
The Author(s) BMC Bioinformatics 2016, 17(Suppl 16):448
DOI 10.1186/s12859-016-1309-x

RESEARCH Open Access

On the inconsistency of �1-penalised
sparse precision matrix estimation
Otte Heinävaara1, Janne Leppä-aho1, Jukka Corander2,3 and Antti Honkela1*

From The 10th International Workshop on Machine Learing in Systems Biology (MLSB)
Den Haag, The Netherlands. 3-4 September 2016

Abstract

Background: Various �1-penalised estimation methods such as graphical lasso and CLIME are widely used for sparse
precision matrix estimation and learning of undirected network structure from data. Many of these methods have
been shown to be consistent under various quantitative assumptions about the underlying true covariance matrix.
Intuitively, these conditions are related to situations where the penalty term will dominate the optimisation.

Results: We explore the consistency of �1-based methods for a class of bipartite graphs motivated by the structure of
models commonly used for gene regulatory networks. We show that all �1-based methods fail dramatically for models
with nearly linear dependencies between the variables. We also study the consistency on models derived from real
gene expression data and note that the assumptions needed for consistency never hold even for modest sized gene
networks and �1-based methods also become unreliable in practice for larger networks.

Conclusions: Our results demonstrate that �1-penalised undirected network structure learning methods are unable
to reliably learn many sparse bipartite graph structures, which arise often in gene expression data. Users of such
methods should be aware of the consistency criteria of the methods and check if they are likely to be met in their
application of interest.
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Background
Networks are ubiquitous in biology and inference of net-
work structure from observed data is a common learning
task. Many important biological networks have specific
structural properties affecting this task. Gene regulatory
networks, for instance, are nearly bipartite graphs with a
small set of transcription factors regulating all the other
genes. This structure has been successfully incorporated
in gene regulatory network inference, often assuming a
linear dependence between the regulators and targets, in
both static (e.g. [1, 2]) as well as dynamic (e.g. [3, 4])
models. These fundamental assumptions form the basis
for even very recent successful network inference projects
(e.g. [5]).
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The simplest and possibly the most widely used generic
approaches for network inference are based on estimat-
ing the sparse precision matrix, i.e. the inverse covari-
ance matrix, from data. The motivation for the approach
stems from the fact that for a Gaussian Markov ran-
dom field model, zeros in the precision matrix translate
exactly to absent edges in the corresponding undirected
Gaussian graphical model, thus being informative about
the marginal and conditional independence relationships
among the variables.
The full p-dimensional covariancematrix contains p(p+

1)/2 parameters, making its accurate estimation from
limited data difficult. Additionally, the structure learn-
ing requires the inverse of the covariance, and matrix
inversion is in general a very fragile operation. To make
the problem tractable, some form of regularisation is
typically needed. Direct optimisation of the sparse struc-
ture would easily lead to very difficult combinatorial
optimisation problems. To avoid these computational
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difficulties, several convex �1-penalty-based approaches
have been proposed. Popular examples include �1-
penalised maximum likelihood estimation [6], which also
forms the basis for the highly popular graphical lasso
(glasso) algorithm [7]. �1 regularisation has also been
used for example in a non-probabilistic alternative with
linear-programming-based constrained �1 minimisation
(CLIME) algorithm [8].
At the heart of the optimisation problems considered

by all these methods is a term depending on the �1
norm of the estimated precision matrix. �1-penalisation-
based approaches such as lasso are popular for sparse
regression, but they have a known weakness: in addition
to promoting sparsity they also push true non-zero ele-
ments toward zero [9]. In the context of precision matrix
estimation this effect would be expected to be espe-
cially strong when some elements of the precision matrix
are large, which happens for scaled covariance matri-
ces when the covariance matrix becomes ill-conditioned.
This phenomenon occurs frequently under the circum-
stances where some of the variables are nearly linearly
dependent.
In this paper we demonstrate a drastic failure of the

�1-penalised sparse covariance estimation methods for a
class of models that have a bipartite structure where some
variables depend linearly on others, such as in the com-
monly used and very successful gene regulatory network
models. For such models even in the limit of infinite data,
popular �1-penalised methods cannot yield results that
are significantly better than based on random guessing on
any setting of the regularisation parameter. Yet thesemod-
els have a very clear sparse structure that becomes obvious
from the empirical precision matrix with an increasing n.
Motivated by our discovery, we also explore the inconsis-
tency of �1-penalised methods on models derived from
real gene expression data and find the methods poorly
suited for such applications.

