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Abstract

Background: Various chromatin modifications, identified in large-scale epigenomic analyses, are associated with
distinct phenotypes of different cells and disease phases. To improve our understanding of these variations, many
computational methods have been developed to discover novel sites and cell-specific chromatin modifications.
Despite the availability of existing methods, there is still room for further improvement when they are applied to
resolve the histone code hypothesis. Hence, we aim to investigate the development of a computational method to
provide new insights into de novo combinatorial pattern discovery of chromatin modifications to characterize
epigenetic variations in distinct phenotypes of different cells.

Results: We report a new computational approach, ChARM (Combinatorial Chromatin Modification Patterns using
Association Rule Mining), that can be employed for the discovery of de novo combinatorial patterns of differential
chromatin modifications. We used ChARM to analyse chromatin modification data from the livers of normal
(non-cancerous) mice and hepatitis B virus X (HBx)-transgenic mice with hepatocellular carcinoma, and discovered
2,409 association rules representing combinatorial chromatin modification patterns. Among these, the combination
of three histone modifications, a loss of H3K4Me3 and gains of H3K27Me3 and H3K36Me3, was the most striking
pattern associated with the cancer. This pattern was enriched in functional elements of the mouse genome such as
promoters, coding exons and 5'UTR with high CpG content, and CpG islands. It also showed strong correlations
with polymerase activity at promoters and DNA methylation levels at gene bodies. We found that 30 % of the
genes associated with the pattern were differentially expressed in the HBx compared to the normal, and 78.9 % of
these genes were down-regulated. The significant canonical pathways (Wnt/B-catenin, CAMP, Ras, and Notch
signalling) that were enriched in the pattern could account for the pathogenesis of HBx.
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Conclusions: ChARM, an unsupervised method for discovering combinatorial chromatin modification patterns, can
identify histone modifications that occur globally. ChARM provides a scalable framework that can easily be applied
to find various levels of combination patterns, which should reflect a range of globally common to locally rare

chromatin modifications.

Keywords: Combinatorial histone modifications, Association rule mining, Differential modifications, Chromatin
signature, Hepatitis B virus X (HBx)-transgenic mice, Hepatocellular carcinoma

Background

Post-translational histone modifications are known to be
altered in cancer tissues and to contribute to the devel-
opment and progression of cancer [1-3]. Histone modi-
fications can occur over large regions of chromatin,
including coding regions and non-promoter sequences,
and these are referred to as global histone modifications
[4—6]. Mutations, mis-regulation of gene expression, or
attenuated post-translational modifications can impair
the activity of histone-modifying enzyme complexes, and
this may affect the mechanism that regulates global his-
tone modifications throughout the genome. Currently,
the consequences of altered histone-modifying enzyme
activity are linked to inappropriate expression of a few
genes that might function in tumorigenesis [4, 7]. Changes
in global histone modification patterns (GHMPs) can be
informative, particularly as predictors of prognosis, various
steps of carcinogenesis, and responses to chemother-
apy [4, 8]. Therefore, in this study, we aim to develop
a new data mining approach for discovery and inter-
pretation of differential GHMPs in cancer, and we use
it to investigate whether an understanding of epigen-
etic alterations in cancer cells can expand prognostic
capabilities.

For GHMPs, the complexity of patterns discovered
can be explained by using the histone code hypothesis
[8, 9], which states that each of four histones can be
simultaneously modified in a site specific manner with
different degrees of change in different modifications.
For an example of this complexity, consider the follow-
ing: histone H3 contains 19 lysine residues known to be
methylated, and each lysine can be un-, mono-, di-, or
tri-methylated. If modifications are considered to be
independent, this allows a potential 4'° or 280 billion
different lysine methylation patterns, which is more than
the maximum number of histones in the human genome
(~44 million) [10]. In this context, the problem of
discovering the combinatorial chromatin modification
patterns (CCMPs) that exist on a genome-wide scale can
be considered an NP-complete (nondeterministic poly-
nomial time complete) problem [11]. To date, various
computational methods based on heuristic algorithms
have been developed for the identification of GHMPs
and CCMPs. Additionally, with the recent advances in

next generation sequencing technology, new computa-
tional methods exploiting machine learning and data
mining algorithms are being developed to detect histone
modification patterns in genome-wide chromatin immu-
noprecipitation (ChIP)-Seq data sets. For instance, super-
vised learning based methods can identify and predict
functional DNA elements (enhancers, promoters, and in-
sulators) with chromatin signatures for known regulatory
elements using classification algorithms such as artificial
neural networks [12] and hidden Markov models (HMMs)
[13]. The advantage of these supervised methods is their
ability to predict the undiscovered regulatory elements
that drive cell-type-specific gene expression.

Un-supervised learning algorithms can be applied to
identify GHMPs and discover novel CCMPs that can
characterise unknown regulatory elements. A range of
algorithms are adapted to achieve this, including prob-
abilistic profiles (e.g. ChromaSig [14]), bi-clustering
(CoSBI [15] and SS-CoSBI [16]), HMMs (ChromHMM
[17]), dynamic Bayesian networks ([18] and SegWay
[19]), and dynamic programming (ChAT [20]). In contrast
to some other unsupervised methods (e.g. ChromaSig,
CoSBI, and ChAT), ChromHMM and SegWay, which
segment the genome into distinct chromatin states, are
advantageous to identify patterns of sequential chromatin
modifications (spatially separate patterns), and the final
CCMPs are forced to include all chromatin modification
marks in the input data [16]. ChromHMM and SegWay
focus on chromatin-centric genome annotations in order
to assign and predict the final labels of chromatin states
for given genome segments with chromatin marks. ChAT
can discriminate the same combinatorial patterns of his-
tone modifications with different shapes by using dynamic
programming to measure the similarity of the chromatin
signatures for genome partitions, but it may capture local
signatures rather than those that occur globally.

Despite the development of many computational
methods designed to elucidate combinatorial patterns of
histone modifications and decipher the complex histone
code, how CCMPs can be incorporated into the elabor-
ate epigenetic model of cancer in contrast to normal
cells has not been determined. Large-scale epigenomic
projects have generated a vast number of epigenomes,
including various types of histone modification and
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other epigenetic marks, for multiple human cell types
and disease progression [21-23]. However, the develop-
ment of computational methods for discovery of combina-
torial patterns of chromatin state differences between
different cell types and conditions has not been investi-
gated. The discovery of de novo combinatorial patterns of
differential chromatin modifications across tissues, cell
types, and disease phases, is a non-trivial task. The validity
of such a computational method can be determined by
assessing its ability to extract novel biological knowledge
from the patterns associated with various functional gen-
omic features.

In this regard, we report CHARM, a new computa-
tional approach based on association rule mining
(ARM), which is de novo pattern discovery of differential
chromatin modifications that occur globally in hepato-
cellular carcinoma (HCC) tissues of hepatitis B virus X
(HBx)-transgenic mice. ChARM computationally charac-
terises these patterns to interpret their biological signifi-
cance. By applying ARM to three different types of
histone lysine methylation, DNA methylation, and RNA
polymerase II (Pol II) phosphorylation on a genome-
wide scale, we discovered 2,409 association rules that
were expressed as combinatorial patterns of differential
chromatin modifications. We identified a cancer-specific
de novo global pattern, i.e. the combination of three his-
tone modifications, namely a loss of H3K4Me3 and gains
of H3K27Me3 and H3K36Me3, in both promoters and
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gene bodies. CHARM is an unsupervised approach for
incorporating global CCMPs into epigenetic models of
cancer, providing combinatorial patterns that discrimin-
ate HBx and normal (non-cancerous) tissue. The pat-
terns are expressed with descriptive rules that are
straightforward and simple to interpret.

Results

A global view of the discovered association rules

An overall systematic workflow of the CCMP discovery
process is shown in Fig. 1. This comprises transform-
ation of our ChIP-seq data from continuous to categor-
ical, ARM of the transformed ChIP-seq data, and
clustering of association rules for the visualization and
interpretation of patterns (Fig. 1). ARM was applied to
promoter and gene body regions separately. All the
association rules exceeded the thresholds of supports,
confidence, and lifts were generated. In total, 556 rules
(see Additional file 1: Table S1) for promoters and 1,853
rules (see Additional file 1: Table S2) for gene bodies
(minimum support > 0.005, minimum confidence > 0.3,
Table 1) were discovered by the CCMP procedure
described in Fig. 1.

To extract and interpret interesting CCMPs from all
the discovered rules, we employed existing tools such as
TreeView and Gene Cluster 3.0 to produce a heatmap
representing the global view of all the association rules.
This heatmap, clustered by chromatin modification
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Table 1 Representative association rules
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No Rule description for promoter Supp® Conf® Lift Annotation®
1 p.h3k27 =5 ph3k36=5==>ph3kd=1 0.018 0.35 1.87 P155
2 p.h3kd =1 p.h3k36=5==>p.h3k27=5 0.018 0.34 1.74 P155
3 p.h3kd=1ph3k27=5==>ph3k36=5 0.018 033 1.80 P155
4 p.h3k27 =5 p.h3k36 =5 p.pol2s5=1==>ph3kd =1 0.005 041 217 Super set & highest lift
5 p.h3k4 = 1,p.h3k27 =5p.h3k36 =5 => p.met =2 0.007 039 1.05 Super set & Lowest lift
6 p.h3k27 =5 p.h3k36=5 pmet=2 ==>ph3kd=1 0.007 0.36 1.89 Super set & Top 5 lift
7 p.h3kd =1 p.h3k27 =5 p.met=2 ==>ph3k3d6=5 0.007 033 1.8 Super set & Top 5 lift
8 p.h3kd =1 p.h3k36=5 p.pol2s5=1==>ph3k27=5 0.005 034 1.7 Super set & Top 10 lift
9 p.h3k4 =1 p.h3k27 =5 p.pol2s5=1==>ph3k36=5 0.005 033 177 Super set & Top 10 lift
10 p.h3k4 =4,p.h3 =3,p.h3k27 =2,p.h3k36 = 2,p.met =2 = > p.pol2s5=3 0.008 0.80 446 Top 5 lift
11 p.h3k4 =4ph3=3ph3k27 =2,ph3k36 =2 => ppol2s5 =3 0.010 073 409 Top 5 lift
12 p.met=2 0373 037 1 Top 5 support
13 p.pol2s5=1=>pmet=2 0.084 04 1.07 Top 5 support
14 p.h3k27=3 =>pmet=2 0.083 036 0.98 Top 5 support

Rule description for gene body
15 gh3k27 =5 gh3k36=5==>g.h3k4 =1 0.048 0.56 258 G155
16 gh3kd=1 gh3k27=5==>gh3k36=5 0.048 0.54 2.88 G155
17 gh3kd =1 gh3k36=5==>gh3k27=5 0.048 053 286 G155
18 g.h3k4 =1,gh3k27 =5,g.pol2s2=1,gmet=5 =>g.h3k36=5 0.006 0.66 354 Super set & Top 5 lift
19 g.h3k4=1gh3=5gh3k36=5gmet=1=>gh3k27=5 0.005 0.65 349 Super set & Top 5 lift
20 g.h3k4=1gh3k36 =5gmet=1=>gh3k27=5 0017 0.64 345 Super set & Top 5 lift
21 g.h3k4 =1,g.h3k36 =5,g.pol2s2=1,gmet=1=>gh3k27=5 0.007 0.648 342 Super set & Top 5 lift
22 g.h3k4=1gh3=1gh3k36 =5gmet=1=>gh3k27=5 0.006 063 34 Super set & Top 5 lift
23 g.h3kd =1,g.h3k27 =5g.h3k36 =5gmet=1=>gh3=5 0.0053 0328 1.55 Super set & the lowest lift
24 g.h3=3,g.h3k27 =3,g.pol2s2=4,gmet=2 =>gh3k36=4 0.008 0.79 3.86 Top 5 lift
25 g.h3=3,g.h3k27 =3,gh3k36 =4,g.pol2s2 =4,gmet =2 =>g.h3kd =4 0.005 0.64 3.68 Top 5 lift
26 g.h3k36=5=>gh3kd=1 0.089 0487 2.19 Top 5 support
27 gh3k4=1=>gh3k36=5 0.089 041 2.19 Top 5 support
28 g.h3k27=5=>gh3kd=1 0.088 047 2.18 Top 5 support
29 gh3kd=1=>gh3k27=5 0.088 041 218 Top 5 support
30 g.h3k27=5=>gh3k36=5 0.085 045 243 Top 5 support
31 g.h3k36=5=>gh3k27=5 0.085 045 243 Top 5 support

There were 556 rules and 1853 rules discovered by ARM for promoters and gene bodies, respectively. From these rules, we selected those encoding Pattern 155
(Rule 1-3 and Rule 15-17) and its supersets with high lift values, which were within the top 5 or top 10 highest lift values from all the rules as representative

examples. In the table, we also report rules in the top 5 supports
2Supp: Support of a rule

PConf: Confidence of a rule

“Annotation: annotation of the rules corresponding to their categories

marks, represents the combinatorial effects of chro-
matin modification states (Fig. 2a). Each association
rule (i.e. each row in Fig. 2a) encodes a pattern or sig-
nature of the combination of differentially modified states
of chromatin. High support values can indicate globally
modified patterns, and high lift values can signify the de-
gree of co-occurrence. We filtered out rules presenting
combinations of all unmodified states. The remaining
rules were sorted by support and lift. Sorting by support

has the same effect as rules were clustered by number of
modifications in rules. After sorting by these two metrics,
interesting rules were easily explored.

A combination of three histone modified states
(H3K4Me3 =1, H3K27Me3 =5, and H3K36Me3=5)
showed the highest frequency (support count=957)
among all possible combinations (125) in the gene bodies
(Additional file 2: Figure S1), and it was the K-th most fre-
quent itemset (K= 3), where K stands for the number of
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Fig. 2 A global view of the chromatin modification patterns encoded in association rules. a All epigenetic signatures of chromatin modifications
and Pattern 155. Each row corresponds to an association rule (i.e. a pattern or a combination of chromatin modification) and each column to a
chromatin modification mark. Rules (556 for promoters and 1852 gene bodies) are clustered by chromatin modification marks. The colour in each
cell indicates the differential change of marks in the livers of normal and HBx-transgenic mice. Light green and light red represent the extreme
chromatin modification changes, e.g. hypo or hyper methylation of histone, respectively. The epigenetic signatures were tightly clustered into
two groups, representing the modified and unmodified states of chromatin. Association rules in the yellow rectangles represent the epigenetic
signatures of Pattern 155, which constitutes the combination of the loss of H3K4Me3 and the gains of H3K27Me3 and H3K36Me3. b Plots for the
support and lift of the association rules. The grey scale represents the confidence levels and the coloured rectangles correspond to supersets of
Pattern 155, which contained the three modified states of Pattern 155 as well as other chromatin marks. The rule length, which corresponds to
the number of modified states, is > 3. Red, yellow, and blue rectangles correspond to rule length 3, 4, and 5, respectively

different chromatin modified states in a combination. the gains of H3K27Me3 and H3K36Me3 (Fig. 2a and
Three association rules (Rules 15 — 17 in Table 1) were  Table 1). Pattern 155 was discovered in both promoters
derived from this frequent itemset. In Fig. 2a, association = (named P155 for promoter pattern, Additional file 1:
rules in dashed yellows rectangles encode the notable Table S3) and gene bodies (G155 for gene body pattern,
combinations of differentially modified states that were  Additional file 1: Table S4). Table 1 also lists a variety
derived from all possible subsets or supersets of the most  of other rules that form parts of the supersets and
frequent itemset. subsets of Pattern 155. We refined Pattern 155 to re-

In promoters, the combinations of unmodified states duce potential false positives and derived fine patterns
were common and present comprising a majority of the as-  (Additional file 1: Table S5). Lift was employed to
sociation rules with high frequency (e.g., Rules 12 — 14). measure the independence of a rule and as a metric for
The combination of three histone modified states (i.e. the importance of a rule in terms of measuring co-
H3K4Me3 = 1, H3K27Me3 = 5, and H3K36Me3 =5) in the  occurrence of chromatin modifications. The lift values
promoter was the K-th most frequent itemset (K'=3) after  of the association rules encoding Pattern 155 were high
filtering the combinations of any three unmodified states  (>1.5) as shown in Rules 1-3 and Rules 15-17 (Table 1).
(Additional file 2: Figure S2). Thus, we identified a global =~ With the exception of two rules (Rule 5 and Rule 23),
histone modification pattern, named Pattern 155, which de-  the supersets of Pattern 155 (i.e. the coloured rectan-
notes the combinatorial effect of the loss of H3K4Me3 and  gles in Fig. 2b, Rules 4-9 for promoters and Rules 18—
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23 for gene bodies), which consisted of more than three
chromatin modified states, had higher lift values than
the original Pattern 155 (1.736 < lift < 2.17 for promoter;
3.42 < lift < 3.54 for gene body).

It is notable that 55 (79 %) of 70 supersets (3.8 %,
Additional file 1: Table S6) from G155 had high lift
values (>2) and the top 5 lifts of these supersets ranked
within the top 1 % of highest lifts of all the association
rules (P =5.2 x 107%). The high lift values of these supersets
shows that the combination of three histone methylation
marks (H3K4Me3 =1, H3K36Me3 = 5, H3K27Me3 =5) in
Pattern 155 appeared together more often than expected,
and that the pattern more likely co-occurred with other
modifications such as RNA polymerase changes and DNA
methylation. As more chromatin marks combined, the lift
tended to increase (Additional file 2: Figure S3), implying
a higher possibility for co-occurrence. These results
suggest the possibility of interplay between three histone
methylation marks in the pattern, which results from
cross-talks between trimethylation of lysine 4, lysine 27,
and lysine 36.

Except for rules in Table 1 and Pattern 155, we found a
promoter pattern representing the combination of four
modifications (i.e. H3K27me3 =1, H3K36me3 =2, DNY
Methylation = 2, H3K4me3 =4) but that mainly denotes
loss of H3K27me3 and gain of H3K4me3. We also identi-
fied other patterns such as Pattern 511 and Pattern 111 in
gene bodies. Pattern 511 presents the combination of three
modified states (ie. gain of H3K4me3 and losses of
H3K36me3 and H3K27me3). Supersets and subsets of Pat-
tern 511 are in 102 rules. Pattern 111 denotes losses of all
three histone modifications and encoded in 100 rules.

Negative relationships between H3K27Me3 and other
marks characterise Pattern 155

The relationships among the epigenetic marks in Pattern
155 were compared to those of all other genes in either
HBx-transformed cells or normal cells by using correl-
ation network analysis based on the RESs (relative en-
richment score) of ChIP-seq signals. Interestingly, we
observed negative relationships between H3K27Me3 and
other marks in Pattern 155 (Fig. 3a for P155s; Additional
file 2: Figure S4A for G155s), but not among all genes in
either normal or HBx-transformed liver cells (Fig. 3b
and ¢, and Additional file 2: Figure S4B and C). Specific-
ally, H3K27Me3 changes were negatively correlated with
H3K4Me3, Pol2S5, gene expression, and CpG content in
Pattern 155 (with the exception of the relationship with
CpG content in G155s). These negative relationships are
not replicated in random samples and had a low
probability of occurring by chance (P < 107°). Therefore,
it is possible that the negative relationships between
H3K27Me3 and other marks significantly affect epigen-
etic modifications in HBx.
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In Pattern 155, the CpG content was negatively associ-
ated with DNA methylation and H3K27Me3 in P155s,
while it had a weak positive relationship with H3K27Me3
in G155s (Additional file 2: Figure S4A). These negative
relationships differ from the positive relationships
observed for both H3K27Me3 and H3K36Me3 in HBx
transformed cells for all genes, whereas such positive
relationships were either not observed or were weak
(with H3K36Me3 for gene bodies) in normal cells. The
negative relationships observed between H3K27Me3 and
other marks in Pattern 155 are compatible with the results
of ARM (Rules 4, 8, and 9 in promoters; and Rules 18—23
in gene bodies; Table 1), and they can be considered as
HBx-specific epigenetic modifications.

Enrichment of functional genomic elements in Pattern 155
We measured the enrichment of the functional elements
associating Pattern 155 in terms of odds relating to the
relative proportion of functional elements in the mouse
genome. The relative enrichment between the functional
elements was then calculated as odd ratios (Table 2). In
the pattern, there was a propensity for genes to non-genes
(OR =4.97), promoters to genes (OR =1.05), exons to in-
trons (OR = 3.58), and UTR5 to UTR3 (OR = 2.12). Inter-
estingly, the pattern was enriched in genic regions and
promoters rather than non-genic regions, and preferen-
tially matched within exons with particularly coding
regions and UTR5s.

Epigenetic profiles of genes in Pattern 155

The average epigenetic profiles of the genes in P155
were measured in terms of RES values around the
transcription start site (TSS). In normal cells, the
P155 genes showed a strong H3K4Me3 peak around
the TSS (the region from -200 bp to +200 bp), which
was not present in HBx cells (Fig. 4a and b). This
finding is in concordance with previous work [24].
Conversely, the signals of H3K27Me3 and H3K36Me3
increased in HBx cells compared to normal cells
(Fig. 4a, ¢ and d). Interestingly, the signals for these
two marks did not change around the TSS, whereas
the change in H3K4Me3 was drastic. However, these
signals peaked at both sides of the TSS, i.e. around
-1200 to —200 bp and +200 to +400 bp.

Both H3K36Me3 and H3K27Me3 were minimally
changed around the TSS regions in the livers of normal
and HBx mice; however, at the intermediate promoter
regions, i.e. —1200 to —200 bp upstream of the TSS, the
changes were substantially different between the two
conditions (Fig. 4a, ¢, and d). In addition, the highest
peaks of H3K36Me3 and H3K27Me3 changes in HBx
were found in intermediate promoter regions, i.e. —1200
to —600 bp from the TSS.
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Fig. 3 Correlation network of epigenetic modifications. The correlation networks were generated from correlations (r 2 0.2) between chromatin
modification marks of transcripts in (@) P155, the promoter pattern for the HBx TG livers, b normal cells, and (c) HBx TG liver cells. Each node
represents a chromatin modification mark and each edge width was weighted by Pearson correlation values (r). Green edges represent negative
correlations and grey edges represent positive correlations. Each node name represents the abbreviated chromatin mark name: h3k4, h3k27,
h3k36, pol2s5, met, h3, hx_exn, and pCpG_ratio denote H3K4Me3, H3K27M3, H3K36Me, Pol Il S5, DNA methylation, H3, expression in HBx, and

CpG ratio, respectively

Pattern 155 is enriched in high CpG content

Many previous studies [25-28] have addressed the asso-
ciation between CpG islands (CGIs) and epigenetic and
functional regions. In concordance with this previous
work, Pattern 155 was characterised with high CpG con-
tent (HCG) and strongly associated with high CpG dens-
ity in promoters and gene bodies (Fig. 5a and b). We
found that 67.6 % of the promoter pattern P155 con-
sisted of high CpG content promoters (HCPs), whereas
a small fraction (12 %) of P155 contained low CpG con-
tent promoters (LCPs). The enrichment of HCPs in
P155 was statistically significant in comparison with the
promoters in the mouse genome (P<22xe ', chi-

square test). HCG was also significant in the gene body
pattern G155 (Fig. 5b, P=8.4 x 10™*). We plotted CpG
ratio distribution along the promoter regions and found
strong aggregated peaks (Fig. 5c) ~650 bp upstream of
the TSS (-650 to +50 bp). HCPs (Additional file 3:
Figure S5) showed an analogous CpG distribution to
P155 where high peaks of CpG ratio were densely con-
centrated on the two specific regions, the proximal
(-650 to +50 bp) and distal promoter (-1500 to
-1200 bp) regions. Some CpG ratio peaks in LCPs were
more likely to be found in proximal regions surrounding
the TSS up to 300 bp upstream and in intermediate pro-
moter regions (-900 to -600 bp) (Fig. 5d); however,
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Table 2 Enrichment of functional elements in the patterns
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Functional elements  Mouse genome (MG) BP*  Ratio (MG)®  Patterns (P:P0) BP  Ratio (P)  Odds (M)*  Odds (P)’  Odds ratio (P/MG)°
Mouse genomes 2,725,765481 12,537,400

Non-gene 1,687,863,859 0619 5,268,326 0420 1.626 0.725 0446

Promoter 60,956,000 0.022 636,400 0.051 0.023 0.053 2.338

Genes 976,945,622 0.358 6,936,145 0.553 0.559 1.238 2217

Introns 917,470,255 0337 6,319,444 0.504 0.507 1.016 2.003

Exons 63,877,330 0.023 1,841,546 0.147 0.024 0.172 7.175

Coding Exons 34,016,873 0.012 1,424,442 0.114 0.013 0.128 10.143

5-UTR 6,222,075 0.002 211,139 0.017 0.002 0.017 7487

3-UTR 24,574,772 0.009 389,841 0.031 0.009 0.032 3527

All of the 200 base pair intervals (62,687 intervals identified by a genome-wide scan) that met the conditions of the P155 pattern for promoters were mapped to

the functional elements of the mouse genome

2 bBase pairs of functional elements in the mouse genome and their ratio over the mouse genome

< 9Base pairs of functional elements overlapping with the 200 base pair intervals in the pattern and their ratio over the pattern

& fOdds for each functional element in the mouse genome and Pattern 155, calculated by Eq. 1

90dds ratio for each functional element between the pattern and the mouse genome, representing functional element enrichment in the pattern in comparison

to the mouse genome

these peaks were not as high as those of the HCPs, and
the peak regions were shallow.

We also investigated the possibility that pattern
matched regions in gene bodies (G155) were associated
with CGIs and other features of the mouse genome
(Additional file 4: Figure S1). CGIs in G155 were prefer-
entially enriched in UTR5 vs. UTR3 (odds =3.33) and
coding exons vs. intronic regions (odds = 1.32) compared
with those of the mouse genome, suggesting that the
gene body pattern was enriched in highly functional
regions of the genome (e.g. UTR5 and coding exonic
region) overlapping with high CpG content.

Changes in histone modifications are associated with CpG
distribution

The shape of the CpG ratio distribution along with pro-
moter regions (Fig. 5¢) was associated with the changes
of each histone modification mark in P155 (Fig. 4a—d).
The hypomethylated regions of H3K4Me3 around the
TSS (-600 to +400 bp) (Fig. 4A and B) overlapped with
the high peaks (-650 to +50 bp) of the CpG ratio distri-
bution (CpG ratio = 0.74; the blue line in Fig. 5c). The
peaks of H3K36Me3 and H3K27Me3 appeared in inter-
mediate regions and the distal promoter regions (-1000
to —400 bp), overlapped with low CpG content regions
(-1200 to -650 bp).

Variations of each histone modification mark in the
pattern were distinctively characterised in response to
each promoter class (Fig. 4e for HCPs of P155; Fig. 4f
for LCPs). The variations in histone modifications in
HCPs resembled those of the P155, whereas those in
LCPs were similar to the P155 but with different shapes.
Some CpG shore regions (TSS, —200, —-500, —1000, and
-1400 bp) between HCPs and LCPs showed peaks of
H3K27Me3 and H3K36Me3. These observations imply

that the variations of histone modifications in HCPs of
the pattern rendered the main signature of the pattern,
which were weakly preserved in LCPs. These observa-
tions are consistent with the results of the correlation
network analysis for P155 (Fig. 3b), indicating that CpG
content has a positive relationship with H3K4Me3
changes and a negative relationship with H3K27Me3
changes in HBx.

Comparison with random sampling

P155 comprises both HCPs and LCPs according to their
CpG content. We examined whether epigenetic signa-
tures of these groups are different from those observed
in the mouse genome. To do so, both HCPs and LCPs
in P155 were compared to those of randomly chosen
sets. The drastic changes of H3K4Me3 around the TSS
regions were conserved in randomly selected top K
(K'=1000, 953 HCPs remained after filtering) HCPs
(RHCPs) with high CpG ratios (>0.88) from the
mouse genome (Additional file 3: Figure S3). We ob-
served the loss of H3K4Me3 around the proximal
promoter regions with high CpG content in compari-
son with the change of H3K4Me3 in randomly
selected top K LCPs (RLCPs), where K=1000 and
CpG ratio < 0.4 (Additional file 3: Figure S4). Changes
of H3K27Me3 and H3K36Me3 in Pattern 155 were not
reproduced in RHCPs (Additional file 3: Figure S3) and
RLCPs (Additional file 3: Figure S4). For example, all three
histone marks in RHCPs showed relative demethylation
alongside the promoter regions, particularly those with
high CpG ratios (Additional file 3: Figure S3). However, in
P155, H3K27Me3 and H3K36Me3 remained unmethy-
lated or unmodified in the proximal promoter regions and
gained in the intermediate promoter regions (Additional
file 3: Figure S1 C and D), which were distinguished from
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Fig. 4 (See legend on next page.)
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Fig. 4 Epigenetic profiles of P155. a Differential changes of histone modifications between HBx TG and normal livers in Pattern 155. The plotted
data are the dRES values summed over the member genes of Pattern 155 (50-bp interval). Promoter regions are divided into three regions
relative to TSS: proximal (P: =200 to 500 bp), intermediate (I: —1000 to —200 bp) and distal (D: —1500 to —1,000 bp). Vertical grey lines in each
figure represent the three promoter regions. b, ¢ and d) A comparison between HBx and normal livers for (b) H3K4Me3, ¢ H3K27Me3, and

(d) H3K36Me3. b shows that H3K4Me3 was hypermethylated near the TSS regions in normal livers, whereas it underwent demethylation in HBx,
displaying a strong negative peak in (a). e and f The changes in histone modification for (e) HCPs (242 transcripts) and (f) LCPs (43 transcripts) in
Pattern 155. Blue bars in represent regions matched with Pattern 155. dRES changes of H3K4Me3, H3K27Me3 and H3K36Me3 from (a), (e) and

(f) are coloured green, red, purple, respectively. dk4, dk27 and dk36 stand for H3K4Me3, H3K27Me3 and H3K36Me3, respectively

RHCPs. RLCPs were devoid of Pattern 155, which was ra-
ther weak but conserved in LCPs.

This examination of random sampling suggests that
high peak regions of CpG ratio are associated with a loss
of H3K4Me3, while regions with low CpG ratio in both
promoter classes show high peaks of H3K27Me3 and
H3K36Me3.

Relationships with Polll activity, DNA methylation, and
gene expression

Overall, RNA polymerase activity (PolIIS5 and PollIS2)
was strongly correlated with each mark of Pattern 155.
In both P155 and G155, negative relationships between
Polll and H3K27Me3, and between Polll and
H3K36Me3, were different from the relationships among
all transcripts (Rules 4 and 18 in Table 1, and Fig. 3a—c).
This observation is apparent in regions where serine 2
(Additional file 4: Figure S2) or serine 5 (Fig. 6a) phos-
phorylation of RNA polymerase II decreased by more
than a 0.5 differential RES (dRES) between HBx and nor-
mal livers (dRES of Pol II < -0.5), particularly in the pro-
moter pattern (Fig. 6a). In P155, the promoter pattern
was associated with unchanged states of DNA methyla-
tion (Rule 5). However, the gene body pattern was asso-
ciated with both gain and loss of DNA methylation
(Rules 18-23 and Fig. 6b). Exons overlapping with CGI
in G155 also tended to be hypomethylated, which is
rather strongly observed in more than 0.5 RES hypome-
thylation (dRES < -0.5 and Fig. 6b). Most of the genes in
Pattern 155 were not differentially expressed between
normal and HBx-transformed cells. Those that were dif-
ferentially expressed were down-regulated (9.7 % in the
exon array and 30 % in RNA-Seq; Fig. 6¢). In RNA-Seq,
86 (78.9 %) out of 109 differential expressed genes were
down-regulated. The relationships observed in the net-
work analysis between each mark and gene expression
were also observed in down-regulated genes in P155
(Additional file 4: Figure S4).

Interpretation of functional annotations

According to DAVID functional enrichment analysis and
Ingenuity Pathway Analysis (IPA), both the promoter
pattern and gene body pattern showed similar functions
(Additional file 5: Table S1 and Table S2). Both promoter

and gene body patterns were enriched in the ‘transcrip-
tion regulator activity, DNA binding, and ‘transcription
factor activity’ functional categories, as indicated by
Gene Ontology (GO) and Protein Information Resource
(PIR) keyword annotations (Table 3) in DAVID.

IPA generated seven significant canonical pathways
(including NFAT, Wnt/B-catenin, cAMP mediated, Ras,
and PhoGDI signalling) for the promoter pattern and
one significant pathway, Notch signalling, for the gene
body pattern (P<0.02 after BH correction) (Table 3).
Out of the seven significant canonical pathways for the
promoter pattern, ‘molecular mechanism of cancer’ im-
plied that genes in promoter patterns could play a role
in molecular pathways for cancer. Significant pathways
such as Wnt/fB-catenin [29-32], Ras [33—-35] and cAMP
mediated [36—38] are already known to be involved in
the pathogenesis of human HCC development [39-42].
The role of NFAT (Nuclear Factor of Activated T cells)
in cardiac hypertrophy [43] in our IPA analysis can be
explained by a similar role as a factor in HBx related
HCC through previous work [44—46]. For instance, it
was reported that HBx activates transcription and
nuclear translocation of NFAT regulating cytokine en-
coding genes such as TNF-a whose production was ob-
served in chronic liver injury and inflammation leading
to development of HCC [44, 45]. The Notch signalling
pathway, which was significantly enriched in the gene
body pattern, mediates tumour invasion in HCC, which
suggests that inhibition of Notch signalling pathway in-
hibitors could suppress invasion of HCC cells via the
extra cellular signal-regulated kinases 1 and 2 (ERK1/2)
signalling pathways [47].

Functional annotations for differential expressed genes
(>2 fold changes) using DAVID were shown in
Additional file5: Table S3. In terms of biological process
and functions, they are involved in regulation of cell
death and metabolism of xenotiotics by cytochrome
P450 while genes in Pattern 155 are enriched in regula-
tion of transcription and transcription factor activity.

Taken together, previous studies largely verified the
pivotal roles played by the eight significant pathways
we identified using IPA and our findings were con-
sistent with the current knowledge regarding HBx-
induced HCC.
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Fig. 5 CpG ratio bias in Pattern 155. CpG ratio distributions in promoters and gene bodies for P155 (red), G155 (green), and all transcripts (grey).

a In promoters, a high peak for the CpG ratio in P155 was observed where the CpG ratio was > 0.6, whereas two peaks were found for all
transcripts, one in the low CpG ratio and one in high CpG ratio. b The CpG ratio distribution in gene bodies: 57 % of the G155 shows high CpG
content (CpG ratio > 0.5). All transcripts and P155 show high peaks in the low CpG ratio (<0.4). (C and D) CpG ratio distributions alongside
promoter regions for all transcripts: ¢ HCPs (Additional file 3: Figure S4) and (d) LCPs of P155. e The proportion of 200 base pair intervals matched
to Pattern 155 that corresponds to HCPs, ICPs, and LCPs alongside promoter regions. HCPs are more likely to match in intermediate or distal
promoter regions, whereas LCPs are likely to match in proximal promoter regions around the TSS

Discussion

In this study, we developed ChARM, an unsupervised ap-
proach that uses ARM, a well-known method for finding
frequent patterns in large databases, for the discovery and
interpretation of de novo combinatorial epigenetic modifi-
cation patterns that occur globally in a cancer cell line.

We applied ChARM to investigate an HBx-transformed
mouse liver tumour model and discovered an aberrant his-
tone modification pattern (a combination of a loss of
H3K4Me3 and gains of H3K27Me3 and H3K36Me3). The
pattern characterised with CpG content of underlying DNA
sequences-H3K27Me3 and H3K36Me3 hypermethylation in
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HBx occurred in intermediate promoter regions where CpG
ratio is low. There is a possibility those signals reflected by
neighbouring genes intersecting with the promoter regions
of the pattern. In some cases, the gains of H3K36Me3 were

observed in exonic regions of neighbouring upstream genes
or overlapping ESTs, implying that exonic enhancers func-
tion in promoter regions. As we found in correlation net-
work analysis, a positive relationship between H3K4Me3
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and CpG content and negative relationships between
H3K27Me3 and H3K36Me3 and CpG content were con-
served in the patterns, whereas these relationships were not
replicated in the whole mouse genome and random sam-
ples. The pattern observed in this study was enriched in
functional elements such as UTR5, coding exons, and pro-
moters, in response to CpG content. The pattern was asso-
ciated with Pol2 activity and gene expression, where a small
portion of genes in the promoter pattern showed mostly
down-regulated expression. Interestingly, while the majority

Table 3 Enriched functional terms and canonical pathways,
identified using DAVID and ingenuity pathway analysis (IPA)

Category Term or pathway P-value
Promoter
SP_PIR_KEYWORDS  Transcription regulation 2.00E-08
GOTERM_MF Transcription regulator 6.72E-06
activity
GOTERM_BP Regulation of transcription 8.83E-06
from RNA polymerase |l
promoter
GOTERM_MF Transcription factor activity 2.56E-05
SP_PIR_KEYWORDS  Phosphoprotein 531E-05
SP_PIR_KEYWORDS  DNA-binding 9.99E-05
GOTERM_BP Regulation of RNA 1.31E-04
metabolic process
GOTERM_BP Positive regulation of 143E-04
transcription
SP_PIR_KEYWORDS  Developmental protein 1.56E-04
SP_PIR_KEYWORDS  Activator 1.85E-04
SP_PIR_KEYWORDS  Repressor 261E-04
Canonical pathway® Role of NFAT in cardiac 4.36E-06
Hypertrophy
Wnt/[-catenin signalling 242E-04
Molecular Mechanisms 391E-04
of Cancer
cAMP-mediated signalling 5.60E-04
Dopamine-DARPP32 6.05E-04
Feedback in cAMP
signalling
Gene body
GOTERM_MF DNA binding 1.82E-07
INTERPRO IPRO01766:Transcription factor, fork head — 3.34E-06
GOTERM_MF Sequence-specific DNA binding 9.11E-06
SP_PIR_KEYWORDS  Developmental protein 9.66E-06
GOTERM_MF Transcription regulator activity 4.65E-05
GOTERM_MF Transcription factor activity 9.25E-05
SP_PIR_KEYWORDS  Transcription regulation 1.62E-04
Canonical pathway® Notch signalling 4.89E-05

Only annotations with P < 0.02 after Benjamini-Hochberg correction for multiple
hypothesis testing are presented. Full lists and more details are provided in
Additional file 5: Table ST and S2

#Canonical pathways were outputs from IPA analysis; other significant
functional annotation terms were obtained from DAVID analysis
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of the genes in the promoter pattern showed no significant
changes in expression levels, the pivotal roles played by
some of these genes (e.g. PTEN) in HCC progression has
already been highlighted in previous studies [40], suggesting
that these specific genes in the pattern could be potential
predictors of epigenetic prognosis in HBx. The significant
canonical pathways enriched in the pattern accounted for
the pathogenesis of HBx; for example, Notch signalling, and
Wnt/B-catenin, CAMP mediated, and Ras pathways, are
linked to a general cancer pathway. Our results indicate that
histone modifications in the promoter pattern could regulate
mis-expression of the downstream genes. The observation
that most genes were down-regulated suggests that the
genes in the pattern may play a role in inhibition of onco-
genic pathways in HBx and, therefore, they could be candi-
dates for further investigation of the epigenetic mechanisms
in HBx.

From a methodological perspective, the features of
ChARM are comparable to those of existing computational
methods [14, 15, 17, 19, 20]. For epigenetic therapeutic tar-
gets, there has been more emphasis on identifying global
patterns of combinatorial chromatin signatures. In this con-
text, ARM is able to extract all the possible combinations
from 1 to K-th large itemsets, which are composed of K
constituent modifications that meet minimum support and
lift from a large chromatin modification data. However, the
three existing methods (ChAT, CosBI and ChromasSig)
work well for identifying locally aligned similar signatures
of different modifications whilst CHARM can identify
combinatorial patterns composed of distally related peaks
of different modifications (Additional file 6: Figure 1S and
Figure S2A). Because degrees of confidence, support, and
lift are provided in the rules of the method, biologists could
determine differential patterns between different cell types
more easily than with some existing methods such as
ChromHMM based on HMM, Segway based on dynamic
Bayesian networks, ChAT based on dynamic programming,
and hierarchical clustering and ChromaSig that use prob-
ability profiles. Most of previously developed methods do
not detect differential modification patterns in a pattern
discovery process (Additional file 6: Figure S1-S6).

We evaluated whether the pattern explained variation in
gene expression and functions. Some existing methods re-
quire a prior knowledge, e.g. the use of motif seeds to ini-
tialise the subsequence of the pattern (ChromaSig), local
prior knowledge for initial state definition of emission and
transitions probabilities (ChromHMM), and correspond-
ing genome annotation for regions around, for example,
the TSS, exons, UTR5 and UTR3, and GC rich regions.

The patterns we discovered have flexibility in the
representation of chromatin signatures. The pattern is
capable of identifying differential combination patterns
and can include multiple modes [20] of the constituent
modifications. For example, our method can be used to
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identify the co-localised epigenetic modifications for
which differential changes are likely conserved in spe-
cific functional elements in different genomic space. The
equal frequency binning strategy used in ChARM to
transform continuous values into categorical bins also
gives flexibility and simplicity to find the pattern reflect-
ing an epigenetic modification distribution of each mark.

While CEHARM has several strengths, it also has some
limitations. For example, it does not distinctively distin-
guish the different shapes of patterns that are composed
of the same constituent modifications. However, it pro-
vides informative relationships among the constituent
modifications, which may not correspond to physical
biochemical interactions but are more likely to imply
cross-talk between different epigenetic modifications.
Thus, our approach is scalable in respect of deriving
functionally associated patterns by incorporating epigen-
etic modifications with other genomic features (e.g. SNP
density, conservation, microsatellite, and functions) in a
learning model. In future studies, we could take advantage
of this, and of CHARM’s other qualities, to infer function-
ally important epigenetic modification patterns.

Conclusions

We developed ChARM, an unsupervised approach that
uses ARM, a well-known method for finding frequent
patterns in large databases, for the discovery and inter-
pretation of de novo combinatorial epigenetic modifica-
tion patterns that occur globally in a cancer cell line.
Consequently, CHARM identified combinatorial chromatin
patterns of differentially modified regions in an unbiased
fashion without using any functional annotations (except
gene boundaries). Additionally, it was able to characterise
the functional elements and genome features that are
enriched in the patterns.

The patterns are expressed as association rules, which
are quantitative, informative, and easily interpreted. Biol-
ogists could determine interesting rules or differential
patterns between different cell types more easily than
with some existing methods.

Methods

ChIP-seq and gene expression processing

Transgenic mice expressing HBx protein, and the HCC
tissues in these mice, have been described previously
[48]. Genome-wide DNA methylation [49], histone
methylations (H3K4Me3, H3K27Me3, and H3K36Me3),
and serine 2 and 5 phosphorylation of RNA polymerase
IT were profiled from the livers of 3-month old wild-type
and HBx transgenic (TG) mice. The gene expression
data were downloaded from the Gene Expression Omni-
bus (GEO accession number: GSE48052 for RNA-Seq
[49]). The reads from mRNA-seq were aligned to MM9
(mouse genome build 37) using bowtie2 (version 2.1.0),
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extended toward the 3" end for fragments to reach the
final 200 bp interval BED format and counted overlap-
ping sequence tags at 50 bp resolution. The RPKM
values of RefSeq transcripts were calculated using
TopHat/Cufflinks and were log, transformed. The ChIP
DNA fragments were sequenced using Solexa sequen-
cing technology and the ChIP-seq reads were mapped to
the MM9 mouse reference genome using Bowtie2. We
extended the 34-bp reads toward the 3" according to the
average size of library fragments (i.e. 200 bp). The num-
ber of overlapping sequence reads mapped to each
promoter or gene body was counted and divided by the
length of the each promoter and gene body which was
normalized by the ratio of the total read count to the
genome size ((target read count/target size)/(total read
count/genome size)) [48]. This metric measures the rela-
tive enrichment of reads within a given genomic locus
relative to the whole genome. The relative enrichment
score (RES) of the Chip-seq signals for a given genomic
locus was obtained by using a log2 ratio, as previously
described [50-54]. For each genomic locus, the differen-
tial RES (dRES) between HBx and normal livers was
calculated by subtracting two RESs between HBx and
normal livers.

All the genomic positions of transcripts and CGIs were
obtained from the UCSC genome browser and are based
on MM9. The NCBI mRNA reference sequences
collection (RefSeq) was employed for defining transcrip-
tion units such as gene bodies and TSSs. We divided
each transcript into two large bins, i.e. promoters and
gene bodies. Promoter regions were defined as existing
in the region 1500 bp upstream to 500 bp downstream
from the TSSs of the RefSeq genes, and gene bodies
encompassed the boundary of the RefSeq genes.

For each promoter and gene body, we calculated the
average RES of each chromatin feature across all tran-
scripts. Each ChIP-seq experimental data set across all
promoters or gene bodies was represented with a matrix,
which comprised 20,147 coding mRNA x 7 chromatin
modification features for all promoters or gene body
regions across all transcripts of the RefSeq genes.

ARM

ARM [55] was originally designed to identify products
that were purchased together in customers’ shopping
baskets. It identifies frequent patterns of co-occurrence
and relationships involving dependence in large data sets
containing many items. These patterns are expressed as
association rules that describe the dependence or associ-
ations among a set of singlet products or items. We have
previously shown that association rules as patterns
detected by ARM are informative, quantitative, and
biologically interpretable [52, 56]. Finding global com-
binatorial histone modifications can be considered as
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discovering the K-th most frequent itemset: the combin-
ation of K different epigenetic modification states whose
frequency (support) is greater than all the possible com-
binations composed of K modified states, where K <N,
K is the number of different modified states, and N is
total number of epigenetic modified states given. The
K-th most frequent itemset should be subject to the
close itemsets but not mandatory to be maximal
frequent itemsets. We analysed the frequency of all
K-large itemsets to find the K-th most frequent itemset
(Additional file 2: Figures S1 and S2). Association rules
were generated from K-large itemsets that met mini-
mum confidence.

Let I be a set of items and D be a set of database
transactions, e.g. each set of promoters or gene bodies.
Each transaction T is a set of items such that 7 I. An
association rule has the form R: X —Y [c, s], where X
(the left-hand side (LHS)) and Y (the right-hand side
(RHS)) are the body and the head of a rule, respectively.
X and Y are disjoint predicates (X n Y =@). Each X and
Y consists of a conjunction of distinct predicates that de-
scribe items. The strength of the association rules can be
measured in terms of their support (s) and confidence (c).
The support of a rule (X —Y) is the probability that a case
in a database contains both X and Y. The confidence of a
rule is the probability that a case contains Y given that it
contains X. Thus, the rule indicates strong or partial correl-
ation or dependence between items X and Y encoded in
the rule.

Support(X—Y) = P(XuY)
Confidence(X—Y) = P(Y|X)

For instance, consider an example from our epigenetic
data, which can be used to illustrate the concepts
described above. In our data, I={p.H3K4Me3=1,
p-H3K4Me3 =2, p.H3K4Me3 =3, p.H3K4Me3 =4, p.H3
K4Me3 =5, p.H3K27Me3 =1, p.H3K27Me3 =2, p.H3K
27Me3 = 3, p.H3K27Me3 = 4, p.H3K27Me3 =5,..., p.H3K
36Me3 =4, p.H3K36Me3 = 5}, D = 20,147 transactions of
promoters, and a transaction T can be formulated with
the form of, for example, T;={p.H3K4Me3 =1, p.H3K
27Me3 =5, p.H3K36Me3 = 5}, where T; I The patterns
are expressed with association rules, e.g. Rule 1 (Table 1),
which is formulated with {p.H3K27Me3 =5 p.H3K36Me3
=5} ==>{p.H3K4Me3 =1}. In Rule 1, the support of
1.8 % denotes that there are 362 promoters that show the
combination of three histone modification states
{p.H3K27Me3 =5, p.H3K36Me3 =5, p.H3K4Me3 =1},
with gains of H3K27Me3 and H3K36Me3 and a loss of
H3K4Me3. Confidence of 35 % indicates that 35 % of the
promoters that have high gains of H3K27Me3 and
H3K36Me show a high loss of H3K4Me3.
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A workflow for the de novo pattern discovery of
chromatin modifications using ARM

The discovery of de novo global CCMPs, given a chro-
matin modification matrix for a set of promoters or a
set of gene bodies, was used to identify frequent
combinatorial patterns, which is a typical application of
ARM. The pattern discovery procedure included adap-
tion of ARM and interpretation of the patterns discov-
ered. The procedure comprised the following steps:
pre-processing and discretization, ARM rule generation,
clustering of association rules for visualization, refine-
ment of the patterns (Fig. 1), and interpretation of the
patterns.

Pre-processing and discretization
For each of the promoters or gene bodies, we calculated
the differential RES for the HBx and normal cells of each
chromatin modification in order to identify variation in
the patterns of modification between the two conditions.
ARM is not directly applicable to continuous types such
as our ChIP-seq experimental data; therefore, we used
discretization to transform the continuous data into cat-
egorical data based on an equal frequency discretization
algorithm. In this process, the continuous data for each
ChIP-seq mark were divided into five bins (b=1, ...,
n; n=>5): extremely hypo-changed (b = 1), hypo-changed
(b =2), unchanged (b = 3), hyper-changed (b =4), and ex-
tremely hyper-changed (b =5). Because significant ChIP-
seq peaks were skewed, the adoption of equal width
discretization might ignore a small number of outliers.
Although our major aim was to identify global changes
to epigenetic modifications, these are likely to represent
a relatively small portion of the genome. Therefore,
equal frequency, rather than equal width, discretization
is more appropriate for minimising the loss of outliers,
which represent extreme changes, and prioritising the
discovery of relatively weak patterns.

Association rule generation

The generation of association rules was carried out by
using the APRIORI algorithm [55]. We used Oracle Data
Miner for discretization and the arules Package in R,
which implemented the APRIORI algorithm, for ARM.
We ran ARM over five states for each of the six epigenetic
modification marks in 20,147 mRNA transcripts and their
corresponding promoters. An item corresponded to a
modified state of each mark, and a collection of these
items in each gene body or promoter of a transcript corre-
sponded to a transaction. We set a minimum support and
a minimum confidence of 0.05 and 30 %, respectively.

We focused on detecting relatively weak and rare but
epigenetically meaningful patterns against strong pat-
terns, which occur frequently, have high support, and
represent well-known common correlations. The
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majority of strong patterns with high support and high
confidence will characterise the combinations in un-
changed states. To prioritize a small portion of the
modification states in the whole genome, and to ensure
that infrequent itemset generation was not missed, we
set low thresholds for support (e.g. 0.05 %) and confi-
dence (e.g. 30 %), generated as many rules as possible,
and filtered them by measures of interestingness e.g. Lift.
The existing association rule mining formulation relies
on the support and confidence measures to eliminate
uninteresting patterns. The drawback of support was
that many potentially interesting patterns that might
have weak pairwise co-occurrences but have strong
multi-item co-occurrences might be eliminated by the
support threshold due to their low supports.

In the discovery of combinatorial patterns, the confi-
dence metric can mislead and reveal directional informa-
tion. Therefore, a metric known as lift [57] is more
suitable for adopting measures of interestingness and the
co-occurrence of epigenetic modification states in the dif-
ferent marks in the patterns. Lift is defined as follows:

Lift = P(X,Y)/P(X) x P(Y)

Lift calculates the ratio between the rule’s confidence
and support of item Y in the rule’s consequence. It was
originally known as interest, and measures how many
times more often X and Y occur together than expected
if they are statistically independent. If the result of im-
provement is <1, >1, or equal to 1, then the relationship
of X and Y is negatively correlated, positively correlated,
or independent, respectively. In this study, lift allowed
us to measure the possibility of interplay between epi-
genetic modification states in the pattern and provided
us with baseline information for determining whether
the pattern implied cross-talk between histone modifica-
tions. We selected rules representing the combination of
two or more epigenetic modification states that appeared
in the pattern and calculated the lift (Table 1).

Clustering association rules for visualisation of the patterns
ARM results in a large number of discovered rules; thus,
identifying and globally visualising rules of interest are
not easy tasks for analysts. Therefore, we present a new
approach to post-processing and visualisation of rules
that makes interpretation more feasible. In our ap-
proach, by parsing epigenetic modification states in all
the rules discovered, we generated a rule matrix in
which each row represents a rule and each column
stands for each epigenetic mark. The cells of each row
in the rule matrix were filled with the chromatin modifi-
cation states of each mark represented as the intensity of
gene expression. In order to visualise association rules
by epigenetic marks using TreeView and Gene Cluster
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3.0, which are broadly employed in analysis of gene
expression data, we transformed the scale of the bins
representing the modification states (e.g. 1, 2, 3, 4, 5) of
each epigenetic mark into a range of values (e.g. -2, -1,
0, 1, 2). After clustering the rule matrix, we used Gene
Cluster 3.0 to graphically capture the global view of the
discovered rules, and we visualised the clustering results
with TreeView (Fig. 2a). For both promoters and gene
bodies, the global view of association rules clustered by
their items, i.e. chromatin modification states (Fig. 2a),
represents combinatorial patterns of epigenetic modifi-
cations. Each association rule (i.e. each row in Fig. 2a)
encodes each combination of differential modification
states for given chromatin marks.

Identification of functional elements enriched in the
pattern

We refined the pattern discovered in order to filter out
false positives and to obtain fine-grained targets. We
searched 200-bp intervals, for which epigenetic modifi-
cation states were congruent to the gene-level patterns,
throughout the mouse genome. To investigate genomic
features associating with the patterns, we identified the
functional elements that were enriched in these 200-bp
intervals. Moreover, we calculated the frequency of the
functional elements (e.g. coding exons, introns, UTR5,
UTRS3, and promoters) in the patterns and the genome.
Odds for a functional element fin the patterns, with re-
spect to values expected from the relative size of the
mouse genome, were calculated as follows:

Odds for functional element f = l%] (1)
P,4,

Pa Pm: probabilities of functional element f appeared
in each of the patterns and the mouse genome.

G2 qm: (1- p,) and (1- py,) respectively.

Odds ratios for two functional elements f; and f; are
calculated by odds (f;)/odds (f;) as shown in Table 2.

Correlation network analysis for identifying relationships
between chromatin marks

To investigate the relationships and dependency between
the epigenetic modifications across a given set of genes,
we generated a correlation matrix based on all columns
(epigenetic modifications). We took the upper diagonal
of the correlation matrix as an input to calculate an ad-
jacency matrix of a graph in order to draw a correlation
network. To transform the correlation matrix into the
adjacency matrix of the graph, the cells in which
Pearson’s correlation (r) was<0.2 were set to zero
and other cells were taken. The columns of the adjacency
matrix represented epigenetic modifications as nodes, and
the non-diagonal cells of the adjacency matrix represented
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the correlation (r) between the nodes as assigned to edges.
We visualised the adjacency matrix of the graph by using
igraph R module 2.12 to produce a correlation network
(Fig. 3 for promoters). Correlation values were assigned to
the width of edges and vertex size was proportional to
degrees of the vertices.

Characterisation and interpretation of the patterns

Our method characterises patterns by analysing the
associations between the following genomic features:
CpG content, propensity of spatial positions along the
promoter regions, and relationships with gene expres-
sion. We further investigated the relevance of these gen-
omic features to histone modification changes by
dividing each promoter into three regions relative to
TSS according to the work of Koga et al. [28]: proximal
(-200 to +500 bp), intermediate (-200 to —1000 bp),
and distal (-1000 to —1500). We also classified pro-
moters into three groups based on their CpG ratio [28]:
low CpG (LCPs), intermediate CpG (ICPs), and high
CpG (HCPs) content promoters.

We used Benjamini-Hochberg corrected Fisher exact
tests in IPA software (Ingenuity Systems, http://www.in-
genuity.com) to analyse the association of the genes
identified in the promoter and gene body patterns with
molecular functions, cellular functions, and canonical
pathways. Similarly, functional enrichment analyses were
performed using DAVID (Database for Annotation, Visu-
alisation and Integrated Discovery, http://david.abcc.n-
cifcrf.gov). From the DAVID analysis, we reported GO
terms related to the Biological Process and Molecular
Function ontologies, KEGG pathways, and terms from
InterPro and PIR at Level 3.
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