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Abstract

Background: Binding of transcription factors to transcription factor binding sites (TFBSs) is key to the mediation of
transcriptional regulation. Information on experimentally validated functional TFBSs is limited and consequently there
is a need for accurate prediction of TFBSs for gene annotation and in applications such as evaluating the effects of
single nucleotide variations in causing disease. TFBSs are generally recognized by scanning a position weight matrix
(PWM) against DNA using one of a number of available computer programs. Thus we set out to evaluate the best
tools that can be used locally (and are therefore suitable for large-scale analyses) for creating PWMs from
high-throughput ChIP-Seq data and for scanning them against DNA.

Results: We evaluated a set of de novomotif discovery tools that could be downloaded and installed locally using
ENCODE-ChIP-Seq data and showed that rGADEM was the best-performing tool. TFBS prediction tools used to scan
PWMs against DNA fall into two classes — those that predict individual TFBSs and those that identify clusters. Our
evaluation showed that FIMO and MCAST performed best respectively.

Conclusions: Selection of the best-performing tools for generating PWMs from ChIP-Seq data and for scanning
PWMs against DNA has the potential to improve prediction of precise transcription factor binding sites within regions
identified by ChIP-Seq experiments for gene finding, understanding regulation and in evaluating the effects of single
nucleotide variations in causing disease.
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Background
The sequence-specific binding of transcription factors to
transcription factor binding sites (TFBSs) is key to the
mediation of transcriptional regulation [1]. High through-
put experimental methods for identifying TFBSs such as
ChIP-Chip and ChIP-Seq identify a region of 100–1000
base pairs (b.p.) while the actual TFBS is a short region
(typically 9–15 b.p.) within that region. Nonetheless, there
is a small set of experimentally precisely validated func-
tional transcription factor binding sites which are stored
in reference databases such as PAZAR [2] and ORe-
gAnno [3]. However this is an insignificant proportion of
transcription factor binding sites in terms of the human
genome. Hence there is a need for accurate computa-
tional prediction of transcription factor binding sites [4],
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for gene finding, understanding regulation and in appli-
cations such as evaluating the effects of single nucleotide
variations (SNVs) in causing differential expression [4]
and leading to disease [5].
Prediction of transcription factor binding sites is gen-

erally performed by scanning a DNA sequence of interest
with a position weight matrix (PWM) for a transcription
factor of interest [6, 7] and various pattern-matching tools
have been developed for this purpose. These tools fall into
two classes: those that predict clusters of transcription
factor binding sites or those that predict individual sites.

Experimental identification of transcription factor binding
sites
There are many in vitro and in vivo experimental
approaches that have been used to identify transcription
factor binding sites and these are reviewed briefly here.
In vitro methods include: (i) The Electro-Mobility

Shift Assay (EMSA) [8] which exploits the ability of a
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non-denaturing polyacrylamide gel to act as a molecular
sieve, separating protein-bound DNA from unbound
DNA. (ii) The DNase I footprinting/protection assay
combines the cleavage reaction of DNase I with EMSA
[9]. A key problem with both EMSA and DNase I foot-
printing is the identification of unwanted protein-DNA
interactions that result from non-specific DNA binding
proteins [8]. (iii) Systematic Evolution of Ligands by
EXponential enrichment (SELEX) [10] works by screen-
ing a large pool of short, random oligonucleotide probes
which are recognized by a TFBS of interest [10]. A refine-
ment, SELEX-seq, involves the selected dsDNAs being
subjected to massively parallel sequencing [11].
There has been a recent shift towards in vivo approaches

[4]. In the (iv) Chromatin ImmunoPrecipitation (ChIP)
assay, a variation of the ‘pull down’ class of assay [12],
the DNA-binding protein of interest is cross-linked to
the DNA using formaldehyde. The DNA is then frag-
mented into small fragments of around 100–1000 b.p.
and an antibody specific for a given transcription fac-
tor is then used to immunoprecipitate the DNA-protein
complex. The cross-links are then reversed, releasing the
DNA for PCR amplification [12]. High throughput ver-
sions of the ChIP assay involve hybridizing the resulting
fragments to genomic tiling microarrays, an approach
known as ChIP-chip [13], or the resulting DNA fragments
can undergo massively parallel sequencing, an approach
known as ChIP-Seq [14].
There are a number of advantages of using ChIP-Seq

instead of ChIP-chip. Key improvements are in base pair
resolution, avoiding non-linearity and saturation of ChIP-
chip signal intensity, ability to analyze sequence repeat
regions, and avoiding limitations from the limited selec-
tion of probes on a ChIP-chip array. Overall ChIP-Seq has
a higher specificity and sensitivity compared with ChIP-
chip [14, 15] and has largely superseded the ChIP-chip
method. Consequently, ChIP-Seq is the current ‘gold stan-
dard’ for identifying protein/DNA interactions sites such
as histone modifications as well as transcription factor
binding sites [16]. A recent refinement to ChIP-Seq is
ChIP-exo where the resulting fragments from the ChIP
assay are trimmed using lambda exonuclease. This results
in fragments that are shorter (∼ 50 b.p.), but still larger
than the precise TFBS [17].

