacement step, complexes
can be placed at any random orientation within the sphere
volume.

Generating macromolecular complex mixtures
The total volume occupancy of cell cytoplasms varies in
different cells, and ranges between 5 % and 40 % in
mammalian and between 34 % and 44 % in bacterial
cells [26–29]. We defined the crowding level C as the ra-
tio of the total volume occupied by all instances of
macromolecular complexes and the total 3D volume of
the tomogram.

C ¼
X

k¼1

n
V kNk

VT

Ntot ¼
X

k¼1

n
Nk

Where Nk is the copy number of macromolecular
complex of type k, Ntot is the total copy number of all
complexes; n = 21 is total number of different types of
macromolecular complexes, Vk is the volume of the k-th
macromolecular complex type, which is estimated from
region R defined in section 2.1.2 and VT is the total vol-
ume of the tomogram defined by the length of its three
principal.
In our study, each type of macromolecular complex is

randomly assigned a copy number Nk, following a multi-
nomial distribution with parameter Ntot and f = (f1,… fn),
where fi is a randomly selected frequency. We chose a
random set of copy numbers because structures of many
complexes and also their copy numbers in cells are still
not known. It is challenging to determine the exact pro-
tein compositions in cells, which can differ even for the
same cells under different growth conditions. To assess
particle picking we therefore decided to have an entirely
random mixture with variable sizes and shapes and copy
numbers. Each instance of a macromolecular complex was
also assigned a random orientation. To generate cellular
environments at a defined crowding level we randomly
positioned the bounding spheres of all complexes into a
rectangular box volume. We then used molecular dynam-
ics simulations and simulated annealing to optimize the
packing of the crowded sphere mixture and remove any
sphere-sphere overlaps. In our simulations the scoring
function Stot consisted of two terms: First, a box volume
restraint Si

V, which enforced each sphere to lie within
the volume of the simulation box, and second an ex-
cluded volume restraint Sij

EX, which prevented any over-
lap between spheres.

Stot ¼
XNtot

i

SVi þ
X
i

Ntot−1 X
i<j

SEXij

with

SVi ¼
1
2
kdd ið Þ2; if sphere is outside the container

0; if sphere is inside the container

(

SEXij ¼
1
2
kp d i; jð Þ− ri þ rj

� �� �2
; if d i; jð Þ < ri þ rj

� �
0; if d i; jð Þ > ri þ rj

(

where Ntot is the total number of spheres; kd is the
spring constant and d(i) is the smallest distance between
the center of sphere i and the container border; d(i, j) is
the distance between the centers of i-th and j-th spheres,
ri, rj are radius of the spheres. We used the IMP software
package [30] to implement the scoring function and op-
timized the scoring function to a score of ~0. The ini-
tial velocities of all spheres were assigned based on a
Maxwell-Boltzmann distribution at a given temperature.
After starting from relatively high temperatures, an anneal-
ing process gradually reduced the temperature to relax the
model.

T tð Þ ¼ T 0−ct

Where T(t) indicates the system temperature at iteration
step (time) t and T0 = 3000 is the initial temperature, c is a
constant for gradually reducing the system temperature.
We set c = 100. Finally a conjugate gradient optimization
reduced the score to ~0. After generating crowded mix-
tures of spheres, we placed the randomly oriented density
map of each complex into their corresponding bounding
sphere. This procedure produced a composite density
map of a crowded mixture of complexes. We generated
several different density maps at various crowding levels
(see below).

Generating simulated cryo-electron tomograms
For a reliable particle-picking assessment, cryo-electron
tomograms must be generated by simulating the actual
tomographic image reconstruction process, which allows
for the inclusion of noise, tomographic distortions due
to missing wedge effects, and electron optical factors such
as Contrast Transfer Function (CTF) and Modulation
Transfer Function (MTF) [8]. CTF and MTF describe
distortions from interactions between electrons and the
specimen and the distortions due to the image detector
[8, 13, 31, 32]. The so-called missing wedge effect leads
to image distortions due the limited the tilt angle range.
A typical tilt angle range is ±60 or ±70 degrees, with step
increments of 1 or 2 degrees [5, 33]. We follow a previ-
ously applied protocol and simulated 2D projection elec-
tron micrographs of our crowded macromolecular sample
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using a tilt angle range from -60 to 60 degrees with step
increments of 2 degrees, which is a typical procedure for
experimental tomograms [8, 13, 11]. For the simulated
tomogram, we set typical acquisition parameters used in
actual experimental measurements of whole cell tomo-
grams: voxel size = 1 nm, the spherical aberration= 2 × 10
− 3 m, the defocus value= − 4 × 10− 6 m, the voltage =
300 kV, the MTF corresponded to a realistic electron de-
tector [34, 35], defined as sinc(πω/2) where ω is the frac-
tion of the Nyquist frequency. Finally 3D tomograms were
reconstructed via a back projection algorithm [11, 31] from
2D micrographs at various tilt angles.
Signal to noise ratio (SNR) is an important factor to

control the level of distortions of a simulated tomogram
[5]. The SNR was defined as the quotient of the variance
of signal and the variance of noise [12].

