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Abstract

Background: Predict whether a mutation is deleterious based on the custom 3D model of a protein.

Results: We have developed MODICT, a mutation prediction tool which is based on per residue RMSD (root mean
square deviation) values of superimposed 3D protein models. Our mathematical algorithm was tested for 42
described mutations in multiple genes including renin (REN), beta-tubulin (TUBB2B), biotinidase (BTD), sphingomyelin
phosphodiesterase-1 (SMPD1), phenylalanine hydroxylase (PAH) and medium chain Acyl-Coa dehydrogenase
(ACADM). Moreover, MODICT scores corresponded to experimentally verified residual enzyme activities in mutated
biotinidase, phenylalanine hydroxylase and medium chain Acyl-CoA dehydrogenase. Several commercially available
prediction algorithms were tested and results were compared. The MODICT PERL package and the manual can be
downloaded from https://github.com/IbrahimTanyalcin/MODICT.

Conclusions: We show here that MODICT is capable tool for mutation effect prediction at the protein level, using
superimposed 3D protein models instead of sequence based algorithms used by POLYPHEN and SIFT.
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Background
State of the art
As next generation sequencing (NGS) is advancing the
field of molecular biology today, more human protein
variants are identified than ever before. One of the great-
est challenges in this field is to be able to predict whether
the detected variants are real disease-causing changes
underlying the patients condition.
The current concept of mutation effect prediction heav-

ily depends on the composite algorithms that mainly
implement a sequence-based BLAST search that tries to
identify a number of similar protein sequences above a
preset threshold, then relate and combine several other
parameters such as PSIC (Position-Specific Independent
Counts), known three-dimensional (3D) structures of
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similar proteins, surface area, β-factor and atomic con-
tacts. Some available algorithms (e.g.POLYPHEN 2, [1])
use all above whereas others use either a portion or a
more diverse set of parameters (e.g.SIFT ([2]), MUTATION
TASTER ([3]), PROVEAN ([4]). There are also other algo-
rithms regarding prediction of protein stability such as I-
MUTANT and POP-MUSIC which gives results in means of
��G [5, 6]. I-MUTANT can both work with sequences and
structures from protein data bank (http://www.rcsb.org/,
[7]) with temperature and pH optional parameters. POP-
MUSIC works with statistical potentials extracted from a
test database of known protein structures. Another pro-
gram, PHD-SNP is sequence based prediction tool that
utilizes support vector machines [8]. Since these algo-
rithms take into account non-mutually exclusive (non-
orthogonal) features, the method to correctly combine the
results to derive a conclusive output remains a challenge.
One recently described method uses weighted means
obtained from false positive rates and false negative rates
of each distinct algorithm to approach a consensus score
(Condel, [9]). Even after utilizing cancer-trained meth-
ods, such integration of scores were not able to correctly
classify all variants [10, 11].
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Hypothesis and problem definition
A high percentage of genomic variants in protein-coding
genes were shown to modify the tertiary structure of
the coded protein sequence. These structural modifica-
tions can be predicted by comparing the 3D structures
of the wild type and mutant protein (.pdb files). The 3D
structures are generated in commercial or academic-only
servers and software (I-TASSER, [12, 13], SWISS-MODEL,
[14], MODELLER, [15], YASARA http://www.yasara.org/,
[16]) by supplying the raw amino acid sequences in fasta
format.
Stability of the proteins depend on many variables such

as solvent, temperature and foremost the amino acid
sequence. Even a small change in the molecular con-
tent, for instance a single nucleotide variation can entirely
change the tertiary structure or protein stability [17, 18].
For instance, Wang and Moult have shown that 83 % of a
large set of disease causing mutations result in disruption
of protein stability [19]. In general, hydrophobic inter-
actions and a network of hydrogen bonds stabilize the
folded state of protein [20]. Point mutations (SNVs) can
disrupt this folded state by altering hydrophobic interac-
tions, introduction of charged residues into buried sites or
breaking beta sheets [19, 21, 22]. As a consequence of the
structural changes, protein-protein interactions are also
affected by the point mutations [23].
We propose a methodology wherein we perform in sil-

ico protein modeling of both the wildtype and mutated
protein and where we subsequently calculate the differ-
ence in overall 3D structure between the two. This is done
by measuring the physical distance between the corre-
sponding residues of the two models after superimposi-
tion. Our proposal is that the larger the average distance,
the higher the propensity the mutation has to disturb the
protein functionality and thus to be pathogenic.
We have derived a simple algorithm called MODICT to

predict the effect of mutations on the structure of the pro-
tein. It is complementary to the protein modeling tools
mentioned above, as it requires the 3D protein struc-
tures predicted by these tools. The algorithm takes into
account the global structural changes in the 3D protein
model. These structural changes are measured in means
of the change in Root Mean Square Deviation (�RMSD)
per residue.

Methods
Algorithm
Let Ai denote the RMSD value of a given amino acid at
ith position resulting from comparison of two models in
a cartesian space defined by V (i,Ai) (in other words, Ai
is the distance between the same residue i of 2 super-
imposed models which are wildtype and mutated). The
distance between two amino acids is based on C-alpha by
default which can be easily modified if needed. Assuming

the entire length of a protein with N residues is 1 (arbitrar-
ily set), then the integral of step function (ISF) between
two consecutive amino acids can be approximated by:

ISF def= Ai + Ai+1
2

· 1
N

·2 = Ai + Ai+1
N

i ∈ (1, 3, 5 . . . )

(1)

The aim of ISF is to obtain a surrogate measure of how
much a given region in a protein molecule has moved
away from the original conformation with respect to wild-
type protein. If a given domain is enclosed by an interval
of ith and jth amino acid residues then the ISF spanning
this domain can be expressed as:

ISFi,j
def=

j∑

n=i

(
Ai + Ai+1

N
· Wi · Ci

)
i ∈ (

1, 3, 5 . . . j
)

(2)

where Wi and Ci denote optional weight and conserva-
tion scores respectively which are usually provided by the
training and iteration modules (users can attain as well).
These values are optional and a default fallback value is
given if they are not provided (See “MODICT method-
ology” section for more information, “Btd p.H447R and
p.R209C and Tubb2b p.A248V and p.R380L” sections for
an example and Section 5.2 in the MODICT manual for the
effect of scaling of scores). Of course the aforementioned
ISF does not solely result from the mutation. A back-
ground value can be expressed in terms of overall RMSD
(RMSD;generated by SWISS-MODEL):