Position weight matrices (PWMs)
Position Weight Matrices (PWMs) are the most widely
used approach to modelling TFBSs. In contrast to a con-
sensus model (which simply gives the most common
base(s) at each position of a binding motif ), a matrix-
based PWM model (which is simply a 4 × n matrix of
scores for each of the 4 bases across each position in the
binding motif ) accounts for the preference for each of the
four nucleotides at each position in the motif [4, 6, 18].

The high-throughput techniques, particularly ChIP-
Seq and SELEX-seq, provide an opportunity to iden-
tify and characterize protein-DNA binding events at a
genome-wide level, contrary to the previous techniques
that were only able to characterize a small number of
protein-DNA binding events. Hu et al. [19] have suggested
that PWMs derived from transcription factor binding
sites detected by these methods will be more accurate
than PWMs derived from techniques such as SELEX, or
compilations of individual promoter assays that detect
limited transcription factor binding site numbers. Fur-
ther, the ChIP-Seq technique has been found to pro-
duce PWMs with greater accuracy than ChIP-chip owing
to the superior resolution provided by the ChIP-Seq
technique [19, 20].
PWMs can be obtained from a number of resources

including the commercial database TRANSFAC [21] and
the open access database JASPAR [20]. TRANSFAC
PWMs are derived from experimental evidence obtained
from the literature [21], but availability and application is
limited by a commercial licence. The bulk of the PWMs
in earlier versions of JASPAR were derived from SELEX
experiments and individual promoter assays, but since
2014, updates to JASPAR [22] now include new PWMs
derived from ChIP-Seq data using MEME for motif dis-
covery. Other recent resources include HOCOMOCO
[23], HOMER ([24] http://homer.salk.edu/homer/motif/
HomerMotifDB/homerResults.html) and CIS-BP [25].
However, JASPAR is a well-established and widely-used
resource that was employed by us in previous unpublished
work and consequently was used in some of the work
presented here.

de novomotif discovery
While large scale ChIP experiments allow the genome-
wide identification of binding regions for a specific tran-
scription factor, these regions are much longer than the
actual binding site for a specific transcription factor
meaning that the actual transcription factor binding sites
still need to be identified [26, 27].
Various motif discovery methods have been developed

and there have been several reviews of the approaches
used ([28–34], for example). The most popular algo-
rithms are either enumerative or probabilistic. Enumer-
ative methods examine frequencies of all DNA strings
forming a PWM from the over-represented strings that
have been identified [1]. Probabilistic methods generate
a local multiple alignment of sequences while learning
the parameters of the PWM using approaches such as
expectation-maximization [35], Gibbs sampling [36], or
greedy approaches [37]. The advantage of enumerative
methods is that there is less chance of them getting
stuck in a local optimum, while probabilistic methods
can cope with arbitrary motif model variations and hence
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remain unaffected by motif length [1]. For example, the
well-known motif discovery program MEME [38] uses a
probabilistic method with expectation-maximization [39].
De novo motif discovery has proved to be challenging

when carried out on the binding regions resulting from
the genome-wide techniques of ChIP-chip and ChIP-
Seq using conventional motif discovery programs such
as MEME, owing to the large volumes of data gener-
ated by these techniques; ChIP-Seq can generate over
10,000 sequences in a single run. Hence a common prac-
tice has been to use these tools on a subset of the
sequences [19, 40, 41]. However, Hu et al. [19] have sug-
gested that this practice will lead to inaccurate PWMs
and consequently new tools have recently been developed
that are able to handle the large volumes of data gen-
erated from these high-throughput technologies. These
include the freely available software packages ChIPMunk
[42], HOMER (Hypergeometric Optimization of Motif
EnRichment) [24], rGADEM (Genetic Algorithm guided
formation of spaced Dyads coupled with EM for Motif
identification) [43] and MEME-ChIP [44, 45].

Evaluation of the performance of transcription factor
binding site prediction tools andmotif discovery tools
As well as high quality PWMs to model TFBSs, the
computational prediction of TFBSs requires a pattern
matching tool. A number of tools are available for this
purpose which fall into two classes: those that pre-
dict clusters of sites and those that predict individ-
ual sites. Consequently the range of tools that can be
used locally for motif discovery designed for use with
high-throughput data and tools for identifying TFBSs
using PWMs warrants an independent performance
evaluation.
Approaches for scanning PWMs against DNA were

reviewed by Hannenhalli [6] and by Bulyk [30], but the
number of performance comparisons is limited. Most
have been as part of authors’ evaluations of their own
new tools ([46, 47], for example) although an indepen-
dent assessment was performed by Roulet et al. [48] and a
much more recent survey of online PWM scanning tools
was performed by Tran and Huang [49].
A number of authors have performed comparisons of

methods for motif discovery. These include work by
Sandve and colleagues [32, 50, 51], McLeay and Bailey
[52] and Orenstein et al. [53]. Kibet and Machanick [34]
assessed the performance of matrices obtained from dif-
ferent sources, but did not directly assess themotif discov-
ery tools. The most comprehensive evaluations of tools
are those performed by Tompa et al. [39], Hu et al. [54],
Medina-Rivera et al. [55] and, most recently, Weirauch
et al. [56]. Tompa et al. [39] performed an independent
assessment of the performance of 13 tools designed for

discovery of novel regulatory elements with no a pri-
ori knowledge of the transcription factor involved. They
made predictions across a number of species (fly, human,
mouse and yeast) with known binding sites taken from
TRANSFAC. Assessment was performed at a nucleotide
level (i.e. whether individual bases were correctly iden-
tified as being part of a binding motif or not) and they
concluded that, overall, Weeder [57] performed best. Hu
et al. [54] performed another assessment around the same
time. However, while Tompa et al. allowed the authors of
tools to fine-tune parameters to achieve what they consid-
ered to be the best results, Hu et al. performed minimum
intervention reflecting the approach likely to be taken by
the average end user. They assessed five methods at dif-
ferent levels: nucleotide, binding site, sequence and motif.
They also created a ‘consensus ensemble algorithm’ which
exploits variations in predictions by stochastic methods
to refine predictions. Neither Tompa et al. nor Hu et al.
assessed the quality of any models (PWMs) generated
from these motifs by applying them to search for TFBSs in
DNA.
More recently, Kibet and Machanick [34] reviewed and

evaluated different approaches and pointed out the dif-
ficulty in evaluating motif discovery tools by applying
the PWMs to motif searching: annotation of precise true
TFBSs in DNA, to use as a gold standard reference set,
is limited. An assessment of motif discovery methods
using binding site prediction for evaluation was per-
formed by Medina-Rivera et al. [55]. They generated an
assessment method that combines theoretical and empir-
ical score distributions to assess reliability of PWMs for
predicting TFBSs and used this to analyze PWMs for
bacterial, yeast and mouse TFBSs. Weirauch et al. [56]
evaluated 26 tools for motif discovery using in vitro data
for 66 mouse TFBSs, looking at PWMs and more com-
plex models such as dinucleotide matrices and secondary
motifs. They added ChIPMunk [42] and MEME-ChIP
[44, 45] for a further evaluation of performance on in
vivo data using five mouse and four yeast TFBSs. During
this comparison they found that ChIPMunk outperforms
MEME-ChIP.
In this paper we conduct an independent assessment of

a set of four motif discovery tools specifically designed
for handling large datasets from high-throughput meth-
ods (including ChIPMunk and MEME-ChIP evaluated by
Weirauch et al.), but using human ChIP-Seq data obtained
from ENCODE [58]. Performance evaluationmakes use of
a gold standard reference set of experimentally-validated
precise human transcription factor binding sites. We also
evaluate a number of open source PWM scanning tools
that are well documented and can be installed locally and
are therefore more suitable for large scale analyses. These
pattern matching tools represent both classes (individual
and cluster).
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Methods
Sources of experimentally validated TFBSs
To evaluate performance, we identified experimentally-
validated TFBSs from resources that, rather than just
providing PWMs or approximate regions to which TFBSs
bind, provide precise validated binding sites for a lim-
ited set of genes. Three sources of such data are avail-
able: PAZAR [2], ORegAnno [3, 59] and TRANSFAC
[21]. TRANSFAC was rejected because of its commer-
cial licensing, while the data in PAZAR are a superset
of ORegAnno and consequently, the PAZAR dataset was
selected.

Selecting data from PAZAR
PAZAR contains some redundancy (multiple instances
of the same TFBS annotated for a given gene), so any
duplicate TFBSs were removed.
PAZAR contains 159 genes annotated with TFBSs that

are contained in either JASPAR or ENCODE-ChIP-Seq
data. This set contains data for 14 TFBSs with corre-
sponding PWMs in JASPAR coming from a total of 156
human genes. This set is referred to below as ‘PAZAR-J’.
The set also contains data for 12 transcription factors
with binding data in the ENCODE-ChIP-Seq data which
come from a total of 149 genes (‘PAZAR-E’). The PAZAR-
J and PAZAR-E datasets overlap for 11 of the transcription
factors (See Fig. 1 and Additional file 1 for details.)

Tool evaluation
Initial evaluation of themotif scanning tools (using PWMs
from the 2010 release of JASPAR that we had used in

Fig. 1 Overlap of transcription factor data. The Venn diagram shows
overlaps between known sites in PAZAR, the PWMs in JASPAR and
those derived from the ENCODE-ChIP-Seq data used in this paper

earlier work, referred to here as JASPAR.2010) was per-
formed for each of the 14 transcription factors in PAZAR-
J by selecting the appropriate subset of the 156 genes in
PAZAR-J having validated binding sites for the transcrip-
tion factor in question.
Evaluation of the motif discovery tools was performed

for each of the 12 transcription factors in PAZAR-E
by selecting the appropriate subset of the 149 genes in
PAZAR-E having validated binding sites for the transcrip-
tion factor in question and using the motif discovery tool
selected in the initial evaluation (FIMO).
Finally, re-evaluation of the motif scanning tools (using

PWMs generated by rGADEM) was also performed for
each of the 12 transcription factors in PAZAR-E by select-
ing the appropriate subset of the 149 genes in PAZAR-E
having validated binding sites for the transcription factor
in question.

DNA Data
TFBSs can occur in the promoter region, in introns and
exons, and far upstream of genes [60, 61]. Consequently
the complete gene sequence (i.e. both exons and introns),
together with an upstream region of 10,000 b.p. of each
of the genes was obtained from Biomart [62] using the
biomaRt package in Bioconductor [63–65].

Performance Metrics
True positives (TP) were defined as predicted binding sites
having a minimum overlap of 70 % of base pairs with
known binding sites from PAZAR. Similarly, false pos-
itives (FP) were defined as predicted binding sites not
having an overlap of at least 70 % with a known bind-
ing site and false negatives (FN) were defined as known
binding sites that were not identified. Obtaining a true
estimate of the total number of negative sites (and hence
the number of true negatives,TN) is difficult and therefore
we adopted the normal practice of avoiding performance
measures that require true negative counts [66]. For clus-
ter predictors, all predicted component TFBSs within a
region must overlap with known sites by at least 70 % of
base pairs for a prediction to be regarded as a true positive.
As a control, all the DNA sequences were scrambled

using the ‘shuffleseq’ program from the EMBOSS suite
(version 6.4.0) [67]. In this case there are no actual pos-
itives and therefore no true positives or false negatives.
Any positive predictions are therefore classified as false
positives and the number of actual negatives (AN = FP +
TN) was defined as AN = L/lt where L is the length of the
sequence and lt is the length of the PWM in question).
Performance was assessed by calculating sensitivity

(Sn = TP/(TP + FN)), positive predictive value (PPV =
TP/(TP + FP)) and geometric accuracy (ACCg =√
Sn.PPV) [66], averaged across the TFBS PWMs and

genes analyzed. For the scrambled sequences, a false
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positive rate was calculated (FPRs = Np/AN, where Np
is the number of predicted sites and AN is the number of
actual negatives as defined above).

Derivation of PWMs
The methods used for deriving PWMs from the
ENCODE-ChIP-Seq data are summarized in Fig. 2.
ChIP-Seq data for the human transcription factors

were obtained from the ENCODE project (http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeSydhTfbs/) in FASTQ format. Only the ChIP-
Seq data that had a corresponding control sample
available were selected to help to control biases and
artefacts that occur in the experimental protocol [14, 68].
ChIP-Seq control samples are obtained from a mock
experiment without the specific antibody and were used
during the peak calling process as recommended by
Bardet et al. [68]. It is critical that the short reads arising
from ChIP-Seq are aligned properly to the reference
genome, otherwise false positives and false negatives
would occur. Thus, low quality reads and adaptor
sequences were identified using FASTQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and
removed using the FASTX TOOLKIT (http://hannonlab.
cshl.edu/fastx_toolkit/).
The reads were then mapped to the human genome

version hg19 using Bowtie [69]. The resulting Sequence
Alignment/Map format (SAM) files were converted to
binary format (BAM) files and indexed using SAMtools
[70]. This step reduces the file size and allows rapid access
which is essential given the large size of the data.

After the reads were aligned to the reference genome,
peak calling was performed by identifying statistically sig-
nificant binding regions that are enriched in the ChIP-Seq
sample compared with the control sample [14]. It has
been suggested that peaks should be called using more
than one peak caller and the intersection of peaks should
then be taken [71]. Consequently peaks were called using
bothMACS [72] and the bioconductor package BayesPeak
[63, 73, 74]. Common peaks were identified and repli-
cates were pooled using the bioconductor package ChIP-
peakAnno [63, 75]. A set of peak regions — centred on
the summits of the peaks (±100 b.p.) in order to prevent
bias towards longer peak regions [68] — were obtained in
FASTA format. We refer to these filtered peak data as the
‘ENCODE-ChIP-Seq data’.
The TFBS motif discovery tools evaluated were MEME-

ChIP [44, 45], HOMER [24], ChIPMunk [42] and rGA-
DEM [43, 63] and these were tested using the 12
transcription factors in the PAZAR-E dataset. Since these
programs are able to deal with large datasets, all peak
regions were used. The motif discovery methods have var-
ious adjustable parameters and these were explored in
10 % steps.

