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Abstract

Background: Prior knowledge networks (PKNs) provide a framework for the development of computational
biological models, including Boolean models of regulatory networks which are the focus of this work. PKNs are
created by a painstaking process of literature curation, and generally describe all relevant regulatory interactions
identified using a variety of experimental conditions and systems, such as specific cell types or tissues. Certain of
these regulatory interactions may not occur in all biological contexts of interest, and their presence may
dramatically change the dynamical behaviour of the resulting computational model, hindering the elucidation of
the underlying mechanisms and reducing the usefulness of model predictions. Methods are therefore required to
generate optimized contextual network models from generic PKNSs.

Results: We developed a new approach to generate and optimize Boolean networks, based on a given PKN. Using
a genetic algorithm, a model network is built as a sub-network of the PKN and trained against experimental data to
reproduce the experimentally observed behaviour in terms of attractors and the transitions that occur between
them under specific perturbations. The resulting model network is therefore contextualized to the experimental
conditions and constitutes a dynamical Boolean model closer to the observed biological process used to train the
model than the original PKN. Such a model can then be interrogated to simulate response under perturbation, to
detect stable states and their properties, to get insights into the underlying mechanisms and to generate new
testable hypotheses.

Conclusions: Generic PKNs attempt to synthesize knowledge of all interactions occurring in a biological process of
interest, irrespective of the specific biological context. This limits their usefulness as a basis for the development of
context-specific, predictive dynamical Boolean models. The optimization method presented in this article produces
specific, contextualized models from generic PKNs. These contextualized models have improved utility for
hypothesis generation and experimental design. The general applicability of this methodological approach makes it
suitable for a variety of biological systems and of general interest for biological and medical research. Our method
was implemented in the software optimusqual, available online at http://www.vital-it.ch/software/optimusqual/.
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Background

High-throughput technologies in different areas of bio-
medical research provide massive amounts of data that
are difficult to organize and interpret. Network-based rep-
resentations of biological systems have become a popular
way to structure and analyse this information. Networks
can be inferred directly from experimental data or created
from prior knowledge — Prior Knowledge Networks
(PKN). Both strategies have their advantages and disad-
vantages. PKNs are normally not context-specific, as they
usually include all regulatory interactions relevant to the
process under study, and may be biased towards biological
entities and interactions that are intensively studied, or
merge interactions measured under different experimental
conditions, including different cell types or tissues. Net-
works inferred exclusively from high-throughput data
(such as transcriptomic or proteomic data) may be more
comprehensive and more contextualized to the experi-
mental conditions of interest, but they do not provide dir-
ect information about causal relationships, ie.,
directionality, as they are usually based on the statistical
co-occurrence of biological events (for example, co-
expression of two genes). The underlying causality can be
elucidated only for a reduced number of cases by costly
perturbation experiments or time series data.

In an attempt to overcome the drawbacks of these two
network construction strategies, several methods com-
bining both prior knowledge and experimental data have
been developed during the last years. Among these
methods, we distinguish those that exhaustively explore
the search space in order to identify an optimal config-
uration that explains the experimental data - combina-
torial optimization methods - from those based on a
heuristic approach. Combinatorial optimization methods
include those based on integer programming [1-4] or
answer set programming [5]. Their computational com-
plexity grows exponentially with the network size, limit-
ing their applicability to small systems. Heuristic
approaches that attempt to overcome these limitations
can be divided into those that focus on describing the
response of the system to perturbations and those that
focus on describing the stable states of the system. Heur-
istic contextualization methods that focus on describing
the response of the system to perturbations require mul-
tiple perturbation experiments to train the PKN. Saez-
Rodriguez et al. [6] proposed discrete logic modelling to
curate and expand canonical signalling pathways using
information from perturbation experiments to train the
model. Irit Gat-Viks et al. [7] developed a similar method
to construct discrete dynamical models from a PKN that
include feedback loops, transforming the original graph
into multiple acyclic graphs starting from multiple per-
turbed nodes, for which perturbation experiment data
should be available.
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Heuristic contextualization methods that focus on de-
scribing the stable states of the system require less ex-
perimental information but the resulting models are
strongly contextualized to the stable states. Examples in-
clude the methods proposed by Layek et al. [8], Crespo
et al. [9] and Rodriguez et al. [10]. The main limitation
of these methods is that, given that they are trained to
describe correctly the stable states, they may fail to de-
scribe other dynamical behaviours, such as the transi-
tions between stable states under specific perturbations.
In a specific example, Rodriguez et al. [10] showed in a
model of the T-helper differentiation process how only a
fraction of the alternative optimized models successfully
described a known transdifferentiation between pheno-
types Thl and Th2 under the stimulation of GATA3.

Here we propose a new heuristic method for the
contextualization of PKNs that specifically addresses the
above-mentioned limitations. It consists in a heuristic
network training approach that considers not only the
stable states of the system but also the reachability of
those states under specific perturbations. The method
takes as input a PKN and experimental information
about the stable states and transitions between them
upon perturbation. A genetic algorithm is used to ex-
plore the search space of Boolean networks with asyn-
chronous updates and to find networks that best
describe the experimental data, using only edges present
in the PKN. We demonstrate the ability of our algorithm
to reconstruct a previously published cell-fate decision
model [11] used as gold standard, by comparing the net-
works reconstructed by our algorithm to the original
cell-fate decision model. The results demonstrate the
utility of the approach to reconstruct reliable dynamical
Boolean models based on the integration of PKN and
experimental data. Such models can be interrogated to
predict network response under perturbation, stability
properties and robustness of the network, with potential
application to guide experimental approaches including
hypothesis generation.

Methods

This section is divided in two main parts. Part 1 de-
scribes our network optimization method (Fig. 1). This
takes as input a PKN and a set of experiments (training
set) and uses a genetic algorithm to train model net-
works to reproduce as closely as possible the experimen-
tal data provided in the training set, with the constraint
that all edges must be taken from the PKN. The output
of the method is a set of model networks. Part 2 de-
scribes our method to assess the quality of network
optimization. This uses an in silico gold standard net-
work to generate PKNs and training sets, which are
taken as input for the optimization method. The result-
ing model networks are then compared to the original in
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Fig. 1 Optimization method. Our network optimization method takes as
input a PKN and a training set and uses a genetic algorithm to find
sub-graphs of the PKN which reproduce as well as possible all experiments
in the training set. For each run of the optimization method, only the
best network is kept as optimized network. To increase the chances to
obtain good solutions, multiple independent runs of the optimization
method are usually started in parallel, and only a fraction of optimized
networks is kept as model networks

silico gold standard network and the result of this com-
parison is taken as a measure of our network optimization
method quality.

Description of the network optimization method
Definitions

Model network A model network is a Boolean network,
used to model a given biological process. Ideally, the
model network obtained after the optimization proced-
ure should behave like the biological system. In this
work we consider asynchronous Boolean networks, as
defined by Garg and co-authors [12]. Each node corre-
sponds to a gene or a protein and its state is given by a
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Boolean variable, which can represent node expression
or activity. Edges correspond to interactions between
nodes and can be positive (activators) or negative (inhib-
itors). The dynamical behaviour of a Boolean network
can be measured by performing in silico experiments. In
this work, an in silico experiment consists of a set of
perturbations (over-expression/knock-out of one or any
combination of nodes) and a set of transitions between
them. For each transition from a perturbation P; to a
perturbation P,, the output of the in silico experiment is
an attractor reachability graph (see Fig. 2) whose nodes
are attractors obtained with each perturbation and edges
denote reachability between attractors. More precisely,
an edge will connect an attractor obtained with perturb-
ation P; to an attractor obtained with perturbation P, if
and only if the states of the first attractor are connected
to the states of the second attractor by at least one path
in the asynchronous state transition graph of the net-
work with perturbation P,.