Bi,j
def= RMSD

N
·(j − i + 1

) ·Wi ·Ci i ∈ (
1, 3, 5 . . . j

)
(3)

The aforementioned background value allows one to
construct a threshold where above this threshold a given
RMSD value can be considered significant. A total (in unit
area) can be defined from Eqs. 2 and 3:

∑
TOTAL

def=
∑

ISF +
∑

B (4)

Above formula is a generalization for multiple domains.
In case there is only one domain between residues i and
j, than the total area simply is ISFi,j + Bi,j. A raw score (�)
can be expressed in terms of:

�
def=

∑
TOTAL ·

∑
ISF∑

TOTAL√( ∑
ISF∑

TOTAL

)2 +
( ∑

B
TOTAL

)2
· 1
2

(5)

It is noteworthy that for a given interval, ISF and B
are not guaranteed to be equal, even if the regions taken
into consideration spans the entire protein. While ISF
is obtained from per residue RMSD, B is obtained from
RMSD. ISF/TOTAL and B/TOTAL should be considered
as 2 orthogonal vectors. MODICT is designed to work with
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specific protein domains where i and j designate the start
and end of a domain. For MODICT to perform optimal, it
is important that the domains which are most critical for
the functionality of the protein are chosen. This can be lit-
erature findings or can be predicted by the iteration script
which is included in the software package (see “Training
and iteration” section).
The difference (δ) between Eqs. 2 and 3 is important to

discern background signal from actual effect:

δi,j = ISFi,j − Bi,j (6)

The significance (γ ) of the difference depends on the
length of the domain and the standard deviation of the
individual RMSD values:

γi,j
def= Z(

1− (j−i+1)
N

) · σRMSD

N
· (j − i + 1) (7)

where Zx denotes the Z score of (100·x)th percentile and σ

denotes the standard deviation. Assuming that the RMSD
values are distributed in a Gaussian distribution, the Z-
score derived significance score gives an idea about how
much of the domain residues account for the large RMSD
values. From Eqs. 6 and 7, a coefficient of significance (κ)
can be defined:

κ
def=

(
1 +

∑
δ−∑

γ

| ∑ δ|+|∑ γ |
)

2
(8)

In the Eq. 8 above,
∑

δ or
∑

γ denotes the total sum
of δ or γ between all specified domain intervals such as
δi,j + δm,n + δu,w . . .. Equations 5 and 8 can be combined to
express a final score:

FinalScore def= � · κ (9)

The criteria of evaluating the score can be performed via
2 different approaches as outlined in “MODICT method-
ology” section and Additional file 1: Section S1.2. In a
fraction of cases, comparison of MODICT scores requires
calculating thresholds and these thresholds are calculated
via a K parameter. Beware that this is not the same coef-
ficient as in Eq. 8. This parameter is a measure of the
highest p-value attainable with a given accuracy. The K
parameter is calculated from known list of mutations
listed in Additional file 1: Table S1. For more information
for the usage of this parameter refer to Additional file 1:
Section S1.2.

MODICT methodology
The algorithm of MODICT is based on rmsd values of
superimposed wildtype and mutant proteins. For calcu-
lating, RMSD values, a 3D protein model is required of
both the wildtype and mutant case, which is calculated
by using the I-TASSER and PHYRE2 servers. After con-
struction of the 3D models, the generated pdb files are
used as input for a script included in MODICT which will

extract the necessary RMSD values. The mutated mod-
els should not result from a mere substitution of residues
on a pdb viewer, they should be generated using mod-
eling servers or self implemented pipeline of molecular
dynamics instead. The user is given the freedom to choose
between different modeling servers or self implemented
pipeline. Some of the commercially available servers pro-
vide only homology modeling, whereas some others will
combine homology modeling and ab initio modeling.
For the purpose of testing MODICT, amino acid

sequence of wildtype and mutant renin, Tubb2b, Btd
and Smpd1 proteins (UNIPROT ID: P00797, Q9BVA1,
P43251, P17405) were submitted to the automated I-
TASSER and PHYRE2 servers. PAH and ACADM (Tables 1
and 2) were submitted to the automated PHYRE2
server. For further details on specific settings, see
Additional file 1: Section S1.1. MODICT can be supplied
with optional weight (min:0,default:10) and conserva-
tion(min:0,max:11,default:1) scores which are both array
vectors (single number per line in a text file). Multiplying
all entries of the weight and conservation file by a constant

Table 1 Mutations in PAH

Mutation Residual Score
activity (%) (Higher means more deleterious)

Y414C 28 0.112

R241C 25 0.136

A403V 32 0.125

R261Q 30 0.071

E390G 75 0.086

R68S 98 0.157

I65T 29 0.153

V245A 50 0.126

L48S 39 0.247

F39L 96 0.136

D415N 72 0.072

A395P 15 0.139

A104D 26 0.091

R408Q 55 0.063

P211T 72 0.185

V388M 43 0.15

R241H 23 0.131

I306V 39 0.161

Mutations in PAH with their residual enzyme activity and MODICT scores are listed.
The values listed are expressed in percentages of residual enzyme activity with
respect to wildtype enzyme activity. MODICT scores are generated taking into
account the catalytic domain (143–410; [54]). As outlined in “Results” section, when
more than or equal to 3 mutations with enzymatic activities are present, the first
method can be used where the correlation between the textscmodict scores and
the enzymatic activities are measured. Since higher MODICT scores are more
deleterious, one would expect a negative correlation between MODICT scores and
enzyme activity. The interpretation of these results are explained in more detail in
Fig. 6
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Table 2 Mutations in ACADM

Mutation pair Residual activity (%) Score

K329E/I78T 0 46.5

K329E/M328V 0 59.5

K329E/D345Y 3 57

K329E/M155T 3 51

K329E/K329E 5 53

K329E/L409F 6 56.5

Y337S/Y337S 8 56

G267R/G267R 15 55

K329E/R206C 12.5 59.5

M326T/I233T 15 57

G267R/K178T 20 48

G267R/Y67H 30 47.5

K329E/Y67H 35 46.5

K329E/E43K 60 53.5

Mutation pairs in ACADM with their residual enzyme activity and MODICT scores are
listed. The values listed are expressed in percentages of residual enzyme activity
with respect to wildtype enzyme activity. The residual enzyme activities are adapted
from Sturm et. al., Fig. 11. MODICT scores are generated taking into account the main
chain (26–421; Uniprot ID, ACADM_HUMAN; [51, 52]). Similar to Table 1,
interpretation of these results are detailed in Fig. 5

does not change the result. Both files are optional and not
mandatory for MODICT to work. However, they can be
used to give higher priority to certain regions. The default
set up attains 1 to conservation and 10 to weight scores.
Conservation scores are generated by aligning reviewed

sequences of the protein of interest in different species
from UniProt ([24]). It is a simple text file of one con-
servation score per line and generated using the JALVIEW
utility.

