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Abstract

Background: Predictive gene expression modelling is an important tool in computational biology due to the
volume of high-throughput sequencing data generated by recent consortia. However, the scope of previous studies
has been restricted to a small set of cell-lines or experimental conditions due an inability to leverage distributed
processing architectures for large, sharded data-sets.

Results: We present a distributed implementation of gene expression modelling using the MapReduce paradigm
and prove that performance improves as a linear function of available processor cores. We then leverage the
computational efficiency of this framework to explore the variability of epigenetic function across fifty histone
modification data-sets from variety of cancerous and non-cancerous cell-lines.

Conclusions: We demonstrate that the genome-wide relationships between histone modifications and mRNA
transcription are lineage, tissue and karyotype-invariant, and that models trained on matched -omics data from
non-cancerous cell-lines are able to predict cancerous expression with equivalent genome-wide fidelity.
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Background
Computational frameworks for modelling gene expres-
sion as a function of gene-localised epigenetic features are
becoming increasingly common in life sciences research.
Previous studies by our lab [1–3] and others [4, 5] have
leveraged the statistical power of modelling genes as
observations of regulatory activity (versus variables in
network-based analyses [6, 7]) to gain new insight into the
function and interactions of transcription factors, histone
modifications and DNA methylation. Recent applications
include: inference of transcription factor roles from their
respective binding motifs [8]; identification of regula-
tory elements responsible for differential expression pat-
terns [9]; exploring the relationship between gene expres-
sion and chromatin organisation [2]; and comparative
analysis of the transcriptome across distant species [10].
Despite the wealth of high-throughput sequencing data

made available by recent large-scale consortia, previ-
ous predictive modelling studies have focused on a very
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small number of cell-lines (typically 1-to-3 [8, 9]) despite
the obvious benefits of broader, integrative analyses. We
attribute this largely to the size of sequencing data and
widespread inability of published frameworks to decom-
pose tasks into parallelisable units. Although some studies
have considered accelerated GPU implementations [11],
this imposes strict memory constraints and does not
readily extend to large-scale, distributed systems of com-
modity hardware. In this study, we demonstrate how the
MapReduce programming paradigm can be applied to a
broad class of regression modelling that captures popular
formulations of predictive gene expression modelling [1].
Importantly, we prove general asymptotic speedup in
number of processing cores that is not bound to specific
hardware infrastructure; i.e. cloud versus enterprise or
distributed versus shared-memory multicore systems.
A recent study by Jiang et al. has suggested that RNA-

(transcriptomic) andChIP-seq (epigenetic) data generated
under the same conditions (i.e. the same cell-line) intro-
duce statistical bias and that specialised methods are nec-
essary for accurately modeling the expression of cancer
cells [12]. This study investigates both of these concerns,
exploiting the computational efficiency of our distributed
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implementation to conduct an integrative analysis of six
histone modifications across eight dissimilar ENCODE
cell-lines. First, we extend our predictivemodelling frame-
work to include L2-regularisation, which is specifically
designed to prevent over-fitting to experimental noise
rather than meaningful biological relationships. We then
quantify the extent of condition-specific bias by training
and testing models on all 64 directed, pairwise combina-
tions of cell-lines.

Methods
ENCODE cell-line data
Matched mRNA transcript abundance (RNA-seq) and
histone modification (ChIP-seq) data were downloaded
from ENCODE [13] for the eight cell-lines summarised
in Table 1. These dissimilar cell-lines are those for which
data are available for the histone modifications listed
in Table 2. The remaining histone modifications avail-
able from ENCODE are unsuitable for this study as they
assert their functional role in non-promoter regions (e.g.
H3K36me3 in the 3′-UTR). The MapReduce implementa-
tion of gene expression modelling presented in this study
could be trivially extended to model more cell-lines if the
data were made available.

MapReduce
MapReduce is programming paradigm which adapts the
map-reduce functional programming construct for dis-
tributed and fault-tolerant data processing on commodity
hardware. First developed by Google [14], MapReduce is
now widely adopted for parallelised processing of data
on terabyte and petabyte scales. A program implemented
using the MapReduce paradigm consists of a sequence,
〈μ1, ρ1,μ2, ρ2, . . . ,μR, ρR〉, of mappers (μr) and reducers
(ρr) operating over 〈key; value〉 pairs. Formally, a MapRe-
duce program executes the steps described in Algorithm
1 on input U0 until the final reducer (ρR) halts [15].