SNR ¼ σ2signal
σ2noise

In the process of generating simulated tomograms,
noise was added at two stages: one fraction was added to
the signal before convolution with CTF and another
fraction added after it was convoluted with CTF [12].
We simulated cryo electron tomograms at various SNR
levels (i.e. SNR = [50,20,10,1]).

Assessment of DoG particle picking
Our simulated tomograms of crowded mixtures of
macromolecular complexes served as the ground truth
for the assessment of the template-free Difference-of-
Gaussian (DoG) particle picking method.

Background: Difference of Gaussian (DoG) filtering
A number of particle-picking methods have been proposed
for cryo-electron microscopy images and adapted to cryo
electron tomography [2, 8, 14, 17, 32, 36, 37]. Reference-
based methods use information from a template in the
search process to detect potential particle positions in
the tomogram. Potential particle positions are detected
as peaks in a cross-correlation function between the
target tomogram and a template [2, 14, 32]. However,
when the structure of a complex is unknown, reference-
based methods cannot be applied. Unbiased visual pro-
teomics approaches must rely on reference-free particle
picking methods that are also applicable in the crowded
environment of whole cell tomograms.
The reference-free DoG particle picking method is based

on the Difference of Gaussian (DoG) image transform. A
DoG map is created via subtraction of two versions of
Gaussian filtered images and peaks detected in the DoG
map are potential particles [17]. Previous studies tested
the reliability of the DoG method for 2D cryo-EM im-
ages [17, 37]. However, no study exists that assessed the

performance of the DoG method and performed param-
eter optimizations for reference-free particle picking in
highly crowded tomograms of whole cells.
The Gaussian blurred map was obtained through a

convolution of the Gaussian function G(σ) with the ori-
ginal map I and defined as:

IG σð Þ ¼ I � G σð Þ

G σð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e−
r2

2σ2

Where σ is referred to as the scaling factor of the Gauss-
ian function and r is the position vector in the image. A
DoG map was built from subtracting two versions of the
same map blurred through two Gaussian kernels with dif-
ferent scaling factors σ. The DoG map, for two different
values of σ, was then defined as:

IDoG σ1; ; σ2ð Þ ¼ I � G σ1ð Þ−I � G σ2ð Þ

In our study, we followed the DoG Picker design and
defined the ratios between the two scaling factors as the
k-factor.

σ2 ¼ kσ1

We set k = 1.1, which had been shown to be a reason-
able value for applications in single particle cryo electron
tomography [17]. We refer to σ1 as the DoG scaling factor
and refer to it as σ from here on. The DoG scaling factor
σ influences the performance of picking complexes of
different sizes and the particle picking performance for
different complexes will be evaluated for different scaling
factors [17].
In our study, we first assessed the DoG particle picking

performance with respect to different scaling factors, to
identify an optimal setting. Then using the optimal scaling
factor, we assessed the effects of noise and macromolecu-
lar crowding for the performance of the particle picking
method.

Selection of local density peaks
To detect particle locations in a tomogram, we identified
local density peaks in the DoG filtered tomograms (referred
to as the set P) [38]. However, not all local density maxima
correspond to complexes. Local density maxima can
also result from noise. These maxima typically have lower
density values than those of real complexes. We therefore
used a lower density threshold T to define the set of local
density maxima that likely correspond to particles Pt. The
density threshold T and the set Pt are defined as:

T ¼ mþ t⋅
M−m
K
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Pt ¼ v ∈ PjD vð Þ ≥ Tf g
Where M is the maximum density value of all local

maxima in P, m is the smallest density value for all local
maxima, K = 20 is the number of bins, t = 0, 1, 2,…, K is
the threshold level, Pt is the set of local density peaks at
threshold level t, which had density values larger than
the threshold T. In this paper we assessed the particle
picking performance with respect to the threshold level
t and determined the optimal value of t that maximizes
the detection of complexes in the crowded
environment.