MODICT requires a user generated per-residue rmsd file
as well. We have developed a script which can be sup-
plied to swiss-pdb. This script extracts the rmsd values
from superimposed WT (wildtype) and MT (mutated)
.pdb files to a file.

MODICT score interpretation makes use of a negative
and positive control. As negative control, a superimpo-
sition between the wildtype protein and a refined model
of the same wildtype protein is used (in some cases,
a known benign mutation can also be used instead of
refined wildtype, see “ROC curve generation” section and
Additional file 1: Section S1.2). For the positive con-
trol, superimposition between the wildtype protein and a
known pathogenic variant can be used. The scores for the
negative and positive control can as such be used as a scale
for the MODICT result of the protein variant of interest. A
more mathematical approach to MODICT score interpre-
tation is given in “Tubb2b p.A248V and p.R380L” section,
Additional file 1: Sections S1.2 and S1.3 and Fig. 1.

Training and iteration
As will be described throughout the “Results” section,
MODICT is designed to work with distinct domains which
are critical for protein functionality. Often however, this
information is not readily available. In order to meet these
needs, MODICT comes with a training and iteration mod-
ule where a random number approach is used to approx-
imate a good candidate weight score combination as in
Figs. 2, 3, 4, 5 and 6.
The training module accepts a list of paired MODICT

scores and enzymatic activity (or any measure of resid-
ual protein function that is determined experimentally). It
tries to find an optimal weight score combination for each
residue that yields the highest possible Pearson’s correla-
tion (one would expect enzymatic activity and MODICT
scores to be negatively correlated). The user has control
over the iteration process by regulating several parame-
ters such as the number of rounds to iterate. Even then,
improvement of initial correlation varies from protein to
protein and depends on the number of mutations to be
trained with.

MODICT package also comes with an iterator module to
identify regions of a protein that contribute the most to
the overall MODICT score (Figs. 2, 3 and 4). The iteration
algorithm automatically attains weight scores between 0
and 10 to residues: the higher the weight score, the more
the contribution of that residue pair to the overall MOD-
ICT score. MODICT uses a random number approach
to approximate a significant combination. Although the
computation process can be cumbersome under certain
conditions, current approach performs well with compar-
ison of many models simultaneously. Such an example is
given in Fig. 7 where mutations that preserve more than
or equal to 50 percent of residual activity are compared to
two relatively more severe mutations.
When the iteration algorithm of MODICT is used, it gen-

erates an automatic and interactable output as shown in
Fig. 8. The user can choose to display amino acids with
certain properties or just visualize the change in regions
that correspond to a domain. The user may wish to know
if residues with high MODICT score are also conserved
which can be seen from the color coding. For a more com-
prehensive explanation of how to interpret iterator results
please refer to MODICT documentation.

ROC curve generation
One of the challenges to construct a receiver operating
characteristic curve (ROC) for an algorithm that gener-
ates a continuous range of output rather than a qualitative
output (deleterious or benign) is to build a parametric
classification system. This can be achieved by recalculat-
ing thresholds for a given set of mutations with known
outcome while varying the levels of stringency (a mea-
sure of how rigorous the thresholds are constructed).
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Fig. 1 Classification of Smpd1G506R . a. Wildtype (blue), Smpd1G506R (red) and Smpd1V36A (orange) models are shown. The original position of glycine
in wildtype, the substitution site in Smpd1G506R and the alanine 36 in Smpd1V36A are marked with gray arrows. Models have been further refined
using the MODREFINER. A negative control score was generated by superimposing the refined wildtype on the initial wildtype whereas a known
benign score was generated by superimposing the refined Smpd1V36A on the initial wildtype. A score for the test mutation was generated in the
same manner. MODICT scores were generated taking into account the entire backbone (residues 1-629). b. Thresholds were calculated as shown in
the right and the G506R mutation was classified based on the calculated score bracket as shown in the left. The value of kappa can be updated
using the roc.pl script. (σ = standard deviation of SI and SC )

Subsequently, this can be plotted against the p-value (a
measure of how correctly the mutations are classified).
In principle, mutations are not only completely benign
or deleterious but spread through a range of variable
residual protein activity/function. In addition to a neg-
ative control which is usually �RMSD between wildtype
and a refined wildtype model or wildtype and a benign
model, another score from �RMSD between wildtype and
a given benign/deleterious/partial model should be used.
This allows the user to construct a hypothetical distribu-
tion of scores and thus determine the likelihood of a test
score being benign, deleterious or partial. Such a script is
included in the MODICT package. The user can import his
calculated scores from newmodels and update the current
ROC plot shown in Fig. 9. Data used to generate the plot is
listed in Additional file 1: Table S1.

Output
MODICT, supplied with the rmsd file, gives as an output
an algorithm score, which is a float value without units. A
higher score means an increase in probability of a muta-
tion being deleterious. Interpretation of the scores should
be based on relative comparison. For instance, when a

known pathogenic mutation in a specific protein is run
through the MODICT pipeline, a score will be generated
which can then be used as a reference. Conversely, this
can also be done with a non-pathogenic mutation. This is
further exemplified in “Results” section.