Algorithm 1MapReduce(〈μ1, ρ1,μ2, ρ2, . . . ,μR, ρR〉,U0)

for r = 1, 2, . . . ,R do
U ′
r ← MAP(Ur−1)

Vr ← SHUFFLE(U ′
r)

Ur ← REDUCE(Vr)
return UR
functionMAP(Ur−1)

U ′
r ← ∅

for 〈k; v〉 ∈ Ur−1 do
U ′
r ← U ′

r ∪ μr (〈k; v〉)
return U ′

r

function SHUFFLE(U ′
r)

Vr ← ∅
for each unique key k ∈ U ′

r do
Vk,r ← 〈k; {v1, v2, . . . , vM}〉 : 〈k, vm〉 ∈ U ′

r
Vr ← Vr ∪ Vk,r

return Vr

function REDUCE(Vr)
Ur ← ∅
for each Vk,r ∈ Vr do

Ur ← Ur ∪ ρr
(〈k;Vk,r〉

)

return Ur

The computational benefit of MapReduce follows from
its inherent parallelisability, as many instances of μr are
able to process their 〈key; value〉 simultaneously (likewise
with ρr , although all instances of μr−1 must halt before
any ρr can commence). The following sections detail map-
per and reducer implementations for each stage of the
standard predictive gene expression modelling pipeline.
For additional details on the implementation or rationale
of these stages, please refer to references [1–3].

Quantifying transcriptional regulatory interactions
The strength of association between a gene, m ∈
(1, 2, . . . ,M), and epigenetic feature, n ∈ (1, 2, . . . ,N), can

Table 1 All ENCODE cell-lines for which matched ChIP-seq data was available for the full set of histone modifications considered in
this study (listed in Table 2)

Cell-line Tier Description Lineage Tissue Karyotype

A549 2 Alveolar carcinoma Endoderm Epithelium Cancer

GM12878 1 B-lymphocyte Mesoderm Blood Normal

H1-hESC 1 Embryonic stem cells Inner cell mass Embryonic stem cell Normal

HeLa-S3 2 Cervical carcinoma Ectoderm Cervix Cancer

HepG2 2 Hepatocellular carcinoma Endoderm Liver Cancer

HUVEC 2 Umbilical vein endothelial cells Mesoderm Blood vessel Normal

K562 1 Leukemia Mesoderm Blood Cancer

NHEK 3 Epidermal keratinocytes Ectoderm Skin Normal
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Table 2 All histone modifications considered in this study. The
remaining histone modifications available from ENCODE are
unsuitable for this study as they assert their functional role in
non-promoter regions (e.g. H3K36me3 in the 3′-UTR)
Histone modification Regulatory role Chromatin localisation

H2A.Z Bivalency Euchromatin

H3K4me3 Activator/Bivalency Euchromatin

H3K9ac Activator Euchromatin

H3K9me3 Repressor Constitutive
heterochromatin

H3K27ac Activator Euchromatin

H3K27me3 Repressor/Bivalency Facultative
heterochromatin

be calculated from a ChIP-seq data-set specific to some
cell-line/condition:

xm,n =
∑

r∈Rn|d(r,m)|≤d∗

φ (r,m) ,

where Rn is the set of ChIP-seq reads for n, d(r,m) is
the distance (bp) separating read r from the TSS of m,
and φ maps a gene-read pair to their strength of asso-
ciation. The maximum bin-width, d∗, is traditionally set
to 2000 to approximate the average width of ChIP-seq
binding regions. Different implementations of φ are used
for histone modifications (constrained sum-of-tags) ver-
sus transcription factors (exponentially decaying affinity)
due to their dissimilar ChIP-seq binding profiles [2]:

φ(r,m) =

⎧
⎪⎨

⎪⎩

1 for histone modifications

exp
(
−d(r,m)

d0

)
for transcription factors

where hyperparameter d0 controls the strength of expo-
nential decay for quantifying transcription factor interac-
tions and is traditionally set to d0 = 5000. The resultant
matrix of gene-level epigenetic scores,X ∈ RM×N , is then
log (or arsinh)-transformed and quantile-normalised for
use in a regression model.
Given ChIP-seq data for epigenetic feature n repre-

sented in UCSC wiggle (.WIG) format:

variableStep chrom=chrN [span=windowSize]
chromStartA dataValueA
chromStartB dataValueB
... etc ... ... etc ...

each column, X�,n ∈ RM : X�,n = coln (X), of the epi-
genetic score matrix can be efficiently calculated using
MapReduce using the procedure described in Algorithm
2. Equivalent formulations can be derived for other ChIP-
seq file formats.

Algorithm 2MREpigeneticScores(X�,n)

procedureMAPPER μ
(〈
X�,n; 〈locus; value〉

〉)

for each genem do
if |d(locus,m)| ≤ d∗ then

EMIT
(〈
xm,n; value × φ(locus,m)

〉)

procedure REDUCER ρ
(〈
xm,n; {v1, v2, . . . , vK }〉)

EMIT
(〈
xm,n;

∑K
i=1 vi

〉)

Linear regression with least squares fitting
Suppose X ∈ RM×N is a matrix of gene-level epigenetic
scores (defined above), where M is the number of genes
(including a unity term for model bias) and N is the num-
ber of epigenetic variables (M � N). It is commonplace
to model the relationship between X and a vector of gene
expression values, Y ∈ RM, as follows:

Y = Xβ + ε,

where β parameterises the linear relationship between
gene expression and local epigenetic features, and ε are
the gene-specific errors. Such models can be fitted using
ordinary least squares:

β̂ = argmin
β∈RN

(||Y − Xβ||2)

=
(
X�X

)−1
X�Y ,

yielding the following model-based predictions of gene
expression, Ŷ :

Ŷ = Xβ̂ .

Given two general matrices, A ∈ RX×Y and B ∈ RY×Z ,
the product C ∈ RX×Z : C = A × B can be reformulated
(without loss of generality) as:

ci,k ∈ C : ci,k = A�
i,� × B�,k

where:

Ai,� ∈ RX : Ai,� = coli
(
A�)

,

B�,k ∈ RZ : B�,k = colk (B) .

This formulation of matrix multiplication can be
implemented by the MRMultiply function defined in
Algorithm 3.
Our implementation of linear regression with least

squares fitting involves decomposing β̂ into the product
A−1B, where A ∈ RN×N : A = MRMultiply(X�,X) and
B ∈ RN : B = MRMultiply(X�,Y ). The product A−1B is
calculated using standard, single-processor multiplication
as the communication overhead of MapReduce cannot be
amortised across small matrices.
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Algorithm 3MRMultiply(A,B)

procedureMAPPER μA
(〈
A; ai,j

〉)

for k = 1, 2, . . . ,Z do
EMIT

(〈
ci,k ; ai,j

〉)

procedureMAPPER μB
(〈
B; bj,k

〉)

for i = 1, 2, . . . ,X do
EMIT

(〈
ci,k ; bj,k

〉)

procedure REDUCER ρ
(〈
ci,k ;

{
Ai,�,B�,k

}〉)

EMIT
(〈
ci,k ;A�

i,� × B�,k
〉)

Regularised least squares regression
Regularisation is a common method of overcoming the
issue of over-fitting regression-based models to exper-
imental noise rather than meaningful biological rela-
tionships. Regularisation involves penalising the fitted
parameters, β , by an empirically-tuned hyperparameter, λ:

β̂ = argmin
β∈RN

(||Y − Xβ||2 + λ||β||2) .

Presuming || · || is the L2 (Euclidean) norm, our MapRe-
duce implementation can be trivially extended to support
regularisation (implementing ridge regression). Specifi-
cally, given:

Ỹ =
[
Y
0

]
, X̃ =

[
X√

λIN
,
]

where IN is the N × N identity matrix, it follows that:

β̂ = argminβ∈RN

(
||Ỹ − X̃β||2

)

=
(
X̃�X̃

)−1
X̃�Ỹ

=
(
X�X + λIn

)−1
X�Y .