To perform in silico experiments, two methods were
used in this work. The first method is boolSim, a soft-
ware developed by Garg and co-authors [12], which uses
an implicit method based on reduced ordered binary de-
cision diagrams to evaluate the attractor reachability
graph of a network. This method is exact and exhaust-
ively finds all attractors but quickly becomes too
computationally expensive for large networks. The
second method we used was a simple algorithm based
on a stochastic exploration of the state transition
graph (see Additional file 1 for details). This stochastic
approach scales better than boolSim as network size in-
creases, but there is no guarantee that all attractors will be
found. In this work, the stochastic method was used to
evaluate attractor reachability graphs in our implementa-
tion of the optimization method, while boolSim was used
to assess the quality of the final optimization results.

Prior knowledge network (PKN) The PKN is a net-
work that summarizes known interactions between
genes and/or proteins of interest, usually obtained from
the literature by a biocurator or by automatic text
mining methods. Note that although this network can
contain direct interactions, most of the interactions are
usually indirect.

Training set The training set is a set of known experi-
mental results that the final model network should be
able to reproduce. In this work, the training set consists
of stable phenotypes measured in different conditions
and transitions between them. It is given in the form of
a transition graph. Each node of the training set graph is
defined by a perturbation and an observation. A perturb-
ation can involve the over-expression (node always set
to 1) and/or knock-out (node always set to 0) of any
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Fig. 2 In silico experiments and attractor reachability graph. Example of attractor reachability graph for the transition from unperturbed network
to over-expression of TNF on the cell-fate decision model [11]. The unperturbed network has four attractors, each shown as a network with red
nodes corresponding to active nodes and blue nodes corresponding to inactive nodes. These attractors are labelled A; 1, A, Aq 3, and A 4.
Attractor A, 53 corresponds to the physiological state used by Calzone and co-authors [11] as initial state. The perturbed network (TNF fixed to 1)
has only three attractors (denoted A,;, A, and A,3), interpreted as the three cell fates: non-apoptotic cell death, survival, and apoptosis. After
TNF over-expression, each attractor of the unperturbed network will stabilize into at least one attractor of the perturbed network (grey arrows).
For example, the physiological state A; 5 will stabilize into either of the three cell fates Ay, A;2 and Ay 3. Note that this figure presents only the
transition from unperturbed network to over-expression of TNF, and not the reverse transition. Therefore no information is shown on the
reachability from attractors obtained with over-expression of TNF to attractors of the unperturbed network

subset of nodes in the network. An observation is a list
of nodes and their corresponding state measured at
equilibrium after the perturbation. Node states should
be either 0 or 1. Edges in the training set graph corres-
pond to transitions between stable phenotypes. An edge
from perturbation P; with observation O; to perturb-
ation P, with observation O, means that under perturb-
ation P; the system exhibits a stable phenotype
characterized by observation O; and after perturbation
P, the system will stabilize into a phenotype character-
ized by observation O,. Note that P; =P, is allowed, as
well as O; = O,.

Intuitively, a Boolean network reproduces a training
set if for each perturbation/observation in the training

set, the network can stabilize into an attractor compat-
ible with the observation when applying the correspond-
ing perturbation. In addition, attractors matched to
perturbation/observation nodes linked by an edge in the
training set graph should be connected by “time” evolu-
tion of the network, i.e. connected by an edge in the at-
tractor reachability graph. Finally, each node of the
training set graph should correspond to a unique attractor
in the attractor reachability graph. For instance, the fol-
lowing training set graph (P;,0;) — (P2,0;) — (P5,03)
means that the model network should have at least one at-
tractor A; with node states corresponding to observation
O; when perturbed by P;, as well as attractors A, and A3
with node states corresponding to observations O, and O3
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when perturbed by P, and P3 respectively. In addition, A;
should be connected to A, and the same attractor A,
should be connected to Az in the attractor reachability
graph.

This definition of training set is flexible enough to ac-
commodate complex experimental scenarios such as the
(long term) responses to drugs in specific mutational
backgrounds, but also time-dependent processes such as
cellular differentiation in response to various com-
binations of stimuli. Multiple scenarios can even be
combined into a unique training set (e.g. training set 1
in Additional file 2).

Problem formulation

Given a PKN and a training set, find the model network
that reproduces as well as possible all experiments in the
training set, under the constraint that the model net-
work must be a sub-graph of the PKN (all edges and
nodes in the model network must exist in the PKN).

We also enforced the following properties of the
model network, given in decreasing order of importance.
(i) It should include a user-defined set of essential nodes.
Typically, this set will contain nodes that are known to
play an important role in the modelled biological
process, or that represent key experimental readouts. (ii)
It should be as small as possible in terms of number of
nodes. Since the prior knowledge network can be very
large, it can be challenging to evaluate its attractors,
therefore having a model network that is as simple as
possible should reduce the computational effort. (iii)
Given a set of nodes, the model network should contain
as many edges (connecting these nodes) from the PKN
as possible. The idea here is to force the model network
to be as close as possible to the PKN, removing only
edges that are in contradiction with the training set.

To optimize all these properties simultaneously, we
used a standard multi-objective optimization approach,
based on a multi-dimensional fitness function, defined
for each network as

F= (fT7 _Nes&nodesa Nnodesa _Nedges)

where fr measures how well the network reproduce the
experiments given in the training set, N noqes IS the
number of essential nodes appearing in the network,
Niyodes is its number of nodes and N, its number of
edges. Multi-dimensional fitness functions are compared
using lexicographical ordering, which means that
optimization of fr is considered as most important,
followed by N odess Nyodes and finally N gq.;. Note that
the component responsible for maximization of the
number of edges (N4e;s) appears only after the number
of nodes (N,,o405)- As a consequence, networks with same
fr and N 0qes are first compared according to their
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number of nodes. Only if they have the same number of
nodes, their number of edges is taken into account in
the comparison. The first component fr (defined in
Additional file 1) measures the average distance between
observations contained in the training set and attractors
of the network, with the following constraints on the
chosen attractors: (1) if two observations are connected
by an edge in the training set graph then the corre-
sponding attractors must be connected in the attractor
reachability graph and (2) each observation in the train-
ing set graph must correspond to a unique attractor.
Among all attractors satisfying these two constraints,
only the ones that minimize fr are taken into account.
Approximately, fr can be considered as the fraction of
observations in the training set that are not reproduced
correctly by the network.