Results
We have derived a simple algorithm MODICT to predict
whether a mutation is deleterious or not based on the
RMSD obtained from superimposed mutated and wildtype
3D structures. The 3D protein structures in this study
were modeled by I-TASSER and PHYRE2, however other
modeling algorithms can be used as well. MODICT is not
limited by commercially available modeling servers, any
set of molecular dynamics simulations can be used. The
mathematical model underlying MODICT can also incor-
porate the information from conservation and weight
scores. A default fall back value is provided in case these
values are not present. An iteration algorithm to deter-
mine the regions that account the most for the calculated
score is also available with MODICT. MODICT is not only a
prediction tool, but also a tool to scrutinize changes in the
protein structure independent of the score.
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Fig. 2 Plot showing conformational differences in reninC20R . Outermost layer indicates reported SNVs (Single Nucleotide Variants; gray, not
validated; red, non-synonymous; green, synonymous) from dbSNP 138. a. Conservation scores represented as a histogram (blue, signal peptide;
green, propeptide; red, domain). These values are generated as described in section 5 and are not related to MODICT score. b and c. Amino acid
sequences with residues colored according to their property (positively charged, red triangle; negatively charged, blue triangle, non-polar, gray circle;
polar, pink circle; aromatic ring, green hexagon). d. Iterative MODICT scores of individual residue pairs (algorithm, Eq.1) resulting from comparison
with reninWT and reninR33W . Each blue histogram bin designates the contribution of a residue pair to the overall MODICT score (Higher bars mean
more contribution as well as more the adverse effect of that residue pair on structural stability). These histogram bins are generated by iterative
MODICT algorithm and are colored according to conservation. e. Important regions, SNVs and Indels (insertion-deletions) are marked with boxes. Red
boxes represent SNVs whereas pink boxes represent Indels. Gray bordered boxes represent unvalidated changes. (S-S = disulphide bond)

The algorithm was tested on 6 different proteins which
belong to different protein families. The chosen muta-
tions were of different nature in order to minimize bias.

Mutations with known phenotypes were chosen which
enables tomonitor whether if the MODICT scores resonate
with real life observations. Most of the mutations come
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Fig. 3 Plot showing conformational differences in Tubb2bA248V and Tubb2bR380L . Outermost layer indicates reported SNVs (gray, not validated; red,
non-synonymous; green, synonymous) from dbSNP. a. Conservation scores represented as a histogram. These values are generated as described in
“MODICT methodology” section and are not related to MODICT score. b and c. Amino acid sequences with residues colored according to their
property (positively charged, red triangle; negatively charged, blue triangle, non-polar, gray circle; polar, pink circle; aromatic ring, green hexagon). d.
Iterative MODICT scores of individual residue pairs (algorithm, Eq. 1) resulting from comparison with Tubb2bWT . Top layer belongs to Tubb2bA248V

whereas bottom layer belongs to Tubb2bR380L . Each blue histogram bin designates the contribution of a residue pair to the overall MODICT score
(Higher bars mean more contribution as well as more the adverse effect of that residue pair on structural stability). These histogram bins are
generated by iterative MODICT algorithm and are colored according to conservation. e. Important regions, SNVs and Indels are marked with boxes

from enzymes inmetabolic pathways where enzyme activ-
ity can be measured in the patients. This allows one to
observe the correlation between MODICT scores andmea-
sured enzyme activities. MODICT scores were interpreted
by two methods, either correlating them with experimen-
tal metrics like enzymatic activities, or using the scores for

ordinal classification (deleterious, benign, partially delete-
rious etc.). The first method requires MODICT scores for
at least 3 mutations with experimentally verified enzyme
activities for predicting the effect of unknown mutation.
Then, the MODICT scores and the enzymatic activity of
the known mutations are plotted in a scatter plot and a



Tanyalcin et al. BMC Bioinformatics  (2016) 17:425 Page 8 of 19

Fig. 4 Plot showing conformational differences in BtdR209C and BtdH447R . Outermost layer indicates reported SNVs (gray, not validated; red,
non-synonymous; green, synonymous) from dbSNP. a. Conservation scores represented as a histogram (blue, signal peptide; green, CN-hyrolase
domain). These values are generated as described in “MODICT methodology” section and are not related to MODICT score. b and c. Amino acid
sequences with residues colored according to their property (positively charged, red triangle; negatively charged, blue triangle, non-polar, gray circle;
polar, pink circle; aromatic ring, green hexagon). d. Iterative MODICT scores of individual residue pairs (algorithm, Eq. 1) resulting from comparison
with BtdWT . Top layer belongs to BtdR209C whereas bottom layer belongs to BtdH447R . Each blue histogram bin designates the contribution of a
residue pair to the overall MODICT score (Higher bars mean more contribution as well as more the adverse effect of that residue pair on structural
stability). These histogram bins are generated by iterative MODICT algorithm and are colored according to conservation. Only scores belonging to
domain regions re shown. e. Important regions, SNVs and Indels are marked with boxes. (A.site = active site)

trend-line is set by the least squares method. By observ-
ing the trend-line the enzymatic activity of your mutation
of interest can be traced. The advantage of this approach
is the ability to use the training module on MODICT for a

subset (or the entire set) of mutations to increase the ini-
tial Pearson’s r correlation coefficient. This method was
applied on Btd, Pah and Acadm mutations (see Tables 1
and 2 and “Btd p.H447R and p.R209C” section).
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Fig. 5 MODICT scores of ACADMmutations. a. Mutation pairs were plotted based on their enzymatic activity and the average of their MODICT scores.
MODICT scores or residual activities that are 2 standard deviations away from the data average was excluded which corresponded to exclusion of
only 1 data point (residual activity 60, modict score 53.5). The remaining data points had a correlation coefficient of –0.488 with a p-value of 0.044
according to 1 tailed t-distribution. b. Same mutations were plotted with POLYPHEN2 scores instead which yielded a positive correlation coefficient
of 0.211 with p-value of 0.244. c. Eight out of 14 mutation pairs in table 2 harbored a p.K329E variant where homozygotes for this mutation only had
5 percent of wildtype activity. Assuming significant portion of residual activity coming from the other variants, these 8 variants (lower left) were used
as a training dataset for MODICT. After training, MODICT was able to find a weight score combination with a correlation coefficient of –0.959 (lower
mid). Using the trendline obtained by least squares method, the residual activity of 6 other mutation pairs (that did not include the trained
mutations) were guessed. MODICT was able to achieve 91 percent accuracy (lower right). (∗∗ = p < 0.05; ∗ ∗ ∗ = p < 0.001)

The second method is used when there are less than
or equal to 2 mutations. However a negative con-
trol MODICT score is required for comparison. This
method was applied on Renin, Tubb2b and Smpd1
mutations (see “Renin p.R33W”, “Tubb2b p.A248V and
p.R380L” and “Mutations in Sphingomyelin phosphodi-
esterase-1” sections). Regardless of the method, higher
MODICT scores mean more deleterious.
Throughout this paper MODICT scores have both been

used as ordinal classifiers (benign, partially deleterious,
deleterious etc.) and continuous variables to measure cor-
relation. In all of the tested cases in this study whether
conservation scores and/or weight scores were used or not
is indicated. Concerning the examples given in this article,
MODICT performs better without conservation scores.
Throughout the results section, output of the iteration

algorithm (residues that contribute the most to a MODICT
score) was represented using I-PV as shown in Figs. 2, 3, 4

and 7 [25, 26]. For comparison with other sequence based
algorithms, refer to Figs. 5, 6 and 10 and Additional file 1:
Table S2. No meaningful correlation could be observed
using the SIFT algorithm for the tested mutations.

