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Abstract

Background: The recent pandemic of obesity and the metabolic syndrome (MetS) has led to the realisation that
new drug targets are needed to either reduce obesity or the subsequent pathophysiological consequences
associated with excess weight gain. Certain nuclear hormone receptors (NRs) play a pivotal role in lipid and
carbohydrate metabolism and have been highlighted as potential treatments for obesity. This realisation started a
search for NR agonists in order to understand and successfully treat MetS and associated conditions such as insulin
resistance, dyslipidaemia, hypertension, hypertriglyceridemia, obesity and cardiovascular disease. The most studied
NRs for treating metabolic diseases are the peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-γ, and
PPAR-δ. However, prolonged PPAR treatment in animal models has led to adverse side effects including increased
risk of a number of cancers, but how these receptors change metabolism long term in terms of pathology, despite
many beneficial effects shorter term, is not fully understood. In the current study, changes in male Sprague Dawley
rat liver caused by dietary treatment with a PPAR-pan (PPAR-α, −γ, and –δ) agonist were profiled by classical
toxicology (clinical chemistry) and high throughput metabolomics and lipidomics approaches using mass
spectrometry.

Results: In order to integrate an extensive set of nine different multivariate metabolic and lipidomics datasets with
classical toxicological parameters we developed a hypotheses free, data driven machine learning approach. From
the data analysis, we examined how the nine datasets were able to model dose and clinical chemistry results, with
the different datasets having very different information content.

Conclusions: We found lipidomics (Direct Infusion-Mass Spectrometry) data the most predictive for different dose
responses. In addition, associations with the metabolic and lipidomic data with aspartate amino transaminase (AST),
a hepatic leakage enzyme to assess organ damage, and albumin, indicative of altered liver synthetic function, were
established. Furthermore, by establishing correlations and network connections between eicosanoids, phospholipids
and triacylglycerols, we provide evidence that these lipids function as a key link between inflammatory processes
and intermediary metabolism.
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Background
The metabolic syndrome (MetS) and its associated con-
ditions such as insulin resistance, dyslipidaemia, hyper-
tension, hypertriglyceridemia, and obesity are all
considered global health problems, and contribute to
cardiovascular disease and increased mortality and mor-
bidity [1]. Beneficial effects for the treatment of diabetes
and MetS by peroxisome proliferator-activated receptors
(PPARs) are well established [2]. However, considerable
controversy remains about their general safety and side
effects in the liver, the cardiovascular system and skeletal
muscle. The search for new, and less toxic agonists are
of prime importance and several new strategies are being
explored to overcome undesirable treatment effects,
such as increased risks associated with certain cancers
when administered long term in animal models. One
such strategy has been the simultaneous activation of
two or three (−pan) PPAR receptors in order to
favourably influence pathways associated with MetS,
while negating some of the side effects such as increased
adiposity caused by PPAR-γ agonists. Compound devel-
opment, where inhibition or activation of enzymes
beyond what would be considered the primary PPAR
targets are also being explored, including PPAR-pan
treatment alongside Sirtuin (SIRT 1) activation [3], or
the use of PPAR-pan activators in conjunction with
cyclooxygenase (COX) inhibition [4]. The development
of better delivery systems such as the use of nano-
capsules are also being explored [5].
In the current study, the effects of a PPAR-pan agonist

on liver metabolism was investigated after dietary treat-
ment of male Sprague–Dawley (SD) rats. Classical
toxicological tests (clinical chemistry) and mass spectrom-
etry (MS) approaches for metabolomic and lipidomic [6]
changes were used to provide a ‘deep phenotype’ for the
animals. High-throughput ‘-omic’ technologies have gained
much interest in recent years and have been previously
employed in order to unravel disease mechanisms associ-
ated with MetS [7–10].
Despite technological advancement within metabolo-

mics, there are still limitations with the approach. Not
only does the diverse and structurally complexity of
many metabolomes remain a challenge, the understand-
ing, interpretation and integration of large datasets in
conjunction with classical toxicological parameters is a
major task. An integrative approach is needed in order
to understand the principles underlying the metabolic
regulation of a system and how their combined interac-
tions associates with variation in clinical phenotypes
results in pathophysiology. This challenge demands new
data exploration strategies such as analysis workflows,
statistical and computational algorithms for data integra-
tion, filtering, and network analysis if we are truly going
to be able to convert the large multivariate data collected

during such metabolomic experiments into new bio-
logical knowledge.
Here we applied a machine learning approach called