With these definitions, the challenge becomes a non-
linear discrete optimization problem: the model network
corresponds to the sub-graph of the PKN that minimizes
the multi-dimensional fitness function F. For a PKN
with M edges, the number of possible model networks is
2™ As a consequence, except for a very small PKN,
brute force testing of all possible networks is not pos-
sible, and a numerical optimization method is required.
Here we use a genetic algorithm (more details are avail-
able in Additional file 1), a well-established heuristic
optimization method, which can be easily implemented
and is known to give reasonably good results with non-
linear  discrete optimization problems. Heuristic
optimization algorithms, like the genetic algorithm, are
designed to seek good solutions, at a reasonable computa-
tional cost, but without guarantee of optimality or com-
pleteness. It is worth noting that this problem is neither
linear nor convex, and therefore more efficient linear or
convex optimization methods cannot be used here.
Indeed, contrary to the case where the training set con-
tains only information on steady states (attractors with
only one state) or successive states in the state transition
graph, which can be reformulated as a linear or convex
optimization problem [3, 4], the more general form of our
training set, which contains information on attractors but
also reachability between them, prevents this reformulation.

Except for very large training sets, this optimization
problem will in general not be completely specified. In-
deed, several different networks may be able to repro-
duce the training set equally well (minimize f7).
Although adding more components to the fitness func-
tion (Negs. nodess Niodes and Negges) should help to reduce
the number of networks that are solutions of the
optimization problem, it may not be sufficient to reduce
the solution to a unique network. Therefore, the solution
to the optimization problem should not be considered as
a unique network, but as a collection of different net-
works which are all equally good candidate models. This
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is not a limitation of the chosen optimization method
(genetic algorithm), but a consequence of the lack of
knowledge on the biological system. To reduce the num-
ber of solutions, an obvious solution consists in increas-
ing the training set size. Alternatively, carefully building
the PKN without unnecessary edges will help to decrease
the dimension of the search space as well as the number
of solutions.

The bottleneck with this approach in terms of per-
formance is the evaluation of attractor reachability
graphs. As a consequence, this method should be used
with networks having on the order of hundreds of nodes.
This limit on the network size is not strict, since the
computational cost will depend on the number of nodes,
connectivity and topology of the optimized networks,
which are governed by the corresponding properties of
the PKN as well as the number of essential nodes.

Evaluation of the network optimization method

To evaluate the network optimization method, we used
a gold standard model to generate in silico PKNs and
training sets, which were then used as input for our net-
work optimization method. The resulting model net-
works were then compared to the original gold standard
network, and the result of this comparison was taken as
a proxy for the quality of the optimization method.

As gold standard, we used a cell-fate decision model
proposed by Calzone and co-authors [11] (Fig. 3a). Note
that it is outside the scope of the present paper to discuss
whether this model correctly describes the underlying bio-
logical process. A toy model completely unrelated to any
biological process could also have been used as a gold
standard.

To illustrate the simplification of the network obtained
by minimizing the number of nodes, we decided to use
training sets containing information for only a fraction of
all nodes in the gold standard model, namely the 14 nodes
chosen by Calzone and co-authors for their reduced cell-
fate decision model [11] (grey nodes in Fig. 3a).

Generating input data

In silico PKN BoolSim was used to perform every pos-
sible single node perturbation experiment on the gold
standard network, starting from the unperturbed net-
work. The resulting attractor reachability graphs were
used to build a list of attractor transitions (see Fig. 3b
and Additional file 3), with each line corresponding to
one edge in the attractor reachability graph. If an at-
tractor had more than one state, it was replaced by the
average of all its states. Assuming that each line in the
list transitions (Fig. 3b and Additional file 3) corre-
sponded to a transition that could be observed experi-
mentally and reported in an article, an in silico PKN was
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built by linking perturbed nodes to observed nodes
whose states changed significantly (Fig. 3c and PKN 1 in
Additional file 4). That is, each line in Fig. 3b generates
edges from the perturbed node to each observed node
whose state changes by more than 0.5 (absolute value).
Edges are positive if perturbation and variation of ob-
served node state have the same sign, and negative if
they have opposite signs. Finally all edges of the gold
standard network also are added to the PKN.

In addition to this ideal PKN, we also generated five
PKNs with increasing fractions of noise (10, 20, 30, 40
and 50 % noise). To generate a PKN with noise fraction
q, we randomly replaced a fraction g of all edges in the
ideal PKN by the same number of edges randomly
chosen in the set of edges of the form n; — n, and n; 4
1, that were not in the ideal PKN (74, 5, are nodes of
the ideal PKN). The lists of interactions in each of these
PKNs are given in Additional file 4 (PKN 2 to 6).

Essential nodes We used the 14 nodes of the reduced
cell-fate decision model proposed by Calzone and co-
authors [11]: ATP, Apoptosis, CASP3, CASPS8, cIAP,
FASL, MOMP, MPT, NFkB, NonACD, RIP1, ROS, Sur-
vival and TNF (grey nodes in Fig. 3a; i.e., all nodes for
which experimental data was assumed to be available).

In silico training sets We built a training set based on
the response to TNF and FASL perturbations by mutant
versions of the cell-fate decision model discussed by
Calzone and co-authors [11]. We considered seven mu-
tant versions: wild-type, CASP3 knock-out, CASP8
knock-out, cIAP knock-out, NFkB knock-out, RIP1
knock-out and simultaneous knock-out of CASP3,
CASP8 and RIP1. For each mutant, we measured the re-
sponse of the gold standard network to TNF over-
expression, FASL over-expression and simultaneous
over-expression of TNF and FASL, starting from the
physiological state (all nodes inactive except ATP and
cIAP) described by Calzone and co-authors [11]. For
each attractor obtained, an observation was added to the
training set, using the measured states of all essential
nodes in the attractor. For each attractor reached after
perturbation of TNF, FASL or TNF and FASL together,
we added to the training set a transition from the initial
attractor (physiological state) to the reached attractor.
The resulting training set is given in Additional file 2, train-
ing set 1. Note that for a given mutant, all perturbations are
linked to the same initial observation obtained with the un-
perturbed network, which means that during the
optimization, only transitions starting from the same initial
attractor will be used to evaluate the fitness function.

In addition to this training set, we also built two
smaller training sets obtained by keeping only transitions
for the wild-type mutant (training set 2 in Additional file
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Fig. 3 Cell-fate decision model. a Cell-fate decision model [11] used as gold standard. Essential nodes are shown with grey background. b List of
transitions, starting from each of the 4 unperturbed network's attractors to attractors reached after single node perturbations of the cell-fate decision
model. Each line corresponds to an edge in the attractor reachability graph. Only the first lines are shown, the full table is given in Additional file 3. ¢
PKN obtained from (b) by adding edges from perturbed nodes to observed nodes whose state (absolute value) change by more than 0.5 (highlighted
in yellow). Edges are positive if perturbation and variation of observed node state have same sign, and negative if they have opposite sign.
For example, line 3 in table (b) will generate seven positive edges from Apoptosome to Apoptosis, BAX, CASP3, CASP8, Cyt_c, MOMP and
SMAC as well as one negative edge from Apoptosome to clAP. The complete list of interactions in the PKN is given in Additional file 4 (PKN 1)
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2), and keeping only the initial physiological attractor
(training set 3 in Additional file 2).

To study the effect of errors in training sets on the
optimization method, we also generated five training sets
with increasing fractions of errors (10, 20, 30, 40 and
50 %) by randomly reversing the corresponding fraction
of all node states appearing in training set 1 (training
sets 1 with 10 to 50 % error in Additional file 2).