Results and discussion
As shown in Fig. 1, the overlap between transcription
factors having validated binding sites in PAZAR, the
PWMs describing these TFBSs in JASPAR and the binding
sites in the ENCODE-ChIP-Seq data is fairly small. Only
11 transcription factors (E2F1, ELK4, GATA2, GATA3,
IRF1, MAX, NF-κB, STAT1, YY1, CTCF and NFYA) have

Fig. 2 Flowchart summarising the methods used to derive PWMs from the ENCODE-ChIP-Seq data. See text for details
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validated TFBSs in PAZAR, PWMs in JASPAR and are
also represented in the ENCODE-ChIP-Seq data. BRCA1
was also found in all datasets, but has recently been
removed from JASPAR since its sequence specificity has
been questioned [76]. While the ENCODE-ChIP-Seq data
are actually more comprehensive than indicated, only
ChIP-Seq datasets having no access restrictions and for
which the transcription factor had a control ChIP-Seq
sample available were chosen. Three additional transcrip-
tion factors have data that overlap between JASPAR and
the ENCODE-ChIP-Seq data (USF2, ZNF263 and JUND)
and between PAZAR and JASPAR (ESR1, ESR2 and SP1)
while one more has data that overlaps between PAZAR
and the ENCODE-ChIP-Seq data (TAL1). Consequently
the number of PWMs that could be used for the evalua-
tions described below was limited to 11–14.
Logically it makes sense to evaluate motif discovery

methods first and then to evaluate the tools available for
matching the derived PWMs to DNA sequences. How-
ever the evaluation of the performance of motif discovery
methods requires a tool to test the performance of the
resulting PWMs. Therefore we needed to select a motif
scanning tool for this purpose. In earlier work we had
tested the performance of a number of PWM scanning
tools using older JASPAR matrices (JASPAR.2010). These
results are summarized below and the best performing
tool was then used for evaluating the motif discovery
methods. Finally, the performance of the scanning tools
was reassessed using motifs from the best performing
motif discovery method.

Selecting a PWM scanning tool for evaluation of motif
discovery methods
As stated above, in order to evaluate motif discovery
methods, we need to scan the motifs against DNA and
compare the predictions with a gold-standard set of
known precise TFBSs. In work done in 2011, we evalu-
ated the performance of different PWM scanning tools
using the older JASPAR.2010 matrices [20] which had
been derived from SELEX and individual promoter assays.
Consequently, we exploited that earlier analysis for this
work. PWMs for 14 human transcription factors from
JASPAR.2010 which are also present in PAZAR were
selected (the ‘PAZAR-J’ dataset) and the performance
of the scanning methods was evaluated on these using
PAZAR as the gold standard.
TFBS cluster prediction tools chosen were MCast [77],

Baycis [78], Cister [79], ClusterBuster [80] and Comet
[81] while individual TFBS prediction tools chosen were
FIMO [82], Clover [83], Matrix-Scan (part of the RSAT
suite) [84], Patser (also part of RSAT) [84] and Possum-
Search [85]. Note that Cister, Comet and ClusterBuster all
come from theWeng laboratory, with ClusterBuster being
their latest software. Consequently this analysis provides

an interesting comparison to find out whether their latest
software is indeed the best performing.
All tools having variable cutoffs for making predictions

were evaluated to ensure the optimum cutoff was chosen
by using 10 % steps for all parameters. In all cases, the
default settings were found to give the best performance
and were used for all future evaluations.
Table 1 shows that FIMO and MCAST are the best per-

forming TFBS prediction tools for individual sites and
clusters respectively and FIMO was therefore selected
for evaluation of the motif finding methods. (Complete
results for individual PWMs are provided in Additional
file 2).

Evaluation of motif discovery methods
We chose to evaluate four methods for motif discov-
ery that have been developed especially for working with
large genome-wide datasets and that are open source and
well documented: rGADEM [43], HOMER [24], ChIP-
Munk [42], and MEME-ChIP [44, 45]. For this purpose,
TFBS PWMs were derived, using the protocol described
above, for the 12 transcription factors in the PAZAR-E
dataset.
The tools have parameters that can be adjusted for motif

discovery and these were explored for all tools using a
10 % step size. It was found that the defaults produced
PWMs that resembled well-established motifs for all tools
with the exception of rGADEM where the e-value param-
eter had to be set to a value of 0.5 rather than the default
value of 0.0. The motif discovery tools are also able to
generate multiple possible motifs. During the exploration