Evaluating the particle picking performance
Assessment of true positives To evaluate the particle
picking performance, we need to determine correctly
and falsely detected particles. We assume two conditions
to define a true positive particle detection: First, the de-
tected density peak should be close to the center of the
true particle, i.e. the peak should be within a threshold
radius from the true particle center. Second, we only
count a true positive if only one local maximum is de-
tected within the bounding sphere of the true particle.
Multiple maxima within the bounding sphere would be
counted as a false particle detection. Every local density
peak can be assigned to at most one nearest particle.
To determine if a local density maximum is a true positive
detection, we first defined the relative shift ratio S as the
quotient of the distance between a detected local density
peak to the center of its nearest particle and the radius
of the minimum bounding sphere of the corresponding
complex.

S ¼ xp−Cg

		 		
Rg

Where xp is the location of a local density peak, Cg and
Rg are the center and radius of the minimum bounding
sphere of its nearest complex. We set S ≤ 0.5 as a thresh-
old to select local density peaks that are relatively near to
the center of the ground truth complex. We can then de-
termine how many particles are reliably detected with the
DoG particle picking method.

Statistical Analysis of particle picking performance
Precision and recall is widely used as an assessment of
information retrieval and is used to evaluate particle
picking performances in cryo electron microscopy [8, 37].
The precision is defined as the fraction of the correctly de-
tected versus all the detected peaks whereas the recall is
defined as the fraction of the correctly detected peaks to
the total number of particles in the ground truth dataset:

precision ¼ #TP
#TP þ#FP

recall ¼ #TP
#TP þ#FN

With #TP as the number of true positives, #FP is the
number of false positives, and #FN is the number of false
negatives in the particle detection.
In addition to precision and recall, we also use the

F-score to evaluate the overall particle picking perform-
ance [37]. The F-score is defined as the harmonic mean of
precision and recall.

F−score ¼ 2⋅precision⋅recall
precisionþ recall

By calculating the harmonic mean of precision and re-
call, we can compare the particle picking performance
for different parameter settings and determine the opti-
mal setting for a given tomogram.

Results and discussion
In the following section, we first describe the set of simu-
lated tomograms at various crowding and signal to noise
levels. We then analyze the performance of the DoG par-
ticle picking method. Our goal is to assess the particle
picking performance under varying parameter settings to
determine the optimal conditions for particle picking in
crowded environments. Then we evaluate the effects of
noise addition and increasing cellular crowding levels on
the performance of DoG based particle picking.

Tomogram simulation
We selected 21 representative macromolecular complexes
to generate a diverse mixture of complexes of variable
sizes (Fig. 1, Additional file 1: Table S1). The particle sizes
ranged from 79.2 to 245.2 Å in diameter. To simulate
three different crowding levels in a cell-like environment,
we generated mixtures of these complexes with randomly
chosen copy numbers. Note, that in each of the three
mixtures, a given type of complex has the same relative
copy number frequency (i.e., the ratio of a complex’ copy
number to the total copy number of all complexes).
Macromolecular complex mixtures are generated con-
taining 2000, 5000 or 8000 complexes in a 3D volume
of 500 x 500 x 200 nm side length, which lead to cellular
environments with crowding levels at 11 %, 26 % and
44 % volume occupancy, respectively (Figs. 1c and 2).
These levels are comparable to crowding levels in bac-
terial and mammalian cells. At higher crowding levels,
the macromolecular complex mixtures naturally occupy
a higher fraction of the 3D volume and the average dis-
tance between adjacent macromolecular complexes is
smaller (Fig. 2). This crowding effect is expected to
have substantial influence on the DoG particle picking
performance.
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To study the influence of signal-to-noise (SNR) levels
on the DoG particle picking performances, we choose
different SNR levels ranging from SNR = 50, 20, 10 and
1. At lower SNR levels more noise is added to the tomo-
gram (Fig. 2).

DoG Particle picking assessment
Optimal scaling factor for DoG particle picking
Because the true locations and identities of all particles
are known, the simulated tomograms serve as the ground
truth to test the DoG particle picking and identify the par-
ameter settings for optimal performance. Specifically, we
tested settings for two parameters, the DoG scaling factor
σ and the peak density threshold level t (Methods). Based
on the sizes of typical macromolecular complexes (in our
study the radius of macromolecular complexes ranges be-
tween 3-13 nm), we set σ to be the following set of values
[3, 5, 7, 9, 11, 13] in nm units. The density threshold t
ranged between 0 and the maximal value K = 20 and de-
termined the minimum density value at which a local
maximum is considered as a predicted particle location.