Random Forest (RF) [11], which is able to integrate
multiple data types and successfully combine classical
clinical chemistry and toxicology test results with multi-
variate metabolomic and lipidomic data. Several authors
have previously adapted RF methods for data integration
(also referred to as data fusion) including Acharjee et al.
who applied a RF approach to integrate transcriptomics
and metabolomics data in plant spices [12], and Fortino
et al., who developed and evaluated a fuzzy logic com-
bination with RF to prioritize the candidate discriminant
features from gene expression data [13]. Briefly, a RF is a
collection of decision trees (ensembles) where each tree
gets a “vote” in classifying the sample and find patterns
in the data. While RF approaches are very powerful for
multivariate datasets, currently they are scarcely applied
in metabolomic studies [14]. In the present study, RF
classification was used to select subsets of metabolites
from a ‘real life’ metabolomics study showing that this
statistical approach is successful in building associations
and predicting different doses in a drug safety assess-
ment environment. Next, an RF regression approach was
used to link liver metabolites with classical clinical
chemistry parameters measured from plasma. An inte-
grated network analysis was performed providing a
relatively small set of interrelated metabolites which
were predictive of dose levels, whilst also aiding under-
standing of the metabolic processes involved in the
study. Metabolites selected in this way provide a useful
starting point to understand the underlying effects of
PPAR-pan treatment and also aided the generation of
hypotheses to be further investigated using more
targeted analyses. In addition to exploring the selected
metabolites and their known relationships to the PPAR
system, one of the emerging hypotheses from our
analyses, the central role of eicosanoids (and other oxy-
genated metabolites of polyunsaturated fatty acids) fol-
lowing PPAR-pan action, were followed up by using an
additional MS method for the detection of eicosanoids
in the subset of the samples biologically validating our
approach. For the purposes of this article we have used
the term lipid mediators to encompass both classical ei-
cosanoids and oxidized lipids that are shorter and longer
than arachidonic acid.

Methods
All the datasets and protocols used for generating them
are based on the Ament et al., [15] manuscript where we
have previously published the study design and some of
the metabolomics data. These are briefly outlined below,
along with the description of the RF data fusion ap-
proach used in the present study.
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Chemicals
Aqueous metabolite standards were purchased form
Sigma Aldrich (Poole, Dorset, UK). Lipid standards were
purchased form Avanti-Polar lipids (Alabaster, Alabama,
US) with the exception of the standard mix containing 37
fatty acid methyl esters (FAMEs) (Sigma Aldrich, Poole,
Dorset, UK). Deuterated compounds used as internal
standards were purchased from Cambridge Isotope
Laboratories (Andover, Massachusetts, US). Solvents used
were of HPLC grade or higher. All other compounds,
chemicals and solutions used are detailed where relevant.

Animal experiments and study design
All animal studies were ethically reviewed and car-
ried out in accordance with the Animals (Scientific
Procedures) Act 1986 and the GSK Policy on the
Care, Welfare and Treatment of Animals.
The PPAR-pan activator was administered to male

Sprague–Dawley rats (Crl:CD (SD) strain), 12 animals
per group, by daily oral gavage at 30,100, 300, 1000 mg/
kg/day for 13 weeks. A separate satellite group of ani-
mals (6 per group) were kept for a 4 week treatment free
period in the control, intermediate 2 (300 mg/kg/day)
and high (1000 mg/kg/day) dose groups. The detailed
number of animals used and doses are shown in Table 1.
Rats of the Crl:CD (SD) strain were obtained from
Charles River UK Ltd to provide 78 healthy animals
which were randomly allocated to study groups. They
were acclimatised for approximately 3 weeks and a
veterinary inspection was performed before the start of
dosing. On Day one of treatment, the rats were approxi-
mately 7 weeks old. The study design is summarised in
Fig. 1a and 1b. The number of the recovery animals
were decided in accordance with the principles of the
3Rs (replacement, reduction and refinement) and only
six animals were used in each group in order to minim-
ise the number of animals killed.

Plasma samples for clinical chemistry analysis
Blood samples were taken from the lateral caudal vein
using lithium heparin anticoagulant at weeks 4 and 13.
Samples were mixed gently and placed on wet-ice until
centrifugation. The resultant plasma was separated and
180 μL of each was transferred to vials containing 9 μL

of 25 % glacial acetic acid in water. Samples were mixed
thoroughly, immediately frozen and stored at −80 °C.
In total 34 parameters were measured, among which

were aspartate aminotransferase, alkaline phosphatase,
potassium, inorganic phosphorus, total protein, total chol-
esterol, urea, and alanine aminotransferase. Further, rela-
tive liver weight was measured which is the ratio between
the measured body weight and the measured liver weight
of each animal. A complete list of clinical chemistry and
their full descriptions can be found in Additional file 1.