Renin p.R33W
Renin is one of the main components that regulates the
main arterial blood pressure via the renin-angiotensin sys-
tem and is initially secreted as a propeptide with a 67
amino acid long signal sequence [27]. Mature renin does
not have this signal sequence and is 37kDa long [28].
A novel heterozygous mutation c.58T>C (p.C20R) was
found in all affected members of a family with autosomal
dominant inheritance of anemia, polyuria, hyperuricemia
and chronic kidney disease [29].
Another variant p.R33W suspected to be benign resides

within the same signal sequence (http://www.ncbi.nlm.
nih.gov/projects/SNP/snp_ref.cgi?rs=11571098;- http://

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11571098
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11571098
http://web.expasy.org/variant_pages/VAR_020375.html
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Fig. 6 MODICT. SCORES FOR PARTIALLY DELETERIOUS PAH MUTATIONS. Top Left. Mutations with residual activity in PAH with their respective MODICT

scores are plotted. Triangles indicate data points that are 2 standard deviations apart from the mean (both residual activity and MODICT score) of
rectangle data points. Top Right. Outliers that are two standard deviations apart from the mean are removed and the correlation coefficient is
calculated. MODICT scores are negatively correlated with residual activity (r = −0.494). The exact p-value of the correlation coefficient is 0.036 based
on 1-tailed t-distribution.Middle Left. The same comparison was applied to POLYPHEN2 scores. Triangle data points indicate the outliers.Middle Right.
Likewise, POLYPHEN2 scores were negatively correlated with residual activity (r = −0.417). However, the exact p-value of the correlation coefficient
was 0.062 based on 1-tailed t-distribution. Lower Left. The training module of MODICT were used on the same mutations. Lower Right. The training
module of MODICT was able to achieve a weight score configuration that yielded a more significant p-value of 0.002. (∗ = p < 0.1; ∗∗ = p < 0.05)

web.expasy.org/variant_pages/VAR_020375.html). Sev-
eral prediction algorithms were tested on this variant
previously [30]. In this example, conservation scores gen-
erated by multiple sequence alignment of reviewed Ren
(renin) sequences were also used by the algorithm as an
additional factor (Additional file 1: Section S1.3). Based on
domain annotations, residues that are involved in various
interactions were also given a weight score of 20 instead
of default value (10, Additional file 1: Section S1.3).
Figures 2 and 11c show the algorithm results associated
with these mutations.

We also provided wildtype and mutated Renin fasta
files to automated PHYRE2 server and received mod-
els for the same variants. Wildtype Renin score was
0.328 whereas p.R33W and p.C20R scores were 3.816
and 4.128 respectively. Based on these scores p.R33W
variant should be classified as deleterious. As mentioned
previously, the p.R33W is of unknown significance due
to its low frequency (dbSNP, <1 %). Although a study
has claimed that it significantly reduces Renin biosynthe-
sis (http://www.ashg.org/2014meeting/abstracts/fulltext/
f140120880.htm), to our knowledge it has not yet been

http://web.expasy.org/variant_pages/VAR_020375.html
http://www.ashg.org/2014meeting/abstracts/fulltext/f140120880.htm
http://www.ashg.org/2014meeting/abstracts/fulltext/f140120880.htm
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Fig. 7 Plot showing conformational differences in PAHE390G , PAHV245A , PAHD415N , PAHR408Q , PAHY414C and PAHR241C . Outermost layer indicates
reported SNVs (gray, not validated; red, non-synonymous; green, synonymous) from dbSNP. a. Conservation scores represented as a histogram
(blue, ACT domain; green, catalytic domain). These values are generated as described in section 5 and are not related to MODICT score. b and c.
Amino acid sequences with residues colored according to their property (positively charged, red triangle; negatively charged, blue triangle,
non-polar, gray circle; polar, pink circle; aromatic ring, green hexagon). d. Iterative MODICT scores of individual residue pairs (algorithm, Eq. 1)
resulting from comparison of mutations with residual enzyme activity less than 50 % (more severe) against mutations with residual activity greater
than 50 % (less severe, Table 1). Each blue histogram bin designates the contribution of a residue pair to the overall MODICT score (Higher bars mean
more contribution as well as more the adverse effect of that residue pair on structural stability). These histogram bins are generated by iterative
MODICT algorithm and are colored according to conservation. Single residue pairs with high blue bars are much less significant than consecutive
"blocks" of high blue bars. Scarcity of these blocks in topmost layer (label: all) points to the fact that different regions are affected in each mutation.
PAHY414C and PAHR241C are compared to less severe mutations individually (middle and bottom layers). Note the differences in regions that are
affected the most in each mutation. e. Important regions, SNVs and Indels are marked with boxes
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Fig. 8 Automatically generated interactable output of iterative MODICT scores. Individual MODICT scores of residue pairs are plotted along the
protein with an interactable interface. Annotation data is automatically stored with the use of MODICT. Histograms are automatically colored
according to conservation data. Amino acids with different properties can be displayed separately. Pink regions highlights the functional domain.
Data is taken from comparison of PAHY414C against PAHE390G , PAHV245A , PAHD415N and PAHR408Q . Only the amino acids with aromatic ring is
displayed. Mouse over amino acids (209 I and 210 F) are highlighted. For a more comprehensive explanation of how to interpret iterator results
please refer to MODICT documentation

Fig. 9 ROC curve. Trio groups (negative control, test, positive control) are tested for decreasing levels of stringency measured as a parameter
depending on the standard deviation of the negative controls and the positive controls. There is a trade off between the p-value and the stringency.
As stringency decreases, accuracy increases, however the increase in accuracy can be explained progressively less by the measurements of the
algorithm (increasing p-value and decreasing significance). The data used to generate the above plot is indicated in Additional file 1: Table S1. The
script for generating the data above is included in MODICT package
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Fig. 10 3D models of wildtype and mutated biotinidase. a. 3D biotinidase model generated by I-TASSER (A, left). Pink residues (57–363) designate
the CN-Hydrolase domain whereas the blue residues (1-41) designate the signal peptide. Effect of p.R209C and p.H447R mutations on protein
structure (a, middle, right). BtdWT (left) is compared to p.R209C (middle) and p.H447R (right) in means of changes in secondary structure (no change,
black; helix to strand, light green; strand to helix, dark green; helix to coil, light red; strand to coil, dark red; coil to strand or helix, green). The mutated
R209 and H447 residues are depicted with blue Van Der Waals radii and their POLYPHEN2/SIFT scores and residual enzyme activity are indicated.
Comparison of MODICT scores and residual enzyme activity, b. MODICT scores from models generated by I-TASSER (negative control, 0.096 ; p.R209C,
0.266 ; p.H447R, 0.584 ) and PHYRE2 (negative control, 0.301 ; p.R209C, 0.504 ; p.H447R, 1.102 ) were compared with experimentally measured
enzyme activity (wildtype 263eu, p.R209C, 91eu, p.H447R, 61eu) scaled to 1. Ratios of MODICT scores and [1/enzyme activity] are in concordance
with each other. (W = wildtype,WR = refined wildtype)

published. The Renin example demonstrates that MOD-
ICT scores are not totally independent from the models
provided to it. For more detailed explanation for using
MODICT scores as an ordinal classifier, please refer to the
manual and Additional file 1: Section S1.3.

Tubb2b p.A248V and p.R380L
Tubulins are the main components of microtubules on
which dynein and kinesin motor proteins bind. Together
with intermediate filaments and microfilaments, they
form the cytoskeleton which plays a major role in intercel-
lular trafficking, cell-cell interactions, junctions and cel-
lular migration [31]. Tubulins are ubiquitously expressed
in all human tissues. However mutations in these proteins
mostly affect tissue types that rely on their functionality
the most during development such as cells of neuronal

or glial origin [32, 33]. Almost all mutations in tubulins
result in Malformations of Cortical Development (MCD)
[34]. Mutations in TUBB2B result in polymicrogyria spec-
trum of malformations [35–41]. Two de novo mutations
in Tubb2b, namely p.A248V and p.R380L in 2 unrelated
patients of Turkish and Belgian origin and 1 patient of
French-Canadian origin respectively were identified and
tested for their MODICT scores [36].
Figures 3 and 12c show the algorithm results associated

with these mutations. Scores without weight and con-
servation parameters (Additional file 1: Section S1.4) for
wildtype, Tubb2bp.A248V and Tubb2bp.R380L were 1.843,
1.984 and 2.003 respectively. Choosing the wildtype
as control (SC) and Tubb2bp.R380L as known deleteri-
ous mutation (SK ), the threshold T1 was calculated as
SC+ 2·SK+3.24·SC

5.24
2 · 3 · κ/100 · σ(SI ,SK ). The value for T1 was
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Fig. 11 3D models of wildtype and mutated Renin. a. Wildtype (blue) and Renp.C20R (red) models are superimposed with the cysteine residue (green,
Van der Waals) marked with arrow. Models generated with different modeling algorithms are indicated. b. Another variant in the signal sequence,
Renp.R33W (red) does not result in a change to the same extent as Renp.C20R . The wildtype arginine residue (green, Van der Waals) is marked with
arrow. Graphical representation of algorithm scores, c. Absolute values of MODICT scores obtained from pairs; negative control (left, light gray; score:
0.455), wildtype against Renp.R33W (middle, light gray; score: 0.670) and positive control (right, light gray; score: 2.570). Algorithm scores with or
without conservation (c) and weight (w) scores are also indicated (dark gray, black, see Additional file 1: Table S1). For comparison, algorithm scores
generated using models from PHYRE2 is also indicated. Like black bars, these are raw MODICT scores generated without conservation and weight
parameters. Sequence logo of the renin signal peptide. d. Residues 1-40 of reviewed renin sequences in UniProt database have been aligned. Note
that both R33 and C20 are highly conserved, however algorithm scores significantly differ in case of I-TASSER. MODICT scores were generated taking
into account the main chain (residues 67-406, UNIPROT, P00797). (W = wildtype,WR = refined wildtype)

1.945 which was lower than the Tubb2bp.A248V score
(σ = standard deviation, κ = 55). This means that the
Tubb2bp.A248V mutation is indeed deleterious.
Wildtype and mutated fasta files were provided to

the automated PHYRE2 server. MODICT scores in the
absence of weight and conservation parameters for wild-
type, Tubb2bp.A248V and Tubb2bp.R380L were 1.448, 4.203
and 3.459 respectively. Choosing Tubb2bp.A248V as the
known deleterious variant, theT1 threshold is 3.200 which
is lower than theTubb2bp.R380L score. As a result, MODICT
scores generated by both I-TASSER and PHYRE2 models
agree on the nature of the variants.

Btd p.H447R and p.R209C
Biotinidase is an enzyme that is encoded by the BTD
gene. Low enzyme activity interferes with the cycling
of biotin and if left untreated, it may lead to neuro-
logical and cutaneous issues [42]. In this example, a
case with experimentally verified results from 2 patients
of southeastern Anatolia origin will be used and com-
pared with MODICT scores [43]. The genotype of the
patients in the aforementioned study were c.1330G>C