Local maxima with voxels density values larger than the
cutoff t were considered as predicted particle positions.
We first performed the analysis on tomograms with a

crowding level of 11 % (2000 particles) and SNR = 50
(Fig. 2). To illustrate the performance of particle picking,
we calculated a precision-recall (PR) curve, by determin-
ing for each t threshold value the corresponding preci-
sion and recall (Fig. 3). A PR curve was calculated for
each of the scaling factors σ. With increasing threshold
cutoff t, detected peak positions must have larger density
values to be considered as particles. As expected, the
precision increased with increasing t values for all σ
values, however, the recall dropped considerably with
increasing t values and a smaller amount of particles were
successfully detected (Fig. 3). With a threshold cutoff
t = 0, the maximum recall for each scaling factor was
reached (Fig. 3).
Large differences were observed when comparing the

PR curves for different σ values (Fig. 3). The poorest
performance was observed for the smallest and largest σ
values (σ = 3 and σ = 13), whereas the best performance
was observed for σ = 5 and σ = 7. At large scaling factors,
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Fig. 2 Simulated cryo-electron tomograms of crowded cellular environments at varying crowding levels and SNR levels. a XY, XZ, and YZ planes
for simulated cryo electron tomograms of macromolecular complex mixtures at three different crowding levels containing 2000, 5000 and 8000
particles, respectively. Tomograms are simulated with a noise level of SNR = 50. b A single XY plane is shown for simulated tomograms with
different SNR levels. Tomograms are shown for crowding level 1 containing a total of 2000 complexes
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the recall was especially poor. For example at σ = 13 the
maximum recall reached only 25.6 % due to the rela-
tively small number of detected local maxima. Only a
total of 900 local maxima were detected in the DoG
map, even if all peaks were considered (at t = 0). This
observation indicates that for σ = 13 the locations of
many complexes, especially those of smaller sizes, do
not coincide with detectable local maxima in the DoG
map. For σ = 11 the recall increased to 38.6 %. For com-
paring the overall performance, we determined for each
parameter setting the maximal F-score, which is the har-
monic mean of the precision and recall (Methods)
(Table 1). The best performance overall was observed
for σ = 7 and t = 3 with a maximal F-score of 0.831, and
a precision of 96.9 % and a recall of 72.7 %, which indi-
cated that DoG particle picking performed well in terms
of both accuracy and completeness.
The selected scaling factor had large impact on the

performance, and also showed that a smaller scaling fac-
tor not always performed better. Very large and small

scaling factors decreased the performance. The most
dramatic loss of precision was observed for very small
sigma values (σ = 3). With σ = 3, a very large number of
false positive local maxima was detected. In summary,
we conclude that the optimal DoG scaling factor is σ = 7
for detecting macromolecular complexes in crowded cel-
lular environments. The performance for a given σ value
is expected to be affected by the particle sizes (Fig. 3). In
the next section we analyze the impact of particle size
on the performance.

Size specificity of DoG particle picking
To test the DoG performance for particles of different
sizes, we categorized the complexes into 3 groups (small,
medium and large complexes) and tested the DoG particle
picking performance for different scaling factors separately
for each group. Complexes with a bounding sphere radius
smaller than 7 nm were defined as small complexes, the
complexes with bounding sphere radius between 7 and
10 nm were defined as medium-sized complexes and the
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Fig. 3 Assessment of DoG particle picking with different scaling factors. a Precision and recall curves for DoG particle picking for different scaling
factors (colored curves), applied on tomograms at crowding level 1 (2000 particles) with SNR = 50. Each point defines the recall and precision
using a different density threshold t. Optimal F-score performance is shown by a diamond. b Boxplot of F-score distributions for particle picking
at different threshold levels t for each DoG scaling factor. The diamond shaped points show the best F-score for each scaling factor. c The impact
of particle size on the DoG performance with different scaling factors. The pie charts indicate the proportions of correctly predicted particle locations
for complexes of different sizes (small, medium, and large complexes) for particle picking with different DoG scaling factors
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remaining complexes were defined as large complexes. For
each scaling factor, we determined the fraction of correctly
predicted complexes in each group of complexes (using
the t values leading to the maximal F-score).
With large scaling factors σ = 13, 11, only a very low

proportion of small complexes were among the detected
true positives (Fig. 3). With smaller scaling factors σ =
9, 7, 5, 3, this proportion increased and gradually be-
came a major component of all detected particles. This
observation confirmes that a specific scaling factor targets
a certain size of particles. The most balanced performance
over all complex sizes is observed with the scaling factor
of σ = 7. Interestingly, medium sized complexes were de-
tected correctly at relatively high fractions across all the σ
values, whereas smaller and larger complexes were only
detected with small and large σ values, respectively. We
confirm that there is an optimal scaling factor that per-
formed well for a given complex size.
We then compared how strongly the recall was affected