Comparing a model network to the gold standard

Given a model network, obtained by using the network
optimization method with an in silico PKN and training
set generated from the gold standard network, we mea-
sured how close this model network was to the gold
standard network. Various metrics could be used here,
but we considered that the most important characteristic
of a model network was its ability to correctly predict
the behaviour of the underlying biological system (in the
present case, the gold standard model). To compare pre-
dictions from the model network and gold standard net-
work we defined a score (denoted s,;) which measures
the similarity between the average states reached by the
model network and gold standard network after all pos-
sible single node perturbations of essential nodes, start-
ing from each attractor of the unperturbed gold
standard network. More precisely, for each perturbation
and initial state, the average state reached by a network
is a vector of dimension N ,04.s Whose n-th compo-
nent is obtained as the average state of the n-th essential
node over all attractors reached after the perturbation,
starting from the given initial state. The s,; score is
then defined as s,; =1 - A/N_,g noqess Where A denotes
the average over all perturbations and initial states of
the Manhattan distance between average states
reached by the model network and gold standard net-
work (for a detailed definition see Additional file 1).
We decided to consider not only the best attractor
(as during the optimization process) but to consider
all attractors reached, thus penalizing those situations
where only part of the attractors reached by the
model correspond to the attractors reached by the
gold standard network.

The s,y score defined in this way has a value of 1 when
the average predictions of both networks consistently
agree for all perturbations and initial states, and a value
of 0 when both networks consistently predict opposite
states. Since the evaluation of the s,; score is based on
experiments that are not part of the training set, it can
be interpreted as a measure of the predictive power of
the model network.

Evaluation of the optimization method: workflow
An important question in the context of network
optimization is whether a network is able to correctly
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predict the outcome of experiments that are not part of
the training set against which it was optimized. To answer
this question and to assess the quality of the network
optimization method, we proceeded in the following way
(see Fig. 4):

1. As described above, the gold standard network
(Fig. 4a) was used to generate an in silico PKN
(Fig. 4b) and an in silico training set (Fig. 4c).

2. Multiple independent runs (500 if not otherwise
specified) of the network optimization method
were performed, each with the same in silico
PKN and training set as input (Fig. 4d), using a
population of 50 replicas for the genetic
algorithm. Each run was halted if the best value
of the fitness function did not decrease during
more than 10 iterations, and the network with
the best fitness function obtained during the run
was retained. Among the 500 networks generated
in this way only the best 50 networks (according
to fitness function) were kept as model networks
(Fig. 4e).

3. For each model network and the gold standard
network we performed in silico experiments to find
the attractors reached after all possible single node
perturbations of essential nodes, starting from each
attractor of the unperturbed gold standard network
(Fig. 4f and g).

4. The predictions for each model network were then
compared to the gold standard network predictions
by measuring the s, score defined previously
(Fig. 4h). These scores, which measure the
predictive power of the model networks, were then
interpreted as a measure of the optimization method
quality.

This procedure was repeated with different training
sets and PKNs to study the behaviour of the network
optimization method in different conditions.

Random networks

The distribution of s,; scores indicates how close the
model networks predictions are to the gold standard
network predictions. Another important question is
whether a score s,; obtained with a given model net-
work is significantly better than a score obtained with a
random network, i.e. is the optimization method better
than a random network generator? To answer this
question, random sub-networks of the PKN were gen-
erated by randomly keeping (with probability 0.5) each
interaction in the PKN. The randomized network s,y
scores were then evaluated and compared to the model
network s, score.
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Fig. 4 Evaluation of the optimization method: Workflow. To evaluate our optimization method, we used a gold standard network, interpreted as
the true underlying biological system’s network (a). An in silico PKN (b) and a training set (c) containing a limited amount of information were
generated by performing in silico experiments on the gold standard network. Using the PKN and training set as input, we started 500
independent runs of our network optimization (d), and kept the best network (with minimal value of the fitness function) obtained with each
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Results and discussion

Network optimization: applied example

We illustrate how our optimization method behaves by
following its evolution when applied on a sample data set.
We performed 500 independent runs of the optimization
method using training set 1 (Additional file 2), PKN 1
(Additional file 4) and the 14 essential nodes discussed in
the method section (grey nodes in Fig. 3).

Figure 5a illustrates how the individual components of
the fitness function F= (fT’ - Ness. nodes» Nnodes’ - edges)
evolve during the run giving the network with the min-
imal fitness function value. Following an initialization of
all replicas to the empty network, the optimization
process starts with an initial phase where f; decreases

while Negs yodess Niodes and Negges all increase as the net-
works are populated with nodes and edges. The number
of nodes and edges is large enough to include all essential
nodes (N, ,odes = 14) for most networks after the 50th it-
eration, and when N, ,,04s Saturates the number of nodes
starts to decrease. The number of edges tends to increase
steadily from the first to the last iteration, but increases
faster whenever the number of nodes increases or
saturates. This is a consequence of the lexicographical
ordering of multi-dimensional fitness functions. The
optimization is stopped when the best value of the fitness
function fails to decrease during 10 consecutive iterations,
and the network with best value of the fitness function is
retained as the output of this optimization run.
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Figure 5b presents the best network obtained during
this optimization run. It has a first fitness function com-
ponent fr=0, which means that it perfectly reproduces
all the experiments in the training set. The second com-
ponent (N yoqes = 14) is also optimal. The third compo-
nent N,z = 15 is very close to the minimal value 14.
Although it may not be optimal, the fact that no net-
work was found with N,,4s = 14 and fr=0 in any of the
500 runs suggest that N,z = 15 is the minimum num-
ber of nodes compatible with fr=0. It is not clear
whether the fourth component (Negees=58) is optimal
since it is much smaller than the 99 edges from the PKN
connecting the 15 nodes of this network. Therefore,
while this network may not be an exact global minimum
of the fitness function, it seems to be very close, which
suggests that our implementation of the genetic
algorithm is appropriate to handle this minimization
problem.

The goal of our network optimization method is not
only to find networks that can reproduce all experiments
in the training set (fr=0), but also, and most import-
antly to find networks that can predict the outcome of
experiments against which they were not trained. Since

the gold standard network used to generate the PKN
and the training set is known, this can be quantified by
evaluating the s, score (defined in the Methods section)
which measures the similarity between the average
attractors reached by the model network and the average
attractors reached by the gold standard network after all
possible single node perturbations. Note that contrary to
fr which only takes into account a subset of the attrac-
tors that best match the training set, the s,; score takes
into account all attractors reached after perturbation,
thus penalizing the situation where only a subset of
attractors behave properly. For the model network given
in Fig. 5b, s,;,~0.974, so approximately 97.4% of the
predicted node states are correct following single node
perturbations. Although only one attractor of the unper-
turbed gold standard network was part of the training
set, the model network nevertheless recovered the same
4 attractors as the gold standard network, with only one
error (node CASP8 =1 instead of 0 in one attractor).