It is evident that this implementation yields the same
asymptotic time complexity as ordinary least squares
regression. Moreover, the existence theorem for general
ridge regression demonstrates that it is always possible to
tune λ (e.g. using cross-validation) to reduce the mean
square error of model predictions [16, 17]. This is par-
ticularly important when introducing a large number of
epigenetic variables into a predictive model; e.g. a system-
atic analysis of the roles of dozens of transcription factors
from their ChIP-seq binding profiles. In this study, λ is
assigned the largest possible value such that the mean 10-
fold cross-validated error is within 1 standard error of the
minimum (solved iteratively).
Unlike the L2 norm, the L1 norm is often used to enforce

sparsity in β under the assumption that most variables in
X are physically decoupled from Y . This is less relevant in
the context of gene expression modelling due to the well-
established functional importance of epigenetic regulators
for which ChIP-seq data is widely available. Moreover, the

L1 norm is not differentiable and thus not amenable to a
closed-form MapReduce solution, and the parallelisation
of iterative solutions is discussed elsewhere [18]. A single-
node implementation of our code (see Additional file 1) is
provided for convenient reproduction of our experimental
results.

Results and discussion
MapReduce enables time-efficient gene expression
modelling
For M genes and a ChIP-seq data-set containing R
mapped reads, the asymptotic time complexity class of
generating a column X�,n of X is �(MR). By first pre-
processing the list of gene TSS loci (invariant between
epigenetic datasets) into a balanced binary search tree and
observing that the vast majority of reads are within d∗ bp
of exactly zero-or-one gene, our MapReduce implemen-
tation of calculating X�,n yields the following complexity
when distributed across P MapReduce nodes:

MREpigeneticScores ∈ �

(
R log(M)

P

)
,

which must be completed separately for each epigenetic
feature, n ∈ (1, 2, . . . ,N).
For X ∈ RM×N and Y ∈ RM, the asymptotic time com-

plexity of ordinary least squares fitting β̂ = f (X,Y ) can
also be derived:

f ∈ ���������(MN)︸ ︷︷ ︸
X�

+ �
(
MN2)

︸ ︷︷ ︸
A=X�X

+���������(MN)︸ ︷︷ ︸
B=X�Y

+ �
(
N3)

︸ ︷︷ ︸
A−1

+���������
(
N2)

︸ ︷︷ ︸
A−1B

Observing that R � M � N for gene expression mod-
elling and by distributing the calculation ofA and B across
P MapReduce nodes, the overall complexity reduces to:

MRExpressionModelling ∈ �

(
NR log(M)

P

)

thus this MapReduce implementation of gene expres-
sion modelling yields an optimal �(P) improvement in
asymptotic time complexity without the need to paral-
lelise matrix inversion or transpose operations. The fol-
lowing results sections demonstrate how this improved
performance can allow us to gain new insights from the
large-scale integration of publicly available data-sets.

Histone modifications are predictive of gene expression in
both cancerous and normal cell-lines
L2-regularised linear regression models of genome-wide
mRNA transcript abundance were constructed as func-
tions of the following histone modifications: H2A.Z,
H3K4me3, H3K9ac, H3K9me3, H3K27ac and H3K27me3.
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For each model, the regularisation parameter, λ, was fit-
ted using 10-fold cross-validation. The adj. R2 perfor-
mance of each model is presented in Fig. 1, along with a
density plot of predicted (Ŷ ) versus measured (Y ) tran-
script abundance. It is evident that histone modifications
are accurate predictors of gene expression in both cancer-
ous (top row, mean adj. R2 = 0.608) and normal cell-lines
(bottom row, mean adj. R2 = 0.581), despite recent stud-
ies suggesting that specialised models are necessary to
appropriately model cancerous cells [12].
Figure 2 presents the results of hierarchically cluster-

ing cell-lines by mRNA transcript abundance residuals
(ε = Y − Ŷ ). Interestingly, the three mesodermal deriva-
tives GM12878, K562 and HUVEC form a distinct clus-
ter. RNA-sequencing data for the least similar cell-line
(A549) was generated at Cold Spring Harbor Labora-
tory whereas all other transcriptomic data was generated
at the California Institute of Technology, suggesting that
batch effects may be a contributing factor. It is also evi-
dent that the expression levels of many genes are consis-
tently over- or under-estimated across all eight cell-lines.
Taken together, these results indicate that gene-specific
residuals are non-random and indicative of genes that
are inherently difficult to model from histone modifi-
cation data. The existence of genes with transcriptional
activity apparently decoupled from the local epigenetic
landscape has been explored in detail in our previous
study [2].