Table 1 Performance of TFBS prediction methods using
JASPAR.2010 PWMs

Sn PPV ACCg FPRs

CLUSTER

Baycis 0.599 0.497 0.545 0.040

Cister 0.635 0.565 0.599 0.037

MCast 0.774 0.682 0.726 0.032

Comet 0.682 0.589 0.634 0.037

ClusterBuster 0.656 0.580 0.617 0.036

INDIVIDUAL

Matrix-Scan 0.647 0.579 0.612 0.027

Clover 0.674 0.584 0.627 0.022

FIMO 0.816 0.734 0.774 0.015

Patser 0.723 0.653 0.687 0.016

PossumSearch 0.708 0.635 0.670 0.019

Average sensitivities (Sn), Positive Predictive Value (PPV) and geometric accuracy
(ACCg) are reported together with the false positive rate using scrambled sequences
(FPRs). The best-performing tools, MCast and FIMO are highlighted in bold.
Performance was evaluated using the 14 PWMs in the PAZAR-J dataset
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of parameters, it was found that the first PWM gener-
ated always best-resembled well-establishedmotifs for the
TFBSs used in this work, and consequently only the first
PWM was used.
Performance was evaluated by using the FIMO motif

scanning tool comparing predictions of TFBS locations
with the PAZAR-E data as a gold standard. Table 2
shows that rGADEM has the best performance and
MEME-ChIP the worst on all four performance metrics.
(Complete results for individual PWMs are provided in
Additional file 3 and sequence logos for the first PWM
generated for the 12 TFBSs using each of the four motif
discovery tools are provided in Additional file 4). We con-
firmed the finding of Weirauch et al. [56] that ChIPMunk
outperforms MEME-ChIP, but showed that rGADEM
outperforms both.
The PWMs obtained using the different methods were

compared with each other and with those in JAS-
PAR: both the older set derived from SELEX and indi-
vidual promoter assays (JASPAR.2010) and the newer
matrices obtained from ChIP-Seq data (JASPAR.2014).
Normalized Euclidean distances between equivalent
PWMs were calculated using the TFBSTools pack-
age (http://www.bioconductor.org/packages/release/bioc/
html/TFBSTools.html) in Bioconductor. Reverse comple-
ment matrices were also checked and the minimum dis-
tances recorded. Results for each matrix set comparison
were averaged across the PWMs used. The normalised
Euclidean distance ranges from 0 to 1 where 0 denotes
complete identity and 1 denotes complete dissimilarity.
Results are shown in Table 3.
Comparing the PWMs generated in this work using dif-

ferent motif discovery tools, the best performing method
(rGADEM) shows the largest difference in PWMs from
the worst performing method (MEME-ChIP). Clearly
there are small but significant differences in the PWMs
generated by different motif discovery tools. However all
the motif discovery methods applied to the ENCODE-
ChIP-Seq data show even greater differences from the
old JASPAR.2010 PWMs generated using SELEX or
individual promoter assays.

Table 2 Performance of the different motif discovery tools using
FIMO

Motif discovery tool Sn PPV ACCg FPRs

ChIPMunk 0.886 0.786 0.834 0.009

HOMER 0.901 0.795 0.846 0.007

MEME-ChIP 0.865 0.771 0.817 0.013

rGADEM 0.933 0.839 0.884 0.002

Average sensitivities (Sn), Positive Predictive Value (PPV), geometric accuracy (ACCg)
and false positive rate on scrambled sequences (FPRs) are reported. The
best-performing tool rGADEM is highlighted in bold. Note that TFBS PWMs were
generated only for the 12 transcription factors in the PAZAR-E dataset

Re-evaluation of PWM scanning tools
Having shown that rGADEM generates better PWMs
than other motif-discovery methods, we returned to the
evaluation of tools for scanning PWMs against DNA. We
repeated this evaluation using PWMs generated from the
ENCODE-ChIP-Seq data using rGADEM, and results are
shown in Table 4. In general the tools predicting indi-
vidual sites perform better than those predicting clusters.
Because of themore stringent requirements for a true pos-
itive in predicting clusters (i.e. every predicted site within
the cluster must have a 70 % overlap with a true site),
it might be expected that the sensitivity for cluster pre-
dictors would be lowered, while the specificity would be
improved. Indeed the sensitivity of cluster predictors is
somewhat lower than the individual site predictors. Since
we do not have the true negative count, we cannot calcu-
late specificity, but surprisingly the false positive rate on
scrambled sequences (FPRs) for the cluster predictors is
larger than that for single site predictors suggesting that
the cluster predictors have lower specificity.
Using the JASPAR.2010 data, we had identified FIMO as

the best tool for identifying individual TFBSs and MCast
as the best cluster-based tool. Table 4 shows that these
two tools still perform best using the PWMs derived here
using rGADEM and ENCODE-ChIP-Seq data. (Complete
results for individual PWMs are provided in Additional
file 5). Indeed the overall ranking of all the tools remains
the same:
MCast>Comet>ClusterBuster>Cister>Baycis

for cluster predictors and
FIMO>Patser>PossumSearch>Clover>Matrix-Scan

for individual predictors.
Cister, Comet and ClusterBuster all come from the same

laboratory (published in 2001, 2002 and 2003 respec-
tively). These results suggest that Comet from 2002 out-
performs ClusterBuster from 2003, but both have made
progress over their initial 2001 software. However MCast
significantly outperforms all three methods.

Conclusions
As a comprehensive set of experimentally-characterized
precise transcription factor binding sites is not avail-
able, having good reliable prediction methods is very
important. While some experimental methods of identi-
fying TFBSs are relatively accurate, identifying regions of
around 10–20 b.p., methods such as ChIP-Chip, and more
importantly the ‘gold standard’ ChIP-Seqmethod, identify
DNA regions of 100–1000 b.p. which is much larger than
the TFBS itself (typically 9–15 b.p.). Consequently, when
these experimental methods are employed for identifying
TFBSs, it is necessary to use a prediction tool to identify
the TFBS within the much wider region. While the need
for identifying TFBSs as an adjunct to gene prediction in
the human genome has diminished, it is now much more

http://www.bioconductor.org/packages/release/bioc/html/TFBSTools.html
http://www.bioconductor.org/packages/release/bioc/html/TFBSTools.html
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Table 3 Normalised Euclidean distances between PWMs derived using the different motif discovery tools and PWMs derived from
ChIP-Seq, SELEX or individual promoter assays obtained from JASPAR

JASPAR.2010 JASPAR.2014 rGADEM HOMER ChIPMunk MEME-ChIP

JASPAR.2010 0 — — — — —

JASPAR.2014 0.393 0 — — — —

rGADEM 0.660 0.404 0 — — —

HOMER 0.503 0.234 0.159 0 — —

ChIPMunk 0.471 0.192 0.263 0.120 0 —

MEME-ChIP 0.404 0.129 0.371 0.203 0.153 0

Note that comparisons between the matrices generated in this work were performed over the 12 TFBS PWMs that were used for performance evaluation (i.e. the PAZAR-E
dataset) while the comparisons with JASPAR.2010 and JASPAR.2014 were performed over the 11 PWMs for which binding sites are found in PAZAR and the
ENCODE-ChIP-Seq data and which also have PWMs in JASPAR (i.e. the intersection of the PAZAR-E and PAZAR-J datasets)

important in order to have a full understanding of the reg-
ulation of gene expression and to be able to consider the
potential phenotypic effects of mutations occurring in a
TFBS.

Motif discovery
None of the ENCODE-ChIP-Seq data used to derive the
PWMs for evaluatingmotif discovery tools overlapped the
sequences obtained from genes present in PAZAR and
consequently we know there is no overlap between the
training and test sets. Table 2 clearly shows that PWMs
derived using rGADEM outperform those derived using
other motif discovery methods.

Alternative sources of binding data
The analysis here has focused on the use of data
from ChIP-Seq experiments which, as described in the

Table 4 Performance of TFBS prediction methods using the
PWMs derived using rGADEM and ENCODE-ChIP-Seq data

Sn PPV ACCg FPRs

CLUSTER

Baycis 0.792 0.687 0.738 0.021

Cister 0.828 0.722 0.773 0.022

MCast 0.907 0.778 0.840 0.013

Comet 0.871 0.759 0.813 0.014

ClusterBuster 0.849 0.739 0.792 0.017

INDIVIDUAL

Matrix-Scan 0.830 0.717 0.771 0.018

Clover 0.851 0.736 0.791 0.015

FIMO 0.933 0.839 0.884 0.002

Patser 0.887 0.774 0.828 0.008

PossumSearch 0.875 0.758 0.814 0.010

Average sensitivities (Sn), Positive Predictive Value (PPV) and accuracy (ACCg) are
reported together with the false positive rate using scrambled sequences (FPRs).
Performance was evaluated across the 12 PWMs that could be derived from the
ENCODE-ChIP-Seq data using rGADEM that have validated TFBSs in PAZAR (the
PAZAR-E dataset). The best performing tools, MCast and FIMO are highlighted in
bold

introduction, have largely superseded the earlier ChIP-
chip approach; both of these are in vivo approaches.
Another relatively new approach is the in vitro SELEX-seq
[11] approach. To investigate whether SELEX-seq would
be a useful addition to ChIP-Seq data, we used rGADEM
with SELEX-seq data to derive a PWM for NF-κB, the
only transcription factor for which SELEX-seq, ENCODE-
ChIP-Seq data and PAZAR data are available.
The performance of the SELEX-seq derived PWM

(Sn=0.913, PPV=0.810, ACCg=0.860, FPRs=0.004) is less
than its counterpart derived from the ENCODE-ChIP-Seq
data (Sn=0.937, PPV=0.831, ACCg=0.882, FPRs=0.002).
However no firm conclusions can be drawn on the per-
formance of SELEX-seq data in general on the basis of a
single transcription factor.
Another recently developed technology is ChIP-exo

[17]. Unfortunately no data are available from ChIP-exo
for TFBSs that are present in the PAZAR gold standard
dataset and consequently we cannot evaluate the perfor-
mance of PWMs derived from these data.