when the scaling factors were varied (Fig. 4). The most

dramatic changes in recall upon variation of sigma values
were observed for the group of small complexes. Whereas
small sigma values produced excellent recall, extremely
poor recall were observed when using larger σ values
(Fig. 4b). In contrast, for the group of large complexes,
the recall remained similar over a wider range of σ values,
with the lowest recall observed for the smallest σ value
(Fig. 4d and Table 2). Most efficient detections of macro-
molecular complexes tended to be achieved by applying a
DoG scaling factor in accordance with the target complex
size. Our observations indicate that a single σ value in
DoG particle picking is not the best option for visual pro-
teomics approaches when target complexes have largely
varying sizes. In the next section we discuss the strategy
for combining multiple σ values to enhance overall per-
formance in particle picking.

Multiple size particle picking
Our observations confirm that the performance of DoG
particle picking at a given sigma value is sensitive to the

Table 1 Particle picking performance and parameter settings for optimal particle picking performance (maximal F-score)

Sigma Optimal t Precision Recall Best F-score # Local maxima (at t = 0) # Local maxima (optimal t)

13 3 0.659 0.256 0.373 900 775

11 2 0.709 0.386 0.499 1378 1088

9 2 0.813 0.578 0.676 2341 1421

7 3 0.969 0.727 0.831 4661 1500

5 3 0.837 0.777 0.806 12741 1856

3 5 0.492 0.714 0.583 66180 2903
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Fig. 4 Size specificity of DoG particle picking. a Fraction of macromolecular complexes in each size group. b-d Recall for complex detection with
varying scaling factors (using the threshold level to achieve best F-score) for the groups of small, medium-sized and large complexes, respectively
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size of the target complex. Here we provide a strategy to
optimize the detection of particles of variable sizes. Since
a given scaling factor σ performs better for particles of a
certain size, we searched for all local density peaks de-
tected with different σ values (σ = 7, 5, 9) and filtered
out peak overlaps. We applied the DoG peak detection
in sequential order, using first σ values with the highest
F-score before those with lower F-scores. We first used
the scaling factor σ = 7, which showed optimal overall
performance in our study, followed by peak detection
with scaling factors 5 and 9. We defined an overlap be-
tween two peaks if the peak-peak distance is smaller
than 7 nm. If two peaks are closer than this value then
we select only one of the two peaks, namely the peak

location determined by the scaling factor with the higher
F-score (i.e., σ = 7) and removed the redundant peak. As
shown in Fig. 5, using this combined approach we were
able to enhance the recall for the groups of small and
medium sized complexes. The precision was slightly
reduced in comparison to the performance for scaling
factor σ = 7. However, the F-score was improved for all
particle sizes. We conclude that the combination strategy
detects more particles of varying sizes with acceptable
high precision.

Crowding and SNR level effects
Naturally, detection of the positions of macromolecular
complexes should be easier when particles are more
sparsely distributed. Therefore crowding levels could affect
the particle picking performances. In highly crowded cellu-
lar environments, macromolecular complexes can be so
close to each other that it may become challenging to dis-
tinguish adjacent complexes. Figure 6 shows the perform-
ance with the optimal scaling factor σ = 7 under different
crowding levels, ranging from volume occupancy of 11 %,
26 % to 44 %. As expected, the maximum recall of 78.7 %
was observed at the lowest crowding level. The recall
consistently decreased with increasing crowding levels,
reaching 63.2 % for medium and only 52.0 % for high

Table 2 Group sized particles recall with optimal particle
picking (maximal F-score)

Sigma Small Medium Large

13 0.043 0.395 0.614

11 0.182 0.561 0.697

9 0.467 0.754 0.780

7 0.720 0.909 0.839

5 0.836 0.858 0.624

3 0.649 0.579 0.413
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Fig. 5 Evaluation of combination strategy for particle picking. a Comparison of precision and recall curves when using individual scaling factors
or a combination of scaling factors in particle picking for tomograms (crowding level 1, SNR = 50). b Comparison of F-scores for particle picking
with individual or a combination of scaling factors. c Comparison of the number of true positives detected in particle picking when using the
single optimal scaling factor (σ = 7) and a combination of scaling factors (σ = 7, 5, 9) for complexes of different size. The barplot shows the number
of true positives (reliably detected particles) and the ground truth copy numbers for differently sized complexes (small, medium, large)
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crowding levels (Fig. 6). The maximal F-score also de-
creased from 0.831 to 0.717 at medium crowding and
to 0.637 at the highest crowding level (Tables 3 and 4).
Finally, we also investigated the level of noise on the
particle picking performance. We generated tomograms
at four different noise levels, ranging from SNR= 50, 20,
10 and 1 (Fig. 6). As expected, the SNR level had large