Structure learning of Gaussian graphical models
We start with a quick recap on the basics of Gaussian
graphical models in order to formulate the problem of
structure learning. For a more comprehensive treatment
of the subject, we refer to [10, 11]. Let X = (X1, . . . ,Xp)T

denote a random vector following a multivariate nor-
mal distribution with zero mean and a covariance matrix
�,X ∼ Np(0,�). Let G = (V ,E) be an undirected graph,
where theV = {1, . . . , p} is the set of nodes and E ⊂ V×V
stands for the set of edges. The nodes in the graph rep-
resent the random variables in the vector X and absences
of the edges in the graph correspond conditional indepen-
dence assertions between these variables. More in detail,
we have that (i, j) �∈ E and (j, i) �∈ E if and only if Xi is con-
ditionally independent of Xj given the remaining variables
in X.

In the multivariate normal setting, there is a one-to-
one correspondence between the missing edges in the
graph and the off-diagonal zeros of the precision matrix
� = �−1, that is, ωij = 0 ⇔ Xi ⊥⊥ Xj |X \ {Xi,Xj} (see,
for instance, [11], p. 129). Given an undirected graph G,
a Gaussian graphical model is defined as the collection
of multivariate normal distributions for X satisfying the
conditional independence assertions implied by the graph
G.
Assume we have a complete (no missing observations)

i.i.d. sample x = (x1, . . . , xn) from the distribution
Np(0,�). Based on the sample x, our goal in structure
learning is to find the graph G, or equivalently, learn the
zero-pattern of�. The usual assumption is that the under-
lying graph is sparse. A naive estimate for � by inverting
the sample covariance matrix is practically never truly
sparse for any real data. Furthermore, if n < p the sam-
ple covariance matrix is rank-deficient and thus not even
invertible.
One common approach to overcome these problems is

to impose an additional �1-penalty on the elements of �

when estimating it. This kind of regularisation effectively
forces some of the elements of � to zero, thus resulting in
sparse solutions. In the context of regression models, this
method applied on the regression coefficients goes by the
name of lasso [12]. There exists a wide variety of methods
making use of �1-regularisation in the setting of Gaussian
graphical model structure learning [6–8, 13–16].

Methods
�1-regularised methods for Gaussian graphical model
structure learning
In this section we provide a brief review of selected exam-
ples of different types of �1-penalised methods.

Glasso
We begin with the widely used graphical lasso-algorithm
(glasso) [7]. Glasso-method maximises an objective func-
tion consisting of the Gaussian log-likelihood and an �1
penalty:

log det(�) − trace(�S) − λ|�|1, (1)

where S denotes the sample covariance matrix and λ > 0
is the regularisation parameter controlling the sparsity of
the solution. The �1 penalty, |�|1 = ∑

i,j |ωij|, is applied
on all the elements of �, but the variant where the diag-
onal elements are omitted is also common. (We use the
notation | · |p for the vector norm over matrix elements to
avoid confusion with the matrix norm ‖ · ‖). The objective
function (1) is maximised over all positive definite matri-
ces � and the optimisation is carried out in practice using
block-wise coordinate descent.
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CLIME
The CLIME method (Constrained �1 minimisation for
Inverse Matrix Estimation) [8] approaches the problem
of sparse precision matrix estimation from a slightly dif-
ferent perspective. It seeks matrices � with a minimal �1
norm under the constraint

|S� − I|∞ ≤ λ, (2)

where λ is the tuning parameter and |A|∞ = maxi,j |aij|
is the element-wise maximum. The optimisation problem
min� |�|1 subject to the constraint (2) does not explicitly
force the solution to be symmetric, which is resolved by
picking from estimated values ωij and ωji the one with a
smaller magnitude into the final solution. In practice, the
optimisation problem is decomposed over variables into
p sub-problems which are then efficiently solved using
linear programming.

SCIO
The recently introduced Sparse Column-wise Inverse
Operator (SCIO) [17] method decomposes the estimation
of � into the following smaller problems

min
β i∈Rp

{
1
2
βT
i Sβ i − eTi β i + λ|β i|1

}

,

where S and λ are defined as before and ei is an i:th stan-
dard unit vector. The regularisation parameter λ can in
general vary with i but this is omitted in our notation.
The solutions β̂ i form the columns for the estimate of
�. SCIO does not guarantee the symmetry of the result-
ing precision matrix, which is resolved as in the case of
CLIME.

Alternative methods
The naive approach
In addition to the above-mentioned �1-penalised meth-
ods, we consider two alternative approaches. In a “naive”
approach, we simply take the sample covariance matrix,
invert it, and then threshold the resulting matrix to obtain
a sparse estimate for the precision matrix. The thresh-
old value is chosen using the ground truth graph so that
the naive estimator will have as many non-zero entries as
there are edges in the true graph. Setting the threshold
value according to the ground truth is of course unreal-
istic, however, it is nevertheless interesting to compare
the accuracy of this simple procedure to the performance
of the more refined �1 methods, when also their tuning
parameters are chosen in a similar fashion.

FMPL
Lastly, we consider an approximate Bayesian approach
which is based on finding a graph with the highest
fractional marginal pseudo-likelihood (FMPL) [18]. Seek-
ing the graph that maximises the marginal likelihood is

equivalent with finding the maximum a posteriori graph,
assuming a uniform prior over different graphs. How-
ever, computing the marginal likelihood is computation-
ally challenging for a general graph, even in the Gaussian
setting with conjugate priors. The FMPL method aims at
circumventing this problem by replacing the true likeli-
hood in the marginal likelihood with pseudo-likelihood.
This leads to a convenient factorisation of marginal like-
lihood over variables and the resulting expression can be
evaluated in closed form using previous results regarding
objective comparison of Gaussian directed acyclic graphs
[19, 20]. In practice, the factorisation allows the method
to identify optimal Markov blankets independently for
each of the variables using a greedy hill-climbing algo-
rithm. The found Markov blankets are then combined
into a proper undirected graph using any of the three dif-
ferent schemes commonly employed in graphical model
learning: OR, AND and greedy hill-climbing (HC) [21].

Model selection consistency
The assumptions required for a consistentmodel selection
with an �1-penalised Gaussian log-likelihood have been
studied, for instance, in [22]. The authors provide a num-
ber of conditions in the multivariate normal model that
are sufficient for the recovery of the zero pattern of the
true precision matrix �∗ with a high probability when the
sample size is large. For our purposes, the most relevant
condition is the following:

Assumption 1 There exists α ∈ (0, 1] , such that

γ := ‖	SCS(	SS)
−1‖∞ ≤ 1 − α. (3)

Here S ⊂ V × V is a set defining the support of
�∗, that is, the non-zero elements of �∗ (diagonal and
the elements corresponding to the edges in the graphical
model) and SC refers to the complement of S in V × V .
The 	 term is defined via Kronecker product ⊗ as 	 =
(�∗)−1 ⊗ (�∗)−1 ∈ R

p2×p2 and 	AB refers to the spe-
cific rows and columns of 	 indexed by A ⊂ V × V and
B ⊂ V × V , respectively. The norm in the equation is
defined as ‖A‖∞ = maxj

∑
i |aij|.