Scanning tools
An inherent problem with TFBS prediction is their short
and degenerate nature. The non-redundant vertebrate
TFBS PWMs in JASPAR.2014 range from 5 b.p. (Pax4)
to 30 b.p. (Prrx2), but with the majority being 9–15 b.p.
(mean = 12.2, σ = 3.7). A naïve scanning of PWMs
against a DNA sequence can therefore result in a high false
positive rate. It is therefore essential to optimize the meth-
ods used to scan a PWM against a DNA sequence in order
to minimize the false positive rate.
We have evaluated a set of transcription factor bind-

ing site prediction tools that could be downloaded and
installed locally, identifying FIMO and MCAST as the
best-performing tools for identifying individual TFBSs
and clusters of TFBSs respectively. While it is possible
that there is some inter-relationship between the choice
of motif discovery method and the tool used to search
those motifs against a DNA sequence, this seems unlikely
to be significant. The ranking of tool performance was the
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same when used with the JASPAR.2010 PWMs (generated
using MEME-based tools) and the PWMs generated in
this work using rGADEM. Similarly, using FIMO (part of
the MEME suite) as a search tool, PWMs generated using
MEME-ChIP do not perform as well as PWMs generated
using rGADEM (Table 2).

Alternatives to PWMs
Position Weight Matrices (PWMs) are the most widely
used TFBS models, but are limited by the assumption of
the model that positions within a binding site are inde-
pendent, something which is not true in all cases [56].
There have therefore been several attempts to develop
more complex alternatives to the PWM model that take
into account nucleotide interdependencies [6, 18, 25].
Some examples include pair-correlationmodels [86], trees
[87], non-parametric models [88], feature-based models
[89], Markov chain optimization [90], maximal depen-
dence decomposition [91], Hidden Markov Models [92],
transcription factor flexible models [93] and Dinucleotide
PWMs [94].
However it has been observed that classical PWM

models tend to perform at least as well as more complex
models [18] and that more complex models tend to be
prone to learning noise. Consequently, it has been sug-
gested that the PWM model may be the state of the art
and that focus should be placed on optimizing the PWM
model rather than developing more complex models [95].
While PWMs are not outperformed by more complex

models for the majority of transcription factors, for a
small number of individual transcription factors it has
been found that more complex models do result in bet-
ter performance [56]. For example, more complex models
perform better for transcription factors AP-2A and REST,
but not for HNF4A [94]. Thus, in future, it may be worth
evaluating both PWMs and more complex models and
selecting an appropriate model for each individual tran-
scription factor.

Summary
While TFBS predictors which identify individual sites out-
perform those that identify clusters, the choice of the
type of prediction tool depends on the context in which
it is to be used. The evaluation used in this study was
performed in the context of known TFBSs associated
with genes. Consequently, if prior knowledge is available
about the DNA sequence being scanned (i.e. the DNA
sequence is that of a known protein coding gene) then
using a predictor of individual TFBSs is probably a sen-
sible strategy. When analyzing a stretch of DNA with no
prior knowledge about the presence of a gene, it would
be better to use a prediction tool that identifies clusters
of TFBSs since the chance of a random match is much
reduced [58, 96].

In conclusion, we have analyzed motif discovery
tools for generating PWMs from ChIP-Seq data using
experimentally-validated precise TFBSs from PAZAR as
a gold standard. We found that rGADEM out-performed
other tools. We then evaluated a number of tools for
scanning PWMs against DNA, both for identifying indi-
vidual TFBSs and clusters of TFBSs. We found that FIMO
and MCAST performed best respectively. We also found
that there appears to be no dependence between the tool
used for motif discovery and the tool used for motif
scanning — in other words, using (for example) a motif
scanning tool from theMEME suite does not perform bet-
ter when using PWMs generated using a motif discovery
tool from the MEME suite than when using an unrelated
motif discovery tool.

Additional files

Additional file 1: The PAZAR Reference Dataset. Entries from PAZAR, with
the numbers of each TFBS that they contain. The spreadsheet also
indicates whether the TFBSs are found in JASPAR and/or the
ENCODE-ChIP-Seq data. (XLS 54 kb)

Additional file 2: Evaluation of search tools using JASPAR.2010 PWMs.
Sensitivity, Positive predictive value, Geometric accuracy and False positive
rate for the 14 TFBSs that are found in the PAZAR-J dataset. Separate sheets
are provided for each of the search tools. (XLS 31.5 kb)

Additional file 3: Motif Discovery Tool Performance. Complete results for
individual PWMs generated using different motif discovery tools and
scanned against PAZAR-E data using the FIMO motif scanning tool.
(XLS 14 kb)

Additional file 4: Sequence Logos. Sequence logos for the first PWM
generated for the 12 TFBSs using each of the four motif discovery tools.
(PDF 29.5 kb)

Additional file 5: Evaluation of search tools using PWMs generated from
the ENCODE-ChIP-Seq data using rGADEM. Sensitivity, Positive predictive
value, Geometric accuracy and False positive rate for the 12 TFBSs that are
found in the PAZAR-E dataset. Separate sheets are provided for each of the
search tools. (XLS 29.5 kb)
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