Tissue samples
Tissue samples were collected following an overdose of
anaesthetic (halothane Ph. Eur. Vapour). Samples of the
liver were immediately removed, weighed, and sections
snap-frozen in liquid nitrogen. Samples were maintained
at −80 °C until further analysis.
An array of analytical methods were used to examine

the metabolomic and lipidomic profile of tissues, includ-
ing gas-chromatography mass-spectrometry (GC-MS),
direct infusion mass spectrometry (DI-MS) and liquid
chromatography tandem mass spectrometry (LC-MS/
MS). Ten datasets were generated comprising of hepatic
total fatty acids by GC-MS, intact lipids by DI-MS
(positive and negative mode), intact lipids by LC-MS/
MS(positive and negative mode), acyl-carnitines, ei-
cosanoids and targeted aqueous metabolites, aqueous
open profile (positive and negative mode), comprising
approximately 1000 variables.

Liquid-liquid extraction procedures from liver samples
Methanol: chloroform solution (2:1, 600 μL) along with
a stainless steel ball (Qiagen, Hilden, Germany) was
added to approximately 50 mg of frozen tissue and
homogenised with a Tissue Lyser (Qiagen, Hilden,
Germany). Chloroform and water (200 μL each) were
added, samples were sonicated for 15 min and centri-
fuged (13 500 rpm, 20 min). The resulting aqueous and
organic layers were separated and the extraction proced-
ure was repeated.
The resulting aqueous and organic layers were sepa-

rated and the extraction procedure was repeated. Sam-
ples were dried under nitrogen before processing for
GC-MS and LC-MS. GC-MS, and LC-MS/MS methods
for lipid extraction and analysis were carried out accord-
ing to methods previously described [16, 17]. Methods
published in previous publications are also provided as
supplementary for convenience (Additional file 2). Those
methods that are unpublished are detailed below.

Analysis of intact lipids by direct infusion mass
spectrometry (DI-MS)
An aliquot of 30 μL of the organic stock solution was
added to 20 μL of internal standard mix in methanol:

Table 1 Animal identifiers and study design

Group Description Dose
(mg/kg/day)

Animal
number

Recovery
animals

Control 0 1–12 13–18

Low 30 19–30 -

Intermediate 1 100 31–42 -

Intermediate 2 300 43–54 55–60

High 1000 61–72 73–78
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chloroform (1:1). The internal mix represents different
classes of lipids that are used to check mass accuracy to
aid identification of lipids species (2.5 μM 1,2-di-o-octade-
cyl-sn-glycero-3-phosphocholine, 5 μM 1,2-di-o-Phytanyl-
sn-glycero-3-phosphoethanolamine, 2.5 μM C8-ceramide,
2.5 μM N-heptadecanoyl-D-erythro-phingosylphosporyl-
choline 25 μM undecanoic acid, 2.5 μM trilaurin and
5 μM β-sitosterol acetate). Of the resulting solution, 20 μL
was transferred to a glass coated 96 well plate each
containing 80 μL 15 mM ammonium acetate in 2:1
isopropanol: methanol. The instrumentation com-
prised of an Exactive Orbitrap Mass Spectrometer
(Thermo Scientific, Hemel Hempstead, Hertfordshire,
UK) coupled to a robotic nanoflow TriVersa Nanomate ion
source (Advion Biosciences, Ithaca, NY, US) using nanoe-
lectrospray chips with a spraying nozzle diameter of 4.1 μm.
Mass spectrometry data was collected for 1 min in

positive ionisation (+1.5 kV) mode followed by 1 min in
negative ionisation (−1.5 kV) mode. The ion transfer
capillary was set at a temperature of 250 °C for negative
ionisation mode and 225 °C for positive ionisation mode.
For every ten samples one blank and one pooled sample
were added to ensure quality control.

LC-MS/MS analysis for the open (non-targeted) profiling
of aqueous metabolites
For LC-MS/MS analysis of small molecules, aqueous
phase metabolites resulting from the chloroform-
methanol extraction were used. The entire fraction was
dissolved in 300 μl of 70:30 acetonitrile: water containing
20 μM universally 13C- and 15N- labelled glutamate and
20 μM universally labelled succinate. Samples were
vortex mixed, sonicated, centrifuged (17,000 × g, 5 min)
and pipetted into auto sampler vials. Chromatographic
analyses were performed using an Acquity Ultra Per-
formance Liquid Chromatography (UPLC) system with
an Acquity UPLC BEH amide 1.7 μm column (2.1 ×