The above result applies to glasso. However, a quite
similar result was presented for SCIO in [17]:

Assumption 2 There exists α ∈ (0, 1), such that

max
1≤i≤p

‖�∗
sCi si

(
�∗

sisi
)−1‖∞ ≤ 1 − α.

Here �∗ = (�∗)−1 and si = {j ∈ {1, . . . , p} | (�∗)ij �= 0}.
Assumption 2 under the multivariate normality guaran-
tees that the support of �∗ is recovered by SCIO with a
high probability as the sample size gets large.
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Bipartitegraphs inducing inconsistencywith�1 penalisation
Methods for sparse precision matrix estimation generally
depend on an objective function (such as log-likelihood)
and a penalty function or regulariser, which in a Bayesian
setting is usually represented by the prior. The ideal
penalty function for many problems would be the �0
“norm” counting the number of non-zero elements: |x|0 =
#{i|xi �= 0}. This �0 function is not a proper norm,
but it provides a very intuitive notion of sparsity. The
main problem with its use is computational: using �0-
penalisation leads to very difficult non-convex combinato-
rial optimisation problems. The most common approach
to avoid the computational challenges is to use �1 penal-
isation as a convex relaxation of �0. As mentioned above
this works well in many cases but it comes with a price,
since in addition to providing the sparsity, �1 also regu-
larises large non-zero values. Depending on the problem,
as we demonstrate here, this effect can be substantial
and may cause �1-regularised methods to return totally
meaningless results.
Intuitively, �1-regularised methods are expected to fail

when some elements of the true precision matrix become
so large that their contribution to the penalty completely
overwhelms the other parts of the objective and the
penalty. One example where this happens is when some
set of variables depends linearly on another set of vari-
ables. In such situation the covariance matrix can become
ill-conditioned and the elements of its inverse, the preci-
sion matrix, grow. One example of when this happens is
models with a linear latent variable structure.
Let us consider a model for x ∈ R

d1 , y ∈ R
d2 , where

y = Ax + ε. The graphical structure of the model and the
corresponding precision matrix structure are illustrated
in Fig. 1. Assuming x ∼ N (0, σ 2

x I), ε ∼ N (0, σ 2
ε I), the

covariance of the concatenated vectors
(
xT , yT

)T is given
by the block matrix

Cov
((

xT , yT
)T

)

= C = σ 2
x

(
I AT

A AAT + σ 2
ε I

)

. (4)

Fig. 1 Left: Graphical representation of a latent variable model as an
undirected graphical model for a case with somewhat sparse A. Right:
The adjacency matrix of the graph showing the sparse pattern of
non-zero elements in the corresponding precision matrix

The covariance matrix has an analytic block matrix
inverse [23]

C−1 = σ−2
x

(
I + σ−2

ε ATA −σ−2
ε AT

−σ−2
ε A σ−2

ε I

)

. (5)

This precisionmatrix recapitulates the conditional inde-
pendence result for Gaussian Markov random fields: the
lower right block is diagonal because the variables in y
are conditionally independent of each other given x. The
matrix is clearly sparse, so we would intuitively assume
sparse precision matrix estimation methods should be
able to recover it. The non-zero elements do, however,
depend on σ−2

ε which can make them very large if the
noise σ 2

ε is small.
It is possible to evaluate and bound the different terms

of Eq. (1) evaluated at the ground truth for these models:

log det(C−1) = −(d1 + d2) log σ 2
x − d2 log σ 2

ε (6)

−trace(CC−1) = −(d1 + d2) (7)

−λ|C−1|1 < −λσ−2
x σ−2

ε (d2 + 2|A|1). (8)

The magnitude of the penalty term (8) clearly grows
very quickly as σ 2

ε decreases while the magnitudes of the
two first log-likelihood terms (6) and (7) grow much more
slowly as they only depend on log σ 2