We next examined the diversity of model networks
that can be obtained by running the optimization
method multiple times. For each of the 500 independent
runs we selected the single best network, and from these
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500 optimized networks then selected the 50 networks
with the lowest fitness function, which were retained as
model networks. While none of these networks neces-
sarily represents an exact global minimum of the fitness
function, all networks had optimal values for the first
and second components (f7=0 and Neg ,00es = 14). The
best 50 model networks were compared to the gold stand-
ard model by measuring the s,; scores and the resulting
distribution of s,; scores is shown in Fig. 6 (dark blue)
along with the score for the best network (red). The me-
dian s,y of the 50 best networks is high, with about 97 %
of node states correctly predicted after all single node per-
turbations, and significantly higher than the distribution
of s,y scores for all the 500 networks (light blue). This
shows that at least for this sample input data set, networks
with small values of the fitness function tend to have high
Squ scores, i.e. their predictions are close to the gold stand-
ard network predictions.

To check that the good scores obtained by the model
networks were not only due to a very informative PKN,
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Fig. 6 Example of network optimization: s, scores distribution.
Distribution of s, scores obtained with 500 independent runs of the
optimization method using the same input data as in Fig. 5. For
each run, only the network with minimal value of the fitness
function was kept. This figure shows the s, scores for the best
network (red line), for the 50 best networks (dark blue boxplot) and
for all 500 networks (light blue boxplot). In addition, s, scores for the
PKN (black line) and 350 random sub-networks of the PKN (grey
boxplot) are shown
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which by construction contains all the functional inter-
actions of the gold standard network, we also measured
the s, score of the PKN (black line in Fig. 6). As shown
in Fig. 6, scores of the best 50 model networks (dark
blue) are significantly higher than the score of the PKN
(black), indicating that the optimization method indeed
generates models with much improved predictive power
compared to the PKN used as input. The s,; scores for
random sub-networks of the PKN (shown in grey) are
also significantly lower than those for the 50 model
networks. This result is not entirely trivial, since these
random networks are built with edges of the PKN that
correspond to functional interactions of the gold stand-
ard network.

Genetic algorithm

The quality of the optimization method, as measured by
the s,y score, is determined by the combination of the
optimization algorithm (genetic algorithm) and the
choice of fitness function. In the previous section, we
showed that the optimization method was able to gener-
ate model networks with good predictive power (high s,
scores). This result strongly suggests that the choice of
fitness function was adequate and that the optimization
algorithm was able to find sufficiently good solutions to
the minimization problem. However, it does not say any-
thing about the efficiency of the optimization algorithm,
and indeed a simple random network generator could
also produce optimal solutions in principle, simply by
generating a sufficiently large number of networks.

To evaluate our implementation of the genetic algo-
rithm, we compared the evolution of best fitness func-
tion values obtained by our algorithm to best fitness
function values obtained on a population of random
networks. We started 200 independent runs of the
optimization method, using the same input as in the
previous section (training set 1 in Additional file 2, PKN
1 in Additional file 4 and 14 grey nodes in Fig. 3 as es-
sential nodes). During each run, the fitness function
value and s, score of the best network (i.e. with min-
imal fitness function value) obtained were stored for
each iteration of the genetic algorithm (black dots in
Fig. 5a). The resulting distributions of best fitness func-
tion values and corresponding s,; scores obtained with
the 200 runs are shown in Fig. 7 (blue boxplots, left
panel) as a function of the number of iterations of the
genetic algorithm. In parallel, for each run of the
optimization method, a corresponding “random run”
was created by generating, for each iteration, exactly the
same number of random networks (random sub-
networks of the PKN) as the number of networks gener-
ated by the genetic algorithm. For each iteration of the
random run, we stored the fitness function value and s,
score of the best random network (i.e. with minimal
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Fig. 7 Genetic algorithm evaluation. Left panel: evolution of fitness
function F = (7, = Ness nodes: Nnodes: = Nedges) and sgy score for the best
network (i.e. with minimal fitness function) obtained during a run of
the optimization method using the same input data as in Fig. 5. Blue
boxplots summarize values obtained with 200 independent runs of
the optimization method. Grey boxplots show corresponding results
obtained with 200 “random runs”. Note that each box summarizes
values obtained during 10 iterations (2000 data points). Right panel:
fitness function and s, score for the best network (according to the
fitness function) obtained after a specified number of runs
(horizontal axis). Each box summarizes 500 values, obtained by
randomly sampling the given number of runs among 200
independent runs of the optimization method

fitness function value) obtained since the beginning of
the run. The resulting distributions of best fitness func-
tion values and corresponding s,; scores obtained with
the 200 “random runs” are shown in Fig. 7 (grey box-
plots, left panel) as a function of the number of itera-
tions. Note that although Fig. 7 presents data for
iterations up to 285, the average run length was 171
iterations. Missing values from the end of each run until
iteration 285 were replaced by the fitness function value
and s, score obtained in the last iteration of the run.
When comparing results obtained with the genetic al-
gorithm (blue) and random runs (grey), it is clear that
the genetic algorithm is much more efficient at generat-
ing networks with low values of the fitness function.
This is particularly apparent for the first component of
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the fitness function (f7 in upper left panel of Fig. 7),
where optimized networks reach a median value f7~
0.020, while random runs reach only a median fr=~
0.236. In addition, while the other components of the fit-
ness function (N, nodess Niodes aNd Nigges) tend to ap-
proach their optimal values in a similar way as in Fig. 5a
using the genetic algorithm, this is not the case for the
random runs. More importantly, the s,; score (lower left
panel) increases quickly for optimized networks (blue) to
reach a median value s,; ~0.938, while it only marginally
increases for random runs to reach a median s,; ~ 0.788.

In addition to the distribution of best fitness function
values obtained during one run discussed above, we also
characterized the distribution of best fitness function
values obtained after multiple runs (right panel of Fig. 7).
This is particularly relevant in the context of
optimization based on genetic algorithms, where it is
common practice to start multiple independent runs in
parallel. We randomly sampled the specified number of
runs (horizontal axis) among the 200 runs, storing the
fitness function value and s,; score of the best network
(according to the fitness function) found in the sampled
runs. This process was repeated 500 times for each
number of runs, so that each boxplot summarizes 500
values. Using multiple runs has a dramatic impact on
the best value of the fitness function obtained with the
genetic algorithm (blue boxes): the median value of the
first component (f7 in upper right panel) decreases from
fr=~0.020 with one run to fr=0 with 20 runs, while its
dispersion strongly reduces, with an interquartile range
that decreases from 0.052 with one run to 0 with 20
runs. Similarly, while the median s,; score increases
from s, ~ 0.938 with one run to s,; ~ 0.970 with 20 runs
(lower right panel), its dispersion is reduced, with an
interquartile range that decreases from 0.034 to 0.017.
The other components of the fitness function (Negs, odess
Nodes and Ngees) are only marginally improved by in-
creasing the number of runs.

The best value of the fitness function obtained with ran-
dom runs (upper panel, grey boxes) also improves when
increasing the number of runs, but it is still far from the
best values obtained with the genetic algorithm. The s,
score obtained with random runs (lower panel, grey
boxes) only slightly increases from s,;~0.788 with one
run to s,; ~ 0.797 with 20 runs.

To summarize, Fig. 7 shows that our implementation
of the genetic algorithm is significantly more efficient
than random sampling in finding solutions to the fitness
function minimization problem.

PKN quality

In the previous sections we used an ideal PKN which con-
tained only (direct or indirect) interactions observed after
in silico perturbation experiments of the gold standard
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network. However, a PKN built from the literature will
usually not be perfect; it may contain “noise” in the form
of interactions that are not relevant to the particular bio-
logical context under study, while some relevant interac-
tions may also be missing.

To investigate the effect of noise in the PKN on the
optimization method, we generated five PKNs (PKN 2 to
6 in Additional file 4) by adding 10, 20, 30, 40, and 50 %
of noise to the ideal PKN, as defined in Methods section.
For each PKN, we started 500 independent runs of the
optimization method and kept the best network (with
minimal value of the fitness function) obtained with each
run. Among the 500 resulting networks, only the 50 with
minimal values of the fitness function were kept as
model networks. The left panel of Fig. 8 presents the dis-
tribution of fitness function values and s,; scores as a
function of the PKN used as input (horizontal axis) for the
resulting model networks (blue boxes), for random sub-
networks of the PKNs used as input (grey boxes) and for
the PKNs (black lines). The values of the fitness function
obtained with model networks increase (worsen) as the
fraction of noise in the PKN increases, with the median fr
reaching fr~ 0.015 with 50 % noise. The number of nodes
and edges also increases with noise, suggesting that it is
not possible to find simple networks that are able to re-
produce training set experiments when too many interac-
tions are missing in the PKN.

As expected, the predictive power of model networks
(suu score, lower left panel) decreases with increasing
noise in the PKN. However, the median s,; score is al-
ways above 0.798 even with 50 % noise in the PKN. In
addition, the distribution of s,; scores is always signifi-
cantly higher for model networks (blue) than for random
networks (grey) and PKN (black). The decrease of s,y
scores with increasing PKN noise suggests that our
method makes good use of the information contained in
the PKN, and that a carefully constructed PKN can in-
crease the quality of the resulting model networks. The
fact that model networks always have better s,; scores
than PKNs also shows that our method is rather tolerant
to errors in the PKN. Indeed, even with 50 % noise in
the PKN, our method is able to output model networks
that have more predictive power than the input PKN.
However, if the PKN is known to be very noisy, it could
be worth considering other methods which are not
based on prior knowledge.

Training set quality

In the previous section we used an ideal training set ob-
tained by measuring the response of the gold standard
network to perturbations. To evaluate the robustness of
the optimization method to errors in the training set, we
generated five training sets by adding 10, 20, 30, 40, and
50 % of errors to the ideal training set (training sets 1
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F = (f; = Ness. nodes; Nnodes: — Nedges) @nd sqy score for model networks (blue
boxplots), random sub-networks of the PKN (grey boxplots) and PKN
(black line) as a function of noise in the input PKN (left panel), errors
in the training set (centre panel) and size of the training set (right
panel). Left panel: results based on the training set 1 given in
Additional file 4 and PKNs 1 to 6 (Additional file 3). Centre panel: results
based on training set 1 with 0 to 50 % error (Additional file 2) and PKN
1 (Additional file 4). Right panel- results based on training sets 1, 2 and
3 (Additional file 2) and PKN 1 (Additional file 4). Each blue boxplot
summarizes measurements on 50 model networks obtained out of 500
independent runs of the optimization method (more details in main
text). Each grey boxplot summarizes measurements on 350 random
sub-networks of the PKN used as input for the optimization method.
Component Ness. nodes OF the fitness function was always optimal
(Nass. nodes = 14) and is not shown in this figure

.

with 10 to 50 % error in Additional file 2), as described
in the Methods section.

For each training set, we generated 50 model networks
from 500 independent runs by following the procedure
described in the previous sections. The centre panel of
Fig. 8 presents the distribution of fitness function values
and s,; scores as a function of the fraction of errors in
the input training set for the resulting model networks
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(blue boxes), for random sub-networks of the PKN (grey
boxes) and for the PKN (black lines).

The values of the fitness function dramatically increase
(worsen) when the number of errors in the training set
is increased. In particular, while model networks ob-
tained with the ideal training set always perfectly repro-
duce all experiments in the training set (f7=0), about
9.9 % of the training set cannot be reproduced by model
networks when the training set contains 10 % of errors
(median f7~ 0.099). When the training set contains 50 %
of errors, fr reaches a median value of 0.327, which
means that model networks fail to reproduce about 33 %
of the training set. This suggests that it is not possible to
find a model network, built as a sub-graph of the PKN,
which is able to reproduce all errors in our training set.

As expected, the predictive power of model networks
(s4u score, lower centre panel) decreases when increasing
the fraction of errors in the training set, but this de-
crease is moderate. For instance, s,; scores are not sig-
nificantly lower with 10 % of errors in the training set
(median s,y ~ 0.969) than with the ideal training set (me-
dian s,y ~ 0.970). Moreover, for all training sets with up
to 30 % of errors, s,y is clearly higher for model net-
works (blue) than for random sub-networks of the PKN
(grey) and for the PKN (black). Only when the training
set contains 50 % of errors does the median s,; score of
model networks become lower than the s,; score of the
PKN. However, even in this case, the median predictive
power of model networks is still above 80 %. The mod-
erate decrease of predictive power, together with the
rapid increase of fitness function values when the num-
ber of errors in the training set increases, suggest that
our optimization method is not greatly affected by over-
fitting. The use of a PKN contributes greatly to this re-
sult by drastically reducing the number of parameters in
the model.

Training set size

In the previous experiments we used a comprehensive
training set that included the states of all 14 essential
nodes measured before and after over-expression of
TNE, FASL or the combination of TNF and FASL, for
seven mutant versions of the gold standard network
(training set 1 in Additional file 2). To study the effect
of reducing the training set coverage on the optimization
method, we generated two smaller training sets (see
Methods section): a “medium” training set, which con-
tains data for the wild-type mutant only (training set 2
in Additional file 2) and a “small” training set, contain-
ing only the initial physiological state (training set 3 in
Additional file 2). Clearly, the small training set does not
contain enough information to properly infer a model
network, and it was used to study the behaviour of the
optimization method in this limit. Following the same
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procedure as in the previous sections, for each training
set we used the optimization method to generate 50
model networks out of 500 independent runs. The
resulting distributions of fitness function values and s,
scores are shown in the right panel of Fig. 8 (blue boxes)
as a function of the training set used as input (horizontal
axis), together with fitness function values and s, scores
measured on random sub-networks of the PKN (grey
boxes) and directly on the PKN (black lines). Although
model networks always perfectly reproduce all experi-
ments in the training sets (fr=0, upper right panel),
other components of the fitness function tend to im-
prove when the size of the training set decreases. In par-
ticular, the number of nodes reaches its optimal value
(Nsodes = 14) for medium and small training sets, while
networks obtained with the small training set have more
edges than networks obtained with large training set.
This is due to the smaller training sets imposing fewer
constraints on the networks than larger training sets,
which leave more freedom to optimize the remaining
components of the fitness function.

Although the predictive power of model networks de-
creases with training set size (s,; score, lower right
panel), it remains significantly higher than that of ran-
dom sub-networks of the PKN (grey) and the complete
PKN (black) for all training sets. Interestingly, while the
small training set contains only the states of 14 essential
nodes in one attractor of the unperturbed gold standard
network, the resulting model networks still have a me-
dian s,y of 0.937, which means that approximately 94 %
of the 1624 nodes states measured after all single nodes
perturbations are predicted correctly.