100 mm) coupled to a Xevo-G2 Quadrupole Time-of-
Flight (Q-ToF) with a Z-spray electrospray source (Waters
Corporation, Elstree, Hertfordshire).
The mobile phase gradient was run at 0.6 mL/min

using mobile phase A containing 0.05 % ammonium
hydroxide in 10 mM ammonium acetate; mobile phase
B was acetonitrile. The initial mobile phase comprised
10 % A. This was subsequently increased to 50 % A over
7 min, after which the gradient was returned to 10 % A
for 3 min. Data were acquired in both positive and nega-
tive ionisation modes using a source temperature of
150 °C and a desolvation temperature of 300 °C. The
desolvation gas flow was 700 L/h and the acquisition
mass range was 50 – 1500 m/z.
For automated peak-picking MarkerLynx™ within the

software suite MassLynx™ (version 4.1) by Waters Ltd.
(Elstree, Hertfordshire, UK) was used. Mass to charge
ratio and intensity pairs were normalised to the internal
standard glutamine [U- 13C, 15N] in positive ionisation
mode and to universally labelled 13C-succinate in negative
ionisation mode. For identification, exact mass data were
searched against the metabolite mass spectral database
METLIN (http://metlin.scripps.edu/metabo_advanced.php).
The final data set from this analysis was autoscaled for

further analysis. Autoscaled variables have a mean of zero
and a variance (and also standard deviation) of one, thereby
giving all variables (metabolites) an equal weight in the
analysis. The analysis methodology is shown in Fig. 2.

Availability of data
List of lipidomics, metabolomics and clinical chemistry
data set are provided in the Additional file 3.

Random forest
We used Random Forest (RF) for data fusion which is a
machine learning ensemble method in conjunction with
multiple learning algorithms to obtain better predictive

Fig. 1 The design of the PPAR-pan agonist treatment study. a Four week old Sprague Dawley rats were acclimatised for approximately 3 weeks
and were killed after a 13 week dose period. b Recovery animals were acclimatised for 3 weeks, dosed with the test compound for 13 weeks and
kept for an additional 4 week dose free period. Before terminal kills urine and plasma samples were collected for urinalysis and clinical chemistry.
After the terminal kills liver weight were recorded and liver samples were collected for metabolomic analysis
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performance [11]. The major difference between machine
learning and linear methods is that, linear methods as-
sume all metabolites are combined in a linear way and
then impact on the outcome, for example control com-
pared with high dose, whereas RF does not assume any
linearity and rather uses the sum of piecewise functions,
and hence is able to discover more complex dependencies.
RF can be used for both classification and regression [11]
based analysis on the data we have generated in this study.
For example using liver metabolites (GC-MS, LC-MS/MS,
DI-MS) and plasma clinical chemistry datasets to classify
the different dose groups and also cross-correlating be-
tween the different datasets. Random Forest (RF) uses a
bootstrapping method for training or testing and decision
trees for prediction. The bootstrapping process generates
random samples from the dataset with replacement. Every
bootstrapped sample has a corresponding left out or ‘out-
of-bag’ (OOB) sample which is used to test the routine,
and prediction is made on those left out samples.

Random forest classification
We used RF as a multiclass classification method using
the control group, four different doses, and the three re-
covery groups as different classes, whilst metabolomic
and lipidomic mass spectrometry data (acyl carnitines,
aqueous metabolites, DI-MS, GC-MS, intact lipids) were
treated as the predictor sets separately.
RF needs to use the number of trees (ntree) and num-

ber of variables (metabolites) randomly sampled as

candidates at each split (mtry), and these parameters
need to be defined. We used ntree = 500 and mtry =
square root of variables in our models. For example, for
the acyl carnitines data set, the mtry value was set to the
nearest integer to the square root of 40 which is 6.
Choosing the parameters was done based on the method
described by Liaw and Wiener, 2002 [18].

Random forest regression
RF was used for regression of the classical clinical chem-
istry phenotypic traits with the metabolomic and lipido-
mic mass spectrometry data (acyl carnitines, aqueous
metabolites, DI-MS, GC-MS, and intact lipids) being
treated as predictor sets separately. RF constructs a pre-
dictive model for each of the response clinical pheno-
types, whilst qualifying the importance of each variable.
In this case the aqueous and organic metabolites, and
their ability to explain the variation present in the clas-
sical clinical chemistry phenotypes. We quantified the
RF regression model based on the variation explained by
the model. The variation explained by RF is not just a
measure of the goodness of fit of the data, but is also de-
termined by the left-out samples (the “out-of-bag” sam-
ples), so it should be interpreted as a measure of
predictive quality (here considered as the Q2). The vari-
ance explained in RF is defined as:
1-(Mean square error (MSE)/Variance of response),

where MSE is the sum of squared residuals of the OOB
samples divided by the OOB sample size. Since the MSE