influence on the DoG particle picking performances.
For tomograms at SNR = 50 and scaling factor σ = 7, the
DoG particle picking achieved high precision and recall.
Although the particle picking performance became gener-
ally less effective with decreasing SNR, the performance
remained relatively stable over a wide range of SNR levels
(SNR = 50,20,10) with the maximal recall ranging from
78.7 % (SNR = 50), 77.0 % (SNR = 20) and 75.5 % (SNR =
10) (Fig. 6). However, at SNR = 1 the maximal recall drops
dramatically to <60 %. The maximal F-score remained at
around 0.8 over a wide range of SNR (SNR = 50, 20, 10)
and dropped to 0.546 at SNR = 1 (Tables 3 and 4). We
conclude that despite the good performance of DoG
over a wide range of SNR levels, the DoG performance
can drop abruptly if SNR levels are below a certain
boundary.
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Fig. 6 Evaluation of different crowding levels and SNR levels. a Precision and recall curves of particle picking at different crowding levels using a
scaling factor of 7 (low = crowding level 1 with 2000 particles, medium = crowding level 2 with 5000 particles, high = crowding level 3 with 8000
particles), and tomograms with SNR = 50. b F-scores for particle picking across all threshold levels t and scaling factor 7, grouped by different crowding
levels. c Precision and recall curves for particle picking at different SNR levels, using low crowding level 1 (with 2000 particles) and scaling
factor 7. d F-scores for particle picking across all threshold levels t and scaling factor 7, grouped by different SNR levels

Table 3 Crowding levels and optimal particle picking (maximal
F-score)

Crowding Optimal t Precision Recall Best F-score

11 % 3 0.969 0.727 0.831

26 % 2 0.855 0.618 0.717

44 % 3 0.902 0.492 0.637
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Conclusions
In this study, we assessed DoG particle picking using
realistically simulated tomograms of simulated crowded
cell cytoplasm. Automated and reference-free particle
picking is an important first step in a visual proteomics
analysis of whole cell tomograms. It is therefore important
to test the performance of the DoG method for particles
of variable size, under different crowding and noise levels.
To achieve this goal, we first proposed a framework for
realistically simulating Cryo-ET tomograms of cellular
environments at different crowding levels. Our approach
used a minimum bounding sphere model and molecular
dynamics to generate crowded mixtures of macromol-
ecular complexes. The simulated tomograms served as
a ground truth dataset for evaluating the reference-free
DoG particle picking method. Taking both accuracy
and completeness into consideration, we used precision
and recall to statistically evaluate how well particles can
be detected with different DoG scaling factors. Our bench-
mark included complexes of different sizes and shapes. For
these complexes, DoG performs best with medium sigma
values. For instance the scaling factor σ = 7 with a thresh-
old value t = 3 lead to the best F-value among all tested
scaling factors. With very large scaling factors (i.e. σ = 13),
the recall was very poor and only a small number of parti-
cles could be detected. Similarly, very small scaling factors
(i.e. σ = 3) underperformed and lead to the lowest observed
precision among all scaling factors. However, as expected
the scaling factor performance depended on the complex
size. When complexes were small, smaller sigma values
performed better. For instance σ = 3 lead to the best re-
call for small complexes, while σ = 3 lead to very poor
performance for medium and large complexes. We then
proposed an iterative strategy to combine different
DoG settings to maximize the overall performance of
the DoG particle picking for visual proteomics settings,
where one expects to detect complexes of variable sizes.
Finally, we concluded that both macromolecular crowd-
ing and SNR influences the DoG particle picking per-
formances. Tomograms with highly crowded cellular
environments and particularly very high noise levels
(low SNR) can make it challenging to accurately detect
macromolecular complexes.

Additional file

Additional file 1: The benchmark set of macromolecular complexes.
The PDB ID, PDB name, molecular weights, minimum bounding sphere
radius, occurrence frequencies and copy numbers for each crowding
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Abbreviations
Cryo-ET: Cryo-electron tomography; CTF: Contrast transfer function;
DoG: Difference of Gaussian; MTF: Modulation transfer function; PDB: Protein
data bank; SNR: Signal to noise ratio

Acknowledgements
The authors acknowledge Dr. Harianto Tjong and Dr. Ke Gong for their
thoughtful suggestions and discussions. The authors thank Prof. Martin Beck
for providing code and help in simulating the tomograms.

Funding
The authors acknowledge financial support by the following grants: NIH/
NIGMS R01GM096089 (to F.A.), Arnold and Mabel Beckman Foundation (BYI
program). F.A. is a Pew Scholar in Biomedical Sciences, supported by the
Pew Charitable Trusts.