(p.D444H)/c.1340A>G (p.H447R)[patient 1, from a con-
sanguineous family] and c.557G>A (p.C186Y)/c.625C>T
(p.R209C)[patient 2, from a non-consanguineous family].
Both former mutations (c.1330G>C in patient 1 and
c.557G>A in patient 2) were null mutations meaning
that the experimentally measured residual enzyme activ-
ity belongs to the latter mutations [42, 43]. The resid-
ual enzyme activity in the patients were 61eu (enzyme
units) and 91eu respectively (population mean 263eu).
MODICT scores were generated using 2 different mod-
eling algorithms (I-TASSER, PHYRE2) and results were
compared with residual enzyme activity as shown in
Fig. 10 [13, 44]. Conservation scores were generated by
aligning reviewed biotinidase sequences from UniProt
(Homo sapiens, Rattus norvegicus,Musmusculus, Bos tau-
rus, Takifugu rubripes) by using Clustal Omega ([45])
and the resulting scores (min, 0; max, 11) correspond-
ing to 1-543 residues of Btd were given to MODICT
[46]. Supplying or not supplying the conservation scores
do not significantly alter the scoreMODICT/enyzmatic −
activity ratios as can be seen from Additional file 1:
Table S1.
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Fig. 12 3D models of wildtype and mutated tubulin molecules. a. Superimposition of wildtype (blue) and Tubb2bp.A248V (red) models. The alanine
residue is rendered with Van der Waals radii (green, gray arrows). Models generated with different modeling algorithms are indicated. b. Structural
comparison between wildtype (blue) and Tubb2bp.R380L (red) models. The arginine residue rendered with Van der Waals radii (green, gray arrows).
Graphical representation of algorithm scores. c. Absolute values of algorithm scores obtained from pairs; negative control (left, light gray; score:
2.129), wildtype against Tubb2bp.A248V (middle, light gray; score: 2.485) and wildtype against Tubb2bp.R380L (right, light gray; score: 3.721). For
comparison, algorithm scores generated using models from PHYRE2 is also indicated. Like black bars, these are raw MODICT scores generated
without conservation and weight parameters. d. Sequence logo of conserved Tubb2b regions. Residues 91-100 and 139-144 of Tubb2b have been
conserved since their divergence from the FtsZ proteins. Consequently, during algorithm calculations they have received a weight score of 20
instead of default value. Scores with/without conservation or weight attributes are indicated in C. MODICT scores were generated taking into
account the entire backbone (residues 1-445,UNIPROT, Q9BVA1). (W = wildtype,WR = refined wildtype, c = conservation, w = weight score)

The MODICT scores were generated by taking into
account functionally important regions (residues 57–363,
402–403 and 489–490; UNIPROT, P43251). These func-
tionally important regions can generally be found in
UNIPROT. As seen in Fig. 10, both PHYRE2 and I-TASSER
scores are proportional to corresponding enzymatic activ-
ities. Although there are only 2 mutations, taken together
with the negative control score, raw MODICT scores with-
out any conservation or weight files correlate strongly
with enzymatic activity (PHYRE2: r = −0.805; I-TASSER:
r = −0.838).

Mutations in Sphingomyelin phosphodiesterase-1
Sphingomyelin phosphodiesterase-1 is an enzyme
(Uniprot ID: ASM_HUMAN) located in lysosomes and
responsible for conversion of sphingomyelin to ceramide.

Deficits in enzyme activity or reduction in the enzyme
concentration result in an inborn error of metabolism
grouped under the name Niemann-Pick disease (type
A and B) [47, 48]. Several polymorphisms exist that are
frequent amongst control populations. One example of
such variant is the p.V36A located in the signal sequence.
Another variant that is often mistaken as deleterious is
p.G506R [49, 50]. Using PHYRE2 to model wildtype, Fig. 1
demonstrates the procedure of classifying the p.G506R
mutation. Since the known p.V36A variant is benign
(with a score of SK ), the SI score is substituted directly
by SK . Based on the calculated thresholds, the p.G506R
mutation was correctly classified as “partially deleterious
or benign”. The procedure to use MODICT as an ordinal
classifier using thresholds is further elaborated in the
manual and in the Conclusion section.
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Mutations in medium chain Acyl-CoA dehydrogenase
Medium chain acyl-coa dehydrogenase (MCAD, Uniprot
ID: P11310, NP_000007.1) is an enzyme encoded by the
ACADM gene. MCAD deficiency is one of the most com-
mon deficits in mitochondrial β-oxidation. MCAD is the
enzyme responsible for breaking down medium-chain
fatty acids. Deleterious mutations that reduce the enzyme
activity result in clinical symptoms such as hypoglycemia,
hepatic and neuronal dysfunction [51, 52]. Mature
MCAD is a homotetramer with four catalytic pockets
[53]. The residue E376 is involved in catalytic activity,
whereas residue R256 is involved in complex stabilization
[53]. Enzymatic activity data of homozygous/compound
heterozygous patients carrying 2 deleterious mutations
have been adapted from Sturm et al. as shown in Table 2
[51, 52]. Mutated proteins were modeled using PHYRE2
and superimposed on wildtype MCAD which was
generated by submitting wildtype fasta file to the
PHYRE2 server. For each mutation pair the MODICT
score was the average of the MODICT score of indi-
vidual mutations (direct summation without average
only expands the graph on one axis). Rather than
using MODICT as a classifier, the main goal was to
see if the MODICT scores correlates with the real
experimental measurements. MODICT scores correlated
negatively with the enzymatic activities as shown in
Fig. 5.
Because higher MODICT scores denote more dele-

terious effect, as the residual activity increases, it’s
well expected for MODICT scores to go down which
results in negative correlation. As shown in Fig. 5,
the initial Pearson’s correlation coefficient was -0.488.
Although not very strong, it is important to under-
score that MODICT is the first attempt to achieve
such degree of correlation between prediction and
experimental outcome from user generated 3D pro-
tein models. Figure 5 also compares correlation of
POLYPHEN2 scores with enzymatic activity which did
not yield significant concordance with experimental
results.
Figure 5 also depicts the use of the training module of

MODICT. Table 2 lists the compound heterozygous muta-
tions used for correlations in Fig. 5. Eight of the mutation
pairs in Table 2 share a near-null deleterious p.K329E
mutation where homozygotes for this variant has five per-
cent residual activity. Thus, we have trained MODICT with
these eight mutations and then used the trendline (cal-
culated by least squares method) to guess the enzymatic
activity of other remaining mutation pairs in Table 2.
As shown in Fig. 5 (lower right), MODICT was able to
achieve 91 % accuracy. TheMCAD example demonstrates
the possibility of developing an enzyme specific panel
without the need of very large datasets for training of
MODICT.

Mutations in PAH
The last example is about pheynlketonurea (PKU), an
enzymatic defect that manifests itself with the deficiency
in phenylalanine hydroxylase (PAH), a phenylalanine to
tyrosine converter with the aid of tetrahydrobiopterin
(BH4). It is an autosomal recessive disease with both
copies of PAH carrying deleterious mutations. The ample
decrease in PAH activity results in elevated phenylala-
nine blood concentration. If the elevated phenylalanine
concentration is left untreated, it can lead to mental retar-
dation with structural brain changes visible on a MRI.
Deleterious mutations in PAH affects variably the level of
enzymatic activity. Data regarding such mutations can be
found in several studies [54, 55] (Table 1). Comparison
of the generated MODICT scores after excluding outliers
shows that the scores of individual mutations were nega-
tively correlated with residual enzyme activities as shown
in Fig. 6 (Pearson’s r = −0.494). Similarly, POLYPHEN2
scores correlated negatively with experimental measure-
ments but to a lesser degree (Pearson’s r = −0.417). Using
the training module for the 14 mutations in Fig. 6 further
improved the initial correlation coefficient from –0.494 to
–0.722.

Availability and future directions
Conclusion
MODICT is an algorithm which predicts whether a muta-
tion is deleterious or not. This is based on the RMSD
obtained from superimposing mutated and wildtype 3D
protein structures. Modeling was done here by using I-
TASSER and PHYRE2, although alternatives can be used
as well. The mathematical model underlying MODICT can
also incorporate the information from conservation and
weight scores. An iteration algorithm to determine the
regions that account the most for the calculated score is
also available with the package.
There are two ways to make use of MODICT scores. The

first way is to convert the scores into an ordinal classifica-
tion system, which requires a negative control. The second
way is to correlate experimental results with MODICT
scores as shown in the BTD, MCAD and PAH exam-
ples. The bottleneck in this approach is to find several
known mutations in the protein of interest with avail-
able enzymatic activities or an equivalent measurement.
However, this method allows an extrapolation between
MODICT scores and residual protein activity. By using
the MODICT training module, one can further opti-
mize the linear relationship between MODICT scores and
residual enzyme activities. Although overall RMSD values
and significance is taken into account by the algorithm,
MODICT’s accuracy still depends on the models gener-
ated by the user. Unlike POLYPHEN2 and SIFT, MODICT
scores are not normalized and vary depending on the
length of protein, RMSD values between residues, overall
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RMSD, regions that are taken into account etc. There-
fore individual MODICT scores should not be seen as
values indicative of deleterious or benign nature, but
should always be interpreted in relation to their neg-
ative/positive controls or in relation to known enzyme
activities.

Reporting results with Modict
When reporting results using MODICT, users should pro-
vide the parameters they used together with the tool. Sev-
eral of these parameters are key factors in reproducibility
of the results. One of these parameters is the modeling
algorithm used (PHYRE2, I-TASSER etc.) and the sequence
of the protein submitted to the server. The other param-
eter is the regions that are taken into account (residue
numbers, domains etc.) when calculating the MODICT
score. The user should also indicate the conservation and
the weight scores used, if any. If the training algorithm
is used, than the mutations used for training and the
output weight score combination should be reported as
well. If the user has followed the ordinal classification
method, then she/he should also indicate how the nega-
tive control score was generated. Lastly, the users should
also indicate the superimposition method used for gen-
erating the RMSD values. For example, superimposition
based on alpha carbon has been used throughout this
article.

Limitations
MODICT is a tool that is not independent on the mod-
els generated by the modeling algorithm of choice. The
Renin case is a good example for this where models gen-
erated by PHYRE2 and I-TASSER gave different MODICT
scores. Moreover, consistency in superimposition tech-
niques used between models and the portion of the pro-
tein that is actually modeled (full length protein modeling
is usually more reliable than partial modeling of distinct
domains) significantly affect the outcome. Many model-
ing servers also include a confidence key together with
the results which are useful to judge the quality of start-
ing models. In general, since the wildtype model will be
the main model where test and known mutated models
are superimposed on, a low quality model will make it
harder to discern between scores. Another issue is that
many modeling servers have amino acid limits on submit-
ted fasta files which are generally below 2000. This might
make the evaluation of large proteins harder. As mod-
eling algorithms advance, several of these issues will be
resolved. Another drawback is that all structural devia-
tions from a given wildtype model is perceived towards
the deleterious spectrum whereas in reality there are also
gain of function mutations. In that case, it is possible
to modify the range of weight scores to include negative
values as well.

Last, RMSD measurements are not the only indication
of protein stability, structural change and function. Cer-
tain changes will most likely not be reflected on RMSD
level given the accuracy of today’s state of the art modeling
algorithms. However we think that the approach of MOD-
ICT can inspire researchers to take a novel perspective at
least on the remainder of the cases.

Future directions
It is important to underline that MODICT has no univer-
sal training dataset. This means that the algorithm itself
(without any weight or conservation parameters) is able to
reflect and capture portion of the physio-chemical inter-
actions that determine the outcome of pathogenicity, at
least for the proteins demonstrated in this article. In later
stages the conservation scores or more importantly the
weight scores can be used to train MODICT on a pro-
tein basis. For instance certain combinations of weight
scores that yield a higher correlation coefficient for a given
enzyme panel can be generated. We planning to train
MODICT on variety of proteins and upload the trendlines
for each modeling algorithm so the end user would only
have to upload his/her mutation’s MODICT score without
having to train the algorithm manually.
A systematic database of MODICT scores could be very

beneficial for additional variant filtering in Next Gen-
eration Sequencing analysis as the utilization of protein
structures files is not adequately implemented. We are
planning to store user-submitted MODICT scores for this
purpose. MODICT is a fully automated algorithm that
comes with a variety of scripts to analyze the effects of
mutations on protein structure. Unlike most other muta-
tion predictors, MODICT uses .pdb files and can simulta-
neously compare multiple models for differences in topol-
ogy. All themodels used for this article can be downloaded
together with the MODICT package from https://github.
com/IbrahimTanyalcin/MODICT.

Availability and requirements
Project name:Modict
Homepage: i-pv.org/modict.html (ready but no material
available yet. All the necessary files are available from
Github repo.)
Os: Linux/Os/Windows
Language: perl v5
Lisence: GPL

Additional file

Additional file 1: Supplementary section [56–58]. (PDF 2120 kb)

Availability of data andmaterials
All materials presented in this paper can be downloaded from https://github.
com/IbrahimTanyalcin/MODICT.

https://github.com/IbrahimTanyalcin/MODICT
https://github.com/IbrahimTanyalcin/MODICT
i-pv.org/modict.html
http://dx.doi.org/10.1186/s12859-016-1286-0
https://github.com/IbrahimTanyalcin/MODICT
https://github.com/IbrahimTanyalcin/MODICT
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