To summarize, although the predictive power of
model networks decreases with the quantity of informa-
tion contained in the training set, our optimization
method was still able to produce networks with signifi-
cantly improved predictive power compared to the input
PKN and random sub-networks of the PKN when using
reduced training sets.

Fitness function: maximizing versus minimizing number
of edges
The choice of fitness function is an essential ingredient
of network optimization methods. While the first two
components of our fitness function (frand N, ,04es) CQN
be easily understood, our choice of third and fourth
components (Nzes and Negees) may not be so obvious.
Indeed, these last two components were chosen to first
minimize the number of nodes and then maximize the
number of edges (among networks with same number of
nodes), whereas a more usual choice of regularization
consists in minimizing the number of edges.

To motivate our choice of fitness function, we used
our optimization method with the modified fitness
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function F = (f; — Negs. nodess Nedges) Which minimizes the
number of edges and does not constrain the number of
nodes. For each input data set discussed in the previous
sections, 50 model networks were generated out of 500
independent runs. Due to slower convergence of the
genetic algorithm with this fitness function, we had to
use 100 replicas instead of 50 to obtain model networks
with comparable fitness function values. The resulting
distributions of s,; scores are shown in Fig. 9 (red
boxes), together with s,; scores obtained previously by
minimizing number of nodes and maximizing number
of edges (blue boxes). In addition, s,; scores measured
on random sub-networks of the PKN (grey boxes) and
directly on the PKN (black lines) are also shown for
comparison. In the following, we will abbreviate the
approach of “maximizing the number of edges while
minimizing the number of nodes” as simply “maximizing
the number of edges”. The additional constraint on the
node number has to be kept in mind.

Clearly, the predictive power of model networks ob-
tained by minimizing the number of edges is less sensi-
tive to noise in the PKN used as input (left panel). With
no or low noise, maximizing the number of edges is
clearly a good strategy, as the s,; scores are significantly
lower when minimizing the number of edges. When
PKN noise increases, both approaches give comparable
results, with slightly better, although not significantly, s,
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scores obtained by minimizing number of edges with 30
and 40 % noise.

Similarly, when the training set contain errors
(centre panel), model networks obtained by maximizing
the number of edges tend to have higher predictive power.
Although the difference is more pronounced for low frac-
tions of errors in training sets, median s,; scores obtained
by maximizing the number of edges are always higher
than scores obtained by minimizing the number of edges.

The advantage of maximizing the number of edges
becomes more striking when decreasing the size of
the training set used as input (right panel). Indeed,
while networks obtained by maximizing the number
of edges have a median s,; score that slowly de-
creases from 0.970 to 0.937, networks obtained by
minimizing the number of edges always have signifi-
cantly lower s,; scores, reaching a median of 0.778
with small training set. More importantly, although
networks obtained by minimizing the number of
edges are significantly better than random sub-
networks of the PKN and the PKN itself when using
a large training set, they are not much better than
the PKN when using a medium training set, and sig-
nificantly worse than the PKN when using a small
training set, with a median s,; score 0.778 barely bet-
ter than the median s,; score 0.774 of random sub-
networks of the PKN.
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Fig. 9 Fitness function: maximizing versus minimizing number of edges. Comparison of predictive power (s, score) of model networks obtained
with the fitness function F = (7, = Negs. nodess Nnodes: = Nedges) Which minimize number of nodes and subsequently maximize number of edges (blue
boxplots), and fitness function F = (f, — Ness. noges; Nedges) Which minimize number of edges (red boxplots). Except for s,y scores obtained by
minimizing the number of edges (red), all results were taken from Fig. 8. Model networks optimized with minimization of the number of edges
(red) used the same input data sets and the optimization procedure as in Fig. 8, except for the change of fitness function, and the use of 100
instead of 50 replicas
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These results can be understood by realizing that
maximizing the number of edges generates networks
which are as close as possible to the PKN, only removing
edges that are in contradiction with the training set, and
therefore use a maximum of information contained in
the PKN. This is particularly interesting in the limit of
small training sets, when the information contained in
the training set is not sufficient to properly infer a model
network. In this limit, in addition to the training set, our
method heavily uses the information contained in the
PKN, and therefore generates model networks with rea-
sonably good predictive power. By contrast, minimizing
the number of edges within the limit of small training
sets results in over-simplified model networks that are
not able to properly predict anything else than what they
were trained for.

This reasoning also explains why maximizing the
number of edges is a better strategy when the quality of
PKN is good, and becomes less attractive in the limit of
very noisy PKN. What is interesting, and somewhat un-
expected, is the fact that maximizing edges does not give
significantly worse results than minimizing edges in the
limit of very noisy PKNs.

The main motivation behind minimizing the number
of edges is usually based on Occam’s razor, ie. the
principle of parsimony. However, this approach can lead
to oversimplification of the resulting model, for instance
by removing alternative pathways that are necessary to
ensure the known robustness of regulatory networks.
The idea behind maximizing the number of edges is to
keep this robustness and to reflect the complexity of
biological networks. For a node with various docu-
mented biological functions, it seems artificial to reduce
that node to only one of them, assuming that the input
PKN was built carefully.

Combined predictions

In general, one should not expect the optimization prob-
lem discussed here to have a unique solution (network).
If the training set does not contain enough information
to completely constrain the problem then multiple solu-
tions may be possible. If essential interactions are miss-
ing from the PKN then no sub-network of the PKN
(model network) may be able to exactly reproduce all
experiments in the training set (fy=0) and a potentially
large number of solutions with equally good fr>0 may
be possible. Even when the optimization problem does
have a unique optimal solution, heuristic optimization
methods, like the genetic algorithm that we use, might
be unable to find it, and instead output multiple sub-
optimal networks with similar fitness function values.
For all these reasons, a large set of model networks may
be equally good solutions to the optimization problem.
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This multiplicity of model networks is not in contra-
diction with a unique network describing the underlying
biological system (in this work: the gold standard net-
work), but only reflects our lack of knowledge on the
system. To summarize all these solutions, a common
practice is to generate an average network as the union
of all models networks, with a weight attached to each
edge, such as the number of model networks in which it
appears. However, unless all model networks are very
similar, this consensus network is of limited interest
since it does not retain the topology (feed-back loops,
connectivity), and more importantly, the dynamical be-
haviour (attractor reachability graph) of the original
model networks. Instead, we propose to summarize our
results at the level of the predictions by measuring aver-
ages but also variability of node states predicted by all
model networks. Intuitively, if a node state prediction
varies a lot across networks, this could be due to a lack
of information in the PKN and training set, and there-
fore could be correlated to prediction errors.

To check whether prediction variability was correlated
to prediction errors, we summarized the predictions of
the 50 model networks obtained previously with each in-
put data set (PKN and training set). We used the same
predictions that were used to measure the s,; score (see
Methods section), i.e. the average states reached by a
network after each single node perturbation of essential
nodes, starting from each attractor of the gold standard
network. For each input data set (PKN and training set),
single node perturbation and initial state (gold standard
network attractor), we evaluated the average and vari-
ance of the 50 average states predicted by the 50 model
networks. We also evaluated the corresponding predic-
tion error by measuring the absolute difference between
average model networks’ predictions and average states
reached by the gold standard network. This procedure
led to 21,112 error versus variance measurements, one
for each of the 14 essential nodes, with 29 single node
perturbations (unperturbed, 14 nodes forced to 1, 14
nodes forced to 0), 4 attractors of the gold standard net-
work and 13 input data sets (more details on this pro-
cedure are given in Additional file 1).