Availability of data and material
The macromolecular complexes can be found at the Protein Data Bank (the
Research Collaboratory for Structural Bioinformatics: http://www.rcsb.org/pdb),
please see the Additional file for the accession numbers and detailed
information of the macromolecular complexes.

Authors’ contributions
LP, MX and FA designed the study and the experiments. LP run the analysis,
and LP, MX, FA analyzed the results with help of ZF. LP, MX, FA wrote the
manuscript. All authors have read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The authors declare that this study involves no humans, human data or
animals, ethics is not required for this study.

Received: 14 April 2016 Accepted: 27 September 2016

References
1. Jun S, Ke D, Debiec K, Zhao G, Meng X, Ambrose Z, Gibson GA, Watkins SC,

Zhang P. Direct visualization of HIV-1 with correlative live-cell microscopy
and cryo-electron tomography. Structure. 2011;19(11):1573–81.

2. Best C, Nickell S, Baumeister W. Localization of protein complexes by pattern
recognition. Methods Cell Biol. 2007;79:615–38.

3. Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W.
Macromolecular architecture in eukaryotic cells visualized by cryoelectron
tomography. Science. 2002;298(5596):1209–13.

4. Murphy GE, Jensen GJ. Electron cryotomography. Biotechniques.
2007, 43(4):413, 415, 417 passim.

5. Lucic V, Rigort A, Baumeister W. Cryo-electron tomography: the challenge of
doing structural biology in situ. J Cell Biol. 2013;202(3):407–19.

6. Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R, Cuellar LK, Forster F,
Hyman AA, Plitzko JM, Baumeister W. Visualizing the molecular sociology at
the HeLa cell nuclear periphery. Science. 2016;351(6276):969–72.

7. Xu M, Tocheva EI, Chang Y, Jensen GJ, Alber F. De novo visual proteomics
in single cells through pattern mining. 2016. arXiv:151209347v3.

8. Xu M, Beck M, Alber F. Template-free detection of macromolecular
complexes in cryo electron tomograms. Bioinformatics.
2011;27(13):i69–76.

Table 4 SNR levels and optimal particle picking (maximal
F-score)

SNR Optimal t Precision Recall Best F-score

50 3 0.969 0.727 0.831

20 3 0.921 0.740 0.821

10 3 0.871 0.712 0.783

1 5 0.649 0.472 0.546

Pei et al. BMC Bioinformatics  (2016) 17:405 Page 12 of 13

dx.doi.org/10.1186/s12859-016-1283-3
http://www.rcsb.org/pdb


9. Frangakis AS, Bohm J, Forster F, Nickell S, Nicastro D, Typke D, Hegerl R,
Baumeister W. Identification of macromolecular complexes in cryoelectron
tomograms of phantom cells. Proc Natl Acad Sci U S A. 2002;99(22):14153–8.

10. Nickell S, Kofler C, Leis AP, Baumeister W. A visual approach to proteomics.
Nat Rev Mol Cell Biol. 2006;7(3):225–30.

11. Beck M, Malmstrom JA, Lange V, Schmidt A, Deutsch EW, Aebersold R. Visual
proteomics of the human pathogen Leptospira interrogans. Nat Methods.
2009;6(11):817–23.

12. Forster F, Pruggnaller S, Seybert A, Frangakis AS. Classification of cryo-
electron sub-tomograms using constrained correlation. J Struct Biol.
2008;161(3):276–86.

13. Xu M, Beck M, Alber F. High-throughput subtomogram alignment and
classification by Fourier space constrained fast volumetric matching. J Struct
Biol. 2012;178(2):152–64.

14. Bohm J, Frangakis AS, Hegerl R, Nickell S, Typke D, Baumeister W. Toward
detecting and identifying macromolecules in a cellular context: template
matching applied to electron tomograms. Proc Natl Acad Sci U S A.
2000;97(26):14245–50.

15. Myasnikov AG, Afonina ZA, Klaholz BP. Single particle and molecular
assembly analysis of polyribosomes by single- and double-tilt cryo electron
tomography. Ultramicroscopy. 2013;126:33–9.

16. Bartesaghi A, Sprechmann P, Liu J, Randall G, Sapiro G, Subramaniam S.
Classification and 3D averaging with missing wedge correction in biological
electron tomography. J Struct Biol. 2008;162(3):436–50.

17. Voss NR, Yoshioka CK, Radermacher M, Potter CS, Carragher B. DoG Picker
and TiltPicker: software tools to facilitate particle selection in single particle
electron microscopy. J Struct Biol. 2009;166(2):205–13.

18. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res.
2000;28(1):235–42.

19. Foster F, Villa E. Integration of Cryo-EM with Atomic and Protein-Protein
Data Interaction. In: Jensen GJ, editor. Methods in Enzymology, Vol 483:
Cryo-EM, Part C: Analysis, Interpretation and Case Studies. Method Enzymol.
2010;483:47–72.

20. Wriggers W, Milligan RA, McCammon JA. Situs: A package for the docking
of protein crystal structures into low-resolution maps from electron microscopy.
Biophys J. 1999;76(1):A23.

21. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC,
Ferrin TE. UCSF chimera - A visualization system for exploratory research
and analysis. J Comput Chem. 2004;25(13):1605–12.

22. Barber CB, Dobkin DP, Huhdanpaa H. The Quickhull algorithm for convex
hulls. Acm T Math Softw. 1996;22(4):469–83.

23. Welzl E. Smallest enclosing disks (Balls and Ellipsoids). Lect Notes Comput Sc.
1991;555:359–70.

24. Lindow N, Baum D, Bondar AN, Hege HC. Exploring cavity dynamics in
biomolecular systems. BMC Bioinformatics. 2013;14 Suppl 19:S5.

25. Pierce BG, Hourai Y, Weng Z. Accelerating protein docking in ZDOCK using
an advanced 3D convolution library. PLoS One. 2011;6(9):e24657.

26. Ellis RJ. Macromolecular crowding: an important but neglected aspect of
the intracellular environment. Curr Opin Struc Biol. 2001;11(1):114–9.

27. Vazquez A. Optimal cytoplasmatic density and flux balance model under
macromolecular crowding effects. J Theor Biol. 2010;264(2):356–9.

28. Guigas G, Kalla C, Weiss M. The degree of macromolecular crowding in the
cytoplasm and nucleoplasm of mammalian cells is conserved. Febs Lett.
2007;581(26):5094–8.

29. Dill KA, Ghosh K, Schmit JD. Physical limits of cells and proteomes. Proc Natl
Acad Sci U S A. 2011;108(44):17876–82.

30. Russel D, Lasker K, Webb B, Velazquez-Muriel J, Tjioe E, Schneidman-Duhovny D,
Peterson B, Sali A. Putting the pieces together: integrative modeling platform
software for structure determination of macromolecular assemblies. Plos Biol.
2012;10(1):e1001244. doi:10.1371/journal.pbio.1001244.

31. Nickell S, Forster F, Linaroudis A, Del Net W, Beek F, Hegerl R, Baumeister W,
Plitzko JM. TOM software toolbox: acquisition and analysis for electron
tomography. J Struct Biol. 2005;149(3):227–34.

32. Roseman AM. Particle finding in electron micrographs using a fast local
correlation algorithm. Ultramicroscopy. 2003;94(3-4):225–36.

33. Oikonomou CM, Jensen GJ. A new view into prokaryotic cell biology from
electron cryotomography. Nat Rev Microbiol. 2016;14(4):205–20.

34. McMullan G, Chen S, Henderson R, Faruqi AR. Detective quantum
efficiency of electron area detectors in electron microscopy. Ultramicroscopy.
2009;109(9):1126–43.

35. Xu M, Alber F. High precision alignment of cryo-electron subtomograms
through gradient-based parallel optimization. BMC Syst Biol. 2012; 6.

36. Zhu Y, Carragher B, Glaeser RM, Fellmann D, Bajaj C, Bern M, Mouche F,
de Haas F, Hall RJ, Kriegman DJ, et al. Automatic particle selection: results
of a comparative study. J Struct Biol. 2004;145(1-2):3–14.

37. Langlois R, Pallesen J, Frank J. Reference-free particle selection enhanced
with semi-supervised machine learning for cryo-electron microscopy. J
Struct Biol. 2011;175(3):353–61.

38. Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Using MATLAB.
2009.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Pei et al. BMC Bioinformatics  (2016) 17:405 Page 13 of 13

http://dx.doi.org/10.1371/journal.pbio.1001244

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Simulating tomograms of cell-like environments
	Generating cell-like environments
	Minimum spherical bounding
	Generating macromolecular complex mixtures
	Generating simulated cryo-electron tomograms

	Assessment of DoG particle picking
	Background: Difference of Gaussian (DoG) filtering
	Selection of local density peaks
	Evaluating the particle picking performance


	Results and discussion
	Tomogram simulation
	DoG Particle picking assessment
	Optimal scaling factor for DoG particle picking
	Size specificity of DoG particle picking
	Multiple size particle picking
	Crowding and SNR level effects


	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and material
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