ε . Thus the total value
of Eq. (1) decreases without bound as σ 2

ε decreases.
Ignoring the ground truth, it is easy to see that one can

construct an estimate � for which the objective remains
bounded. If we assume |C|∞ = max |cij| ≤ 1 (after
normalisation), then

trace(C�) ≤ |�|1.
As the other terms only depend on � it is easy to choose

� so that they remain bounded. The estimate� that yields
these values will in many cases not have anything to do
with C−1, as seen in the experiments below.
Here Eq. (6) follows from the block matrix determinant

identity [24]

det
(
A B
C D

)

= det(A − BD−1C) det(D),

while Eq. (8) is based on a lower bound of the �1 norm
as the sum over all except the top-left block of the block
matrix in Eq. (5).

Results
Synthetic example
We tested the performance of glasso, SCIO and CLIME
as well as FMPL using the model structure corresponding
to the bipartite graph introduced above. The performance
of the methods was investigated by varying the noise vari-
ance σ 2

ε , and the sample size n. The model matrix A was
created as a (d2, d1)-array of independent normal random
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variables with mean 0 and variance 1. The majority of the
tests were run using input dimensionality d1 = 2, output
dimensionality d2 = 10 and noise variance σ 2

ε = 0.12 but
we also tested varying these settings. For each individual
choice of noise and sample size, k = 50 different matrices
A were generated and the results were averaged.
Generating n samples using model described, data were

normalised and analysed using the five different methods.
We calibrated the methods in a way that number of edges
in the resulting graph would match the true number. Sim-
ilarly, we thresholded the naive method by taking inverse
matrix directly to output the correct number of edges. The
FMPLmethod has no direct tuning parameters so we used
its OR mode results as such. Similar tuning is not possible
in a real problem where the true number of edges is now
known. The tuning represents the best possible results
the methods could obtain with an oracle that provides an
optimal regularisation parameter.
We evaluated the results using the Hamming distance

between the ground truth and the inferred sparsity pat-
tern, i.e. the number of incorrect edges and non-edges
which were treated symmetrically. For methods returning
the correct number of edges, this value is directly related
to the precision pr through

dHamming = 2(1 − pr)Ntrue positives

or conversely

pr = 1 − dHamming

2Ntrue positives
.

We will nevertheless use the Hamming distance as
it enables fair comparison with FMPL that sometimes
returns a different number of edges.
Figures 2 and 3 show the Hamming distance obtained by

the different methods as a function of the noise level when
using 100 and 1000 samples, respectively. The results
show that especially for low but also for high noise levels,
the �1-based methods all perform very poorly with espe-
cially glasso and CLIME performing very close to random
guessing level for low noise levels σε ≤ 0.1. The naive
inverse and FMPLworkmuch better up tomoderate noise
levels of σε ≈ 2 after which the noise starts to dominate
the signal and the performance of all methods starts to
drop. SCIO is a little better than the other �1-based meth-
ods but clearly worse than FMPL and naive in the low
noise regime.
Figure 4 shows the results when changing the output

dimensionality d2 from 10. The results show that the per-
formance of all �1-based methods is very poor across all
d2. Glasso performance is close to random guessing level
across the entire range considered, while CLIME is slightly
better for d2 ≥ 18 and SCIO slightly better across the
entire range. Both FMPL and naive are significantly better
than any of the �1-based methods.

Fig. 2 Performances of different methods on the bipartite graph
model with 100 samples. (Lower values are better)

Figure 5 shows the corresponding result when changing
the input dimensionality d1. The results are now quite dif-
ferent as all methods are better than random especially for
larger values. SCIO still outperforms CLIME which out-
performs glasso. FMPL is really accurate for small d1 but
degrades for larger d1 while the naive method is the most
accurate in almost all cases.
To further illustrate the behaviour of glasso on these

examples, Fig. 6 shows the contributions of the different
parts of the glasso objective function (1) as a function
of the noise level both for the true solution (“truth”) as
well as the glasso solution. The results show that for
low noise levels the penalty incurred by the true solution
becomes massive. The glasso solution has a much lower
log-likelihood (“logl”) than ground truth but this is amply
compensated by the significantly smaller penalty. As the

Fig. 3 Performances of different methods on the bipartite graph
model with 1000 samples. (Lower values are better)
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Fig. 4 Performances of different methods on the bipartite graph
model with varying output dimensionality. (Lower values are better)

noise increases, the penalty of the true solution decreases
and the glasso solution converges to similar values.

Necessity of assumption 1
It can be checked that the norm γ in Assumption 1
and Eq. (3) for bipartite graph models presented above
depends on the scale of A. We took advantage of this by
creating examples with different values of γ and testing
the precision of glasso using the true covariance which
corresponds to infinite data limit. The results of this
experiment are shown in Fig. 7. The results verify that
glasso consistently yields perfect results when γ < 1
which is a part of the sufficient conditions for consistency
of glasso. As γ grows and the sufficient conditions are
no longer satisfied, it is clearly seen that the accuracy of
glasso starts to deteriorate rapidly. This suggests that the

Fig. 5 Performances of different methods on the bipartite graph
model with varying input dimensionality. (Lower values are better)

Fig. 6 Contributions of the different terms of the glasso objective (1)
for the bipartite graph model with 1000 samples. The green curves
show the contributions of the first two terms of Eq. (1) and the blue
curves show the contributions of the last penalty term. Solid lines
show the result of the glasso optimal solution while dashed lines show
the result for the true solution

sufficient condition of Assumption 1 is in practice also
necessary to ensure consistence.

Inconsistency for models of real gene expression data
We tested how often the problems presented above appear
in real data using the “TCGA breast invasive carcinoma
(BRCA) gene expression by RNAseq (IlluminaHiSeq)”
data set [25] downloaded from https://genome-cancer.
ucsc.edu/proj/site/hgHeatmap/. The data set contains
gene expression measurements for 20530 genes for n =
1215 samples. After removing genes with a constant
expression across all samples there are p = 20252 genes
remaining.

Fig. 7 Precision of glasso on infinite data as a function of the norm γ

of Assumption 1 and Eq. (3). Values to the left of the green vertical line
satisfy this condition while values to the right violate it. (Higher values
are better)

https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/
https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/
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In order to test the methods we randomly sampled sub-
sets of d genes and considered the correlation matrix C0
over that subset. We generated sparse models with known
ground truth by computing the corresponding precision
matrix �0 from the empirical correlation matrix, setting
elements with absolute values below chosen cutoff δ = 0.1
to 0 to obtain

�ij =
{

(�0)ij if |(�0)ij| > δ

0 otherwise (9)

and the testing covariance matrix C = �−1. The cutoff
lead to networks that were sparse with on average 60 %
zeros in the precision matrix.
Figure 8 shows the fraction of covariances derived from

random subsets of d genes that satisfy the Assumption
1 of [22] (c = 1) as well as the fraction of values below
more relaxed bounds. The figure shows that the assump-
tion is reliably satisfied only for very small d while for
d ≥ 20, the assumption is essentially never satisfied. Based
on the results of Fig. 7 it is likely that glasso results will
degrade significantly for γ > 10 and beyond which are
very common for large networks.
We further studied how accurately glasso can recover

the graphical structures when the data were generated
using the precision matrices described above. We used a
similar thresholding with a cut-off value of 0.1 in order to
first form sparse precision matrices for a random subset
of genes with given dimension. These matrices were then
inverted to obtain covariance matrices. We checked that
the resulting matrices were positive definite and then used
them to sample multivariate normal data with zero mean
with different sample sizes.