Fig. 2 Methodological work flow for data integration. Random forest (RF) classification was used to select subsets of metabolites from the
combination of all metabolite data sets. Data sets which are the best in predicting the dose of PPAR-pan administered were assessed by calculating
classification error values. The variables from the individual datasets were selected by a backward elimination approach, and the final set of metabolites
were used for network analysis. As a separate strategic workflow, an RF regression approach was used to link liver metabolites with classical clinical
chemistry parameters. Datasets which explain the variation of the classical clinical chemistry parameters were calculated, and individual variables were
selected using permutation tests. Again, the final set of metabolites and the explained clinical chemistry parameters were selected for network analysis
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is estimated on the OOB samples and the total variance
on all the samples, Q2 can be negative. RF regression
also needs to use some of the parameters used above in
the classification models; for example number of trees
(ntree), and number of variables (metabolites) randomly
sampled as candidates at each split (mtry). We used
ntree = 500 and mtry = one third of the variables. For ex-
ample, for the acyl carnitines data set, the mtry value
will be one third of 40 which is approximately 13.
Choice of these parameters was done based on Liaw and
Wiener, 2002 [18].

The Backward elimination method
To select metabolites we iteratively fitted random for-
ests, at each iteration building a new forest after discard-
ing 20 % of the metabolites with the smallest variable
importance. The selected set of metabolites is used as a
predictor to fit the model to check the OOB error rate.
This procedure is done iteratively using the varSelRF
function from the varSelRF package in R [19].

Permutation test
RF quantifies the importance of metabolites that explain
the variation present in the clinical phenotypes, but does
not give a significance level or a threshold to choose a
possible subset of associated metabolites. Therefore, we
included a permutation test to indicate significance of
the metabolite association in this study. In our situation,
we randomized all clinical phenotypes separately and
each time applied RF. The RF model was applied 1000
times for 1000 different randomizations of the clinical
phenotypes and in each analysis we estimated the vari-
ance explained by the RF model (Q2) and variable im-
portance of all variables in terms of a decrease in node
impurities. We ordered node purity values from the per-
muted data sets and took the 95 percentile from the dis-
tribution impurity values for node impurity to assess the
significance of the of individual genes and metabolites.
The same was done for Q2 values of the model: the 95-
percentile was used as a cut-off to denote significance of
the Q2 value in RF regression.
For classification purposes, we used backward selec-

tion and for regression, we used a permutation test for
assessing the significance of the metabolites.

Network analysis
A network is a set of nodes and a set of edges, where
each node represents either a metabolite or classical
clinical chemistry parameter, whereas the edges repre-
sent associations amongst them. A partial Pearson
correlation coefficients were used to quantify the
strength of association between combinations of me-
tabolites or clinical chemistry parameters. A signifi-
cance threshold of α = 0.05 was used to draw edges

between the selected nodes. We used the partial cor-
relation because it measures the correlation between
two variables after their linear dependence on other
variables is removed. It can distinguish between direct
and indirect associations whereas correlation-based
network cannot and often yield many spurious edges
[20]. Partial correlation analysis was done using the
ppcor package in R [21].

Software
All statistical and network analysis was done in using R
software (v3.2.1). We used two R packages for Random
Forest analysis: randomForest and varSelRF. The R-
Scripts are provided in the Additional file 4.

Result and discussion
Random forest (RF) classification identifies the most
informative mass spectrometry platforms for determining
dose response effects
Using the RF classification approach, four different doses
in addition to the control and the three recovery groups
were treated as multiclass parameters, whilst metabolo-
mic and lipidomic mass spectrometry data were treated
as predictor sets. OOB misclassification error rates were
calculated for the individual datasets. DI-MS in positive
ionisation mode, measuring primarily glycerophospholi-
pids and glycerolipids, was found to have the lowest
OOB errors of 36 % and hence the most informative
compared to other datasets, whilst aqueous open profil-
ing (positive mode) metabolite analysis data resulted in
the highest class error of 72 % and was therefore the
least predictive of dose levels administered (Fig. 3a).
Across the different metabolite datasets the most dis-
criminatory metabolites were selected using a backward
elimination approach (Fig. 3b) [19]. The number of
selected metabolites, were surprisingly small, making the
data matrix considerably smaller and most importantly,
simplifying the biological information needed to be con-
sidered. The selected subset of metabolites were used to
re-calculate the OBB misclassification errors and it was
found that the class error improved in eight out of nine
datasets using these reduced datasets (Fig. 3a). Variable
selection using RF classification is a rapid, and an effect-
ive approach that allows one to comprehend the com-
plexity of the data matrix. (relative concentration
changes of the selected variables are displayed using box
plots and are provided in Additional file 5). The selected
metabolites from the RF analysis (56 in total) were com-
bined, and re-subjected to the RF classification approach.
The OOB error rates improved to 22 % (from 36 % for
the best dataset considered on its own previously); whilst
re-applying a backward elimination process the most
discriminatory variables reduced to 12 and lowered the
OOB error even further to 21 %.
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Partial correlation network analysis as an effective tool
for visualising metabolic pathways
As a next data processing step, the partial correl-
ation between the selected 12 metabolites were
calculated. The generated network figure (Fig. 4)
provides an interpretable and useful view of metab-
olite connections.
Four broad themes emerged from the analysis. Firstly,

the selected 12 metabolites include only lipids, and no
aqueous compounds, reflecting the intimate role of
PPARs in lipidomic remodelling. Secondly, changes in
acyl-carnitines (C4-DC and C5:1) are suggestive of po-
tential aciduria [22]. The building up in aciduria comes
from increased glycolysis and production of lactate as a

result of impaired mitochondria. As PPARs are known
to regulate mitochondrial and peroxisomal lipid metab-
olism, and aciduria is commonly reported in mitochon-
drial disorders, this suggests common pathophysiological
mechanism of damage. Thirdly, we noted that metabo-
lites C20:3, C20:5, C22:5 are all precursors of eicosa-
noids or lipid mediators that can act as signalling
molecules. Furthermore, all phospholipids highlighted by
our RF approach contain at least four double bonds, and
hence these species also potentially feed into the arachi-
donic acid cascade and eicosanoid production. Changes
in PCs with at least four double bonds, most likely rep-
resent lipid remodelling to generate eicosanoid species
derived from arachidonic acid.

Fig. 3 Random Forest (RF) classification approach for the determination of class error (how well the PPAR-pan dose level is predicted) and the selection of
variables (which variables contribute to PPAR-pan dose level prediction) in each different dataset. a Class error of metabolomic and lipidomic dataset
comparing values using the full set of variables and selected variables for calculations. b The number of variables contained within each dataset (in blue)
and the number of metabolites after variable selection (in orange). For example, the number of total acyl-carnitines is 40 (in blue) and only four were
selected (in orange)
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Finally, the odd chain saturated fatty acid: C17:0,
commonly considered to be a marker of ruminant fat
intake [23], was also found as an important dose
predictor and was highly discriminatory, leading us to
further speculate on suggestions linking this fatty acid
to fatty acid α-oxidation [23], possibly in peroxisomes.

The RF regression approach for understanding toxicology
in the era of -omics technologies
Thorough understanding of new methods is essential in
order to avoid misinterpretation of data which could
lead to false conclusions about a complex biological
process like toxicity. Data generation for new biomarkers
that are used to characterise and describe cellular re-
sponses are growing exponentially in the post genomic
era [24]. This information has an unrealised power to
provide increased understanding on toxicological out-
comes. While the potential of -omic approaches have

been realised by regulatory agencies for improving the
risk assessment process, the strategy for evaluating cell
and tissue damage from a toxic insult has changed very
little for almost sixty years [25, 26].
In an attempt to merge metabolomics and lipidomics

data with different clinical chemistry phenotypes, such
as relative liver weight and plasma clinical chemistry
parameters, an RF regression approach was used. First,
relative liver weight was examined, and the variation
explained by metabolomic and lipidomic datasets in
relative liver weight was calculated. Metabolites explain-
ing the variation were filtered out form the rest of the
data, and the RF regression calculations were repeated.
There were no significant differences in the variations
explained (Q2) when comparing full datasets to only
selected metabolites (Fig. 5a), although the number of
metabolites driving the variation were much smaller
when compared to the full dataset (Fig. 5b). The intact

Fig. 4 Network of selected metabolites. a A partial correlation network of the most discriminatory metabolites (12) differentiating between
different doses of the PPAR-pan treatment concentrations. The solid lines denote positive and dotted lines denote negative correlations, and the
thickness of the lines indicate the strength of the associations. b Biological pathways and their potential connections associated with the selected
12 metabolites. Note that metabolites of interest that were detected by our RF approach are color-coded on both pathway maps
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lipids measured in positive ionisation mode by DI-MS
were found to explain the highest variation (84 %) with
regards to relative liver weight changes and the lowest
variation was explained by intact lipid LC-MS data in
negative ionisation mode (32 %).
The plasma clinical chemistry parameters were investi-

gated in a similar fashion to the relative liver weight,
with the exception, that this dataset contains multiple
(34) clinical chemistry variables as outcomes, each of
which were examined, and the metabolites explaining

their variation identified. The highest values for varia-
tions explained include aspartate aminotransferase
(AST), albumin, glucose and alkaline phosphatase (ALP)
resulting in 42, 26, 35 and 27 % variation explained (Q2),
respectively (Fig. 5c). It is also apparent form the data,
that GC-MS of total fatty acids and DI-MS measure-
ment of lipids measured in both positive and negative
ionisation modes performed the best in explaining the
variation in the parameters (Fig. 5c). A partial correl-
ation network diagram with relative liver weight is

Fig. 5 Variations explained by metabolomic and lipidomic datasets in relative liver weight and clinical chemistry parameters using the random
forest (RF) regression approach. a Variation explained (Q2) in relative liver weight with and without variable selection. b The number of selected
variables compared to the original (full dataset) number of variables. c Variation explained (Q2) with all the metabolomic and lipidomic data
linking with phenotypes associated with plasma clinical chemistry from liver analysis. In total four parameters showed the largest variation
explained across the different data sets
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shown in Fig. 6. Information of the other 30 variables
assessed is provided in Additional file 6.
The phospholipids explaining the highest variation in

relative liver weight are highly unsaturated, and there-
fore, structurally similar to the lipids identified in the
dose response analysis described above. It is likely that
these species can feed into the eicosanoid cascade of ara-
chidonic acid metabolism. There are two well estab-
lished degradation pathways of highly unsaturated fatty
acids, one is the β-oxidation pathway in mitochondria
and peroxisomes and the other is the formation of eicos-
anoids. PPARs play a key role in both metabolic pro-
cesses. However, we also note, again, an unexpected
change in the C17:0 total fatty acid content, which might
link the PPAR system to a thus far under-investigated
possibility of fatty acid α-oxidation pathway.

Investigation of eicosanoid production from intact lipids:
Biological perspective
In order to validate the changes in lipid mediator pre-
cursor fatty acids C20:3, C20:5, C22:5 and their role in
predicting dose response, and to investigate the possibil-
ity that the highly unsaturated phospholipids feed into
the arachidonic acid cascade, an additional dataset was
generated focusing on the measurement of eicosanoids.
Since dose responses were highly predictable, only a sub-
set of the study samples were analysed, including the
control, the intermediate dose 2 (300 mg/kg/day) and
the highest dose group (1000 mg/kg/day) samples. Eicos-
anoids are known to possess pro- or anti- inflammatory
properties, and the liver is highly responsive to in-
flammation as it is densely populated with its own
macrophages, the Kupffer cells, which account for
over 10 % of total liver cells [27]. Importantly,

macrophages are elite producers of eicosanoids and
other related lipid mediators during inflammation.
Kupffer cells not only contribute to the production of
inflammatory mediators they have also well-
established connections to diet induced hepatic stea-
tosis [28], PPAR-α activation, and non-genotoxic
carcinogenesis [16]. From a metabolomics perspective,
the role of macrophages in inflammatory signalling is
mostly understood in the context of arachidonic acid
metabolism. Arachidonic acid (AA; 20:4) is stored in
PLs and during inflammation it is hydrolysed by cyto-
solic phospholipase A2 (cPLA2). It is also well estab-
lished, that the ubiquitously expressed diacylglycerol
kinases (DGKs) phosphorylate sn-1,2-DGs, with
several DGKs exhibiting specificity for sn-1,2 DGs
containing C20:4 [29, 30]. It is therefore reasonable
to assume that a large proportion of PLs storing AA
can be synthesised from DGs. On the other hand,
precursors of phospholipase C (PLC), which cleaves
off phosphoglycerol headgroups of PLs, exhibit a high
abundance of C20:4 esterified at the sn-2 position of
the glycerol backbone [29, 31].
In order to address the complexity and connections of

lipid mediators with PLs and DGs, Pearson correlation
and partial correlation analysis was applied using the ei-
cosanoid and the DI-MS datasets for both positive and
negative ionisation modes. There were 14 variables with
a Pearson correlation ≥0.8, and all eicosanoids were
found to positively correlate with the intact lipids
(Fig. 7a, 7b). For those metabolites partial correlation
analysis was performed and only subset of the metabo-
lites found connected. This demonstrates that lipidomic
profiling can offer insight about the source of down-
stream signalling effects in cells.