The resulting distribution of error versus variance is
shown in Fig. 10. This figure shows a strong correlation
between error and variance, confirmed by a Spearman’s
rank correlation coefficient of ~0.96. This result sug-
gests that the prediction error, which is usually un-
known, can be (approximately) estimated by measuring
the prediction variance provided that not only one, but
multiple model networks are kept as solutions of the
optimization problem.

Ideally, variance should be estimated based on the full
population of networks which are solutions of our
optimization problem, or at least on a uniformly sampled
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Fig. 10 Combined predictions: error versus variance. Distribution of
errors as a function variance obtained by summarizing the
predictions of the 50 model networks obtained which each input
data set (more details in main text). The number N above each
boxplot denotes the number of measurements in the boxplot

subset of the solutions. However, due to the heuristic ap-
proach used here, our optimization method should in
principle be unable to generate an exhaustive list of solu-
tions, or to uniformly sample the set of solutions. The
strong correlation observed in Fig. 10 is therefore an inter-
esting and non-trivial result, which shows that despite
these limitations, our optimization method is able to sam-
ple sufficiently well the space of solutions.

Related work

A large amount of methods focusing on the problem of
Boolean network inference have been published. In the
following we will consider only methods that are similar
to our method in the sense that they combine the use of
experimental data against which Boolean networks are
trained, together with prior knowledge to reduce the size
of the search space. These methods are classified accord-
ing to the type of data used in the training set.

Several methods require training sets in the form of
time series of experimental measurements. REACT [13]
and CellNopt [14] use evolutionary algorithms to train
networks against time series obtained with various net-
work perturbations. Both methods only consider net-
works with synchronous dynamics. By assuming that the
consecutive measurements in the time series co-
rresponds to successive states of the network with
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synchronous dynamics, Breindl et al. [4] can use linear
programming to solve the network optimization prob-
lem. BoolNet [15] implements the Best-Fit Extension
[16] and REVEAL [17] algorithms to reconstruct net-
works from time series obtained with various network
perturbations, and can use synchronous as well as asyn-
chronous dynamics. RE:IN [18] uses a Satisfiability Mod-
ulo Theories (SMT) solver to exhaustively find all
networks that can exactly reproduce the training set,
which consists of time series obtained under various net-
work perturbations. Only synchronous dynamics is im-
plemented in this method.

Other methods focus on early responses to perturba-
tions and only consider a small subset of two time
points in each time series. Only the initial measurement
and a second carefully chosen time point reflecting the
initial response to the perturbation are kept in the train-
ing set. In addition to time series discussed above, Cell-
Nopt [14] also implements a method based on a genetic
algorithm to train networks on the early response to per-
turbations, assuming synchronous dynamics of the net-
works. Guziolowski et al. [19] and Videla et al. [5] use
answer set programming to enumerate all networks that
exactly reproduce the initial response to perturbations
using synchronous dynamics, but also all suboptimal
networks within a user defined tolerance.

Another popular approach is to use a training set con-
taining stable phenotypes assumed to be steady states
(attractors with one state) of the network. These training
sets contain only equilibrium properties of the network
and lack information on the dynamics of the network.
XPRED [9] and PRUNET [10] use evolutionary algo-
rithms to find networks that have steady states as close
as possible to the phenotypes given in the training set.
Knapp and Kaderali [3] reformulated the problem of
finding networks with specific steady states obtained
under various perturbations as a linear programming
problem. A runtime comparison with these methods is
given in Additional file 5.

Our optimization method contrasts with the afore-
mentioned approaches in a number of ways. First, our
method combines information on both the dynamics
(time series) and equilibrium properties (steady states)
of the networks, while the aforementioned approaches
use only one of these types of information. Indeed our
training set can contain measurements performed on
stable phenotypes that are assumed to correspond to
attractors of the networks, together with measurements
on their reachability upon perturbation of the network.
Second, our method uses asynchronous dynamics, which
is usually considered as more relevant for the descrip-
tion of biological networks than synchronous dynamics
[20]. By contrast, all methods discussed above, except
BoolNet, use synchronous dynamics. Finally, our method
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attempts to maximize the number of edges in order to
be as close as possible to the input PKN, while only
Videla et al. [9] suggest that minimizing the number of
edges may not be the optimal approach.

Conclusions

Within the last years the wealth of experimental data
from high-throughput technologies in different areas of
biology has popularized the construction of a PKN to
summarize and visualize the knowledge derived from
this data. Unfortunately, although it is technically pos-
sible to directly transform such a network as a dynam-
ical Boolean model, it may not behave as expected for a
specific biological process because it usually includes in-
teractions described in different biological contexts and/
or experimental conditions, some of which could be ab-
sent in the biological process under study. The presence
of these “wrong” or “inactive” interactions in the model
may dramatically change its dynamical behaviour with
consequent lack of reliability of its predictions.

Here we propose a method to generate and optimize
dynamical Boolean models by training a given PKN
against experimental data describing either stable states
or response to perturbation or both. The output of our
method is a set of sub-networks of the PKN contextual-
ized to the experimental conditions used to train the
model. Simulations performed on such a network should
yield more reliable predictions, helping researchers in
hypothesis generation and experimental design. The
general applicability of the method in a variety of bio-
logical contexts will make this approach of interest to
biological and medical researchers.

Future developments will include the implementation
of the same strategy on a multi-valued discrete system
(i.e. non-Boolean), which should allow a more precise
description of gene activities and network dynamics. The
current method could also be adapted to deal with the
cyclic behaviour and time series of oscillatory processes.

Additional files

Additional file 1: Methods. Detailed description of the methods. (PDF
1329 kb)

Additional file 2: Cell-fate decision model: in silico training sets. Training
sets used to evaluate the optimization method. Each training set is given
in the form of a transition graph, where each node contains a
perturbation with the corresponding observation (stable phenotype) and
edges denote a transition between stable phenotype upon change of
condition (perturbation). Perturbations are specified using a combination
of node names prefixed by — or +sign to specify knock-out (node state
fixed to 0) or over-expression (node state fixed to 1). When multiple
edges connect the same source node to different target nodes, it means
that all transitions start from the same phenotype (same attractor of the
network). Node states that were intentionally reversed to generate errors
in training sets are shown in red. (PDF 9015 kb)
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Additional file 3: Cell-fate decision model: single node perturbations.
List of transitions between attractors from unperturbed to single node
perturbations. Each line corresponds to one edge in the attractor
reachability graph. Attractors with more than one state are replaced by
the average over all states in the attractor. (PDF 63 kb)

Additional file 4: Cell-fate decision model: in silico PKNs. In silico PKNs
for the cell-fate decision model. For each PKN, a graphical representation
as well as the list of interactions is given. Interactions that were changed
to introduce noise in the PKNs are shown in blue in the list of interac-
tions. In the graphical representation, interactions that were changed to
introduce noise in the PKNs are shown in magenta (negative interactions)
and cyan (positive interactions). (PDF 314 kb)

Additional file 5: Comparison with related methods. Runtime
comparison between our implementation of the method (optimusqual)
and related methods. (PDF 1190 kb)
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