Fig. 8 Testing the condition of Assumption 1 of [22] in Eq. (3) on real
gene expression data showing the fraction of random subsets of d
genes that fulfil the requirement and various relaxations. The
condition (3) requires γ < 1, but the figure shows results also for
larger γ cutoffs, denoted by c

The obtained data sets were centred and scaled before
computing the sample covariance which was used as input
to the glasso algorithm. The regularisation parameter was
chosen with the aid of the ground truth graph, so that
the the graph identified by glasso would contain as many
edges as there were in the real graph. Results are shown in
Fig. 9. The results show that glasso performance decreases
as the network size increases and is approaching that of
random guessing for the largest networks considered here.
Figure 10 shows the contributions of different parts

of the glasso objective function (1) as a function of the
number of genes d. The regularisation parameter λ of
glasso was tuned to return a solution with the same num-
ber of edges as in the true solution. We used the glasso
implementation of scikit-learn [26], which ignores the
diagonal terms of � when computing the penalty. The
figure shows clearly how the penalty term for the true
solution increases superlinearly as a function of d. (A
linear increase would correspond to a horizontal line.)
The result is even more striking given that the optimal
λ decreases slightly as d increases. The penalty contribu-
tion for glasso solution increases much more slowly. The
excess loss in log-likelihood from glasso solution increases
as d increases, but this is compensated by a larger saving
in the penalty. Together these suggest that glasso solutions
are likely to remain further away from ground truth as d
increases.

Discussion
The class of models with bipartite graphs presented
above is an interesting example of models that have a

Fig. 9 Average precisions for glasso with different dimensions and
sample sizes of the real gene expression data, higher values are
better. In these experiments, 50 data sets were created. We
encountered convergence problems with few of the data sets and
the corresponding results were omitted when computing the
average values shown here. The precision obtained by random
guessing is also illustrated
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Fig. 10 Average contributions of the different terms of the glasso
objective function (1) on real gene expression data over random
subsets of d genes. The values are shown for the �1 penalty term as
well as the unnormalised log-likelihood, divided by d to make them
comparable. Solid lines show the values for glasso result while dashed
lines show the result for ground truth

very clear sparse structure, which all �1-penalisation-
based methods seem unable to recover even in the
limit of infinite data. This class complements the pre-
viously considered examples of models where glasso is
inconsistent including the “two neighbouring triangles”
model of [27] and the star graph of [22], the latter
of which can be seen as a simple special case of our
example.
An important question arising from our investigation

is how significant the discovered limitation to infer-
ring sparse covariance matrices is in practice, i.e. how
common are the (nearly) bipartite structures in real
data sets. Given the popularity and success of linear
models in diverse applications it seems plausible such
structures could often exist in real data sets, either as
an intrinsic property or as a result of some human
intervention, e.g. through inclusion of partly redundant
variables.
The gene expression data set is a natural example of

an application where graphical model structure learn-
ing has been considered. The original glasso paper
[7] contained an example on learning gene networks,
although from proteomics data. Other authors (e.g. [28])
have applied Gaussian graphical models and even glasso
(e.g. [29]) to gene network inference from expression
data. Our experiments on the TCGA gene expression
data suggest that in such applications it is advisable
to consider the conditions for the consistency of �1-
penalised methods very carefully when planning to apply
those.

Previous publications presenting new methods for
sparse precision matrix have typically tested the method
on synthetic examples where the true precision matrix
is specified to contain mostly small values. Specify-
ing the precision matrix provides a convenient way
to generate test cases as the sparsity pattern can be
defined very naturally through it. At the same time, this
excludes any models that have an ill-conditioned covari-
ance. As shown by our example, such ill-conditioned
covariances arise very naturally from model structures
that are plausible from the application perspective. The
example presented in this paper thus represents a very
useful additional test case for method developers and
benchmarkers.

Conclusions
Our results strongly suggest that users of the numerous
�1-penalised and other �1-based sparse precision matrix
and Gaussian graphical model structure learning methods
should be very careful about checking whether the con-
ditions of consistency for precision matrix estimation are
likely to be fulfilled in the application area of interest. The
consistency conditions are typically presented in a form
which requires knowing the ground truth which makes it
difficult to test them directly. Developing alternative cri-
teria that can be checked more easily in practice would be
an important avenue of future research for these methods.
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