Fig. 6 A partial correlation network of the nine selected variables linking with the relative liver weight (ratio between the measured body weight
and the measured liver weight of each animal). Different types of data are shown in different colours. The thickness of the lines relate to the
extent of the correlation, where straight lines indicate positive and dotted lines indicate negative correlations
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The central role of the liver in regulating systemic me-
tabolism has put this organ in the spotlight for decades
in toxicology, and yet many molecular mechanisms are
still mostly unexplored. For example, AA metabolism as
highlighted in the current study, and the metabolic con-
cept, that the source of AA for eicosanoid production is
based in PLs although widely accepted is being chal-
lenged [32]. Indeed, the pathways for AA liberation, how
enzymes access their substrates, and how these mecha-
nisms are controlled by PPARs remains essentially unre-
solved. We have demonstrated above the versatility of
lipidomic data integration, and that the investigation of
lipid signalling molecules is an important challenge for
future research. In addition, our results highlight the
need for further mechanistic studies to better under-
stand how lipid remodelling at the gross level (e.g. DI-
MS methods) produces changes in lipid signalling
molecules such as eicosanoids.

Conclusions
In this study, we present a powerful strategy for integrat-
ing multiple -omics data using a machine learning algo-
rithm (RF) and selecting discriminatory metabolites for
partial correlation network analysis. We used RF regres-
sion and classification for integrating metabolomics data
sets. In terms of comparing RF to other similar ap-
proaches, Scott et al., 2013 [14] studied and tested 28
classifiers on NMR spectroscopy or MS data of different
origins as the training sets for various multivariate tools.
Data came from four metabolomics or food projects,
whose class numbers differed. Random forests per-
formed best on high-dimensional data, but was only
used in 4.5 % of papers. This procedure can handle high
dimensional data (for example, where the number of
metabolites is much larger than the number of samples)
and has an internal crossvalidation procedure (using the
OOB samples). However, it could be considered a

limitation that a RF model by default will use all vari-
ables simultaneously and if we want to perform variable
selection, we need to set a threshold on the number of
variables or we need to select variables based on a sig-
nificance criterion or a variable selection procedure. The
backward elimination procedure implemented in the
package varSelRF uses the OOB as minimization criter-
ion. Thus, the OOB performances achieved with the re-
duced model is likely to be biased; one possible solution
would be applying the cross validation based protocol
discussed in [33]. We used each of the predictor data
separately (Fig. 3a) because we would like to interrogate
each of the data sets independently to determine if those
datasets are informative or not. If we would have com-
bined the data into a single matrix, we would have
missed that information. For example, aqueous open
profiling data with all the variables gives rise to more
than a 70 % class error. Thus, this data set is probably
not useful as it is not predictive enough for a given re-
sponse variable. This approach will help biologists if they
want to perform targeted experiments in the future fol-
lowing an open profiling metabolomics experiment as
part of the discovery phase. Thus, this data fusion strat-
egy will help them to identify leads from a huge pool of
–omics data sets. To the best of our knowledge, no such
integrative approach have been utilised to link classical
hepatic parameters with metabolomic and/or lipidomic
datasets. We believe, that by linking classical toxicology
parameters with metabolite markers, more accurate and
early detection of toxicity can be facilitated. In addition,
the presented approach can easily be applied in human
to discover novel relationships in multi -omic data sets.
In conclusion, our integrative approach offers a good
starting point for addressing the complexity of interre-
lated metabolites, although more studies are needed for
validation and to further explore the interrelation be-
tween metabolism, signalling, and disease.

Fig. 7 a A correlation network of the 14 selected variables based on a Pearson correlation coefficient of more than 0.8 (r > 0.8) linking with the
relative liver weights. Lipid mediators (lipids both shorter and longer than eicosanoids) are shown in green whereas phospholipids are shown in
blue. b Partial correlation with 14 variables are shown
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Additional file 1: List of clinical chemistry analysis performed and their
full descriptions. (DOCX 13 kb)

Additional file 2: Method descriptions for GC-MS, LC-MS/MS analysis of
intact lipids, targeted analysis of aqueous metabolites and eicosanoids by
LC-MS. (DOCX 20 kb)

Additional file 3: List of lipidomics, metabolomics and clinical chemistry
data set. (XLSX 897 kb)

Additional file 4: The R- Scripts used in the analysis. (TXT 4 kb)

Additional file 5: Box plot of selected variables using RF
classification. (PPTX 104 kb)

Additional file 6: Table of classical toxicology and variation explained
(Q2) linking different data sets. (PPTX 60 kb)
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