The regulatory function of histone modifications are
cell-line invariant
To assess the extent to which condition-specific bias influ-
ences the reported accuracy of gene expression predic-
tions, we trained and tested models on all 64 directed,
pairwise combinations of cell-lines. The adj. R2 perfor-
mance for these models are presented in Fig. 3a. These
results demonstrate significant non-symmetry, with dis-
similarity between columns (predictions) but not rows
(training observations). This demonstrates that the tran-
scriptional regulatory roles of histone modifications are
cell line invariant at a genome-wide level (within the
constraints of a linear model); e.g. A549 and GM12878
expression can be accurately predicted by models trained
on any cell-line, despite their diversity in lineage, tis-
sue and karyotype. These results are further supported
by Fig. 3b, which demonstrates consistency in the fitted
model parameters, β̂ , across all cell-lines.
It is worth noting that that models trained and tested

using data from a single cell-line (boldfaced along the
diagonal of Fig. 3a) only marginally outperform models
trained on dissimilar cell-lines and, moreover, that these
margins are significantly less than the inherent variation
between columns. These findings suggest that, in the con-
text of gene expression modelling, training and testing
models on data generated under the same experimen-
tal conditions (i.e. the same cell-line) is not a significant
source of statistical bias.

Fig. 1 Density plots of predicted (Ŷ) versus measured (Y) mRNA transcript abundance abundance for cancerous (top row, mean adj. R2 = 0.608) and
normal cell-lines (bottom row, mean adj. R2 = 0.581). The adj. R2 performance and λ regularisation parameter (fitted using 10-fold cross validation)
is reported for each cell-line



Budden and Crampin BMC Bioinformatics  (2016) 17:446 Page 6 of 8

Fig. 2 Hierarchical clustering of cell-lines by mRNA transcript abundance residuals (ε = Y − Ŷ). The three mesodermal derivatives GM12878, K562
and HUVEC cluster together, suggesting that residuals are partially non-random and instead convey meaningful biological information.
Consistently, it is evident that the expression levels of many genes are poorly predicted across all eight cell-lines, presumably capturing divergence
from histone modification-mediated regulation (explored in detail in our previous study [2])

Conclusions
Many previous predictive modelling studies have been
limited in scope to 1-3 cell-lines due to the computa-
tional expense of modelling high-throughput sequencing
data. In this study, we introduced a MapReduce imple-
mentation of gene expression modelling that is able to
obtain a full �(P) improvement in asymptotic time com-
plexity when distributed across P CPUs (e.g. as part of
multi-core PC or high-performance cluster). This formu-
lation and corresponding complexity analysis is intended
to demonstrate the minimal set of operations that
should be parallelised to yield �(P) improvement.
Practically, machine learning pipelines implemented in

TensorFlow [19], FlumeJava [20] or similar technologies
wouldminimise execution time on conventional hardware
without the added difficulty of implementing mappers
and reducers. For illustrative purposes, a pureMapReduce
implementation was applied in this study to model more
than 50 epigenetic and matched transcriptomic data-sets
across 8 dissimilar ENCODE cell-lines. We encourage
other researchers to investigate similar optimisations to
increase the volume of data modelled in future integrative
analyses.
Despite recent studies presenting specialised meth-

ods for modelling cancerous gene expression [12],
we find no evidence of variation in the statistical

(a) (b)

Fig. 3 a Genome-wide accuracy of mRNA transcript abundance predictions (adj. R2) for models trained and tested on each pairwise combination of
cell lines. These results are strikingly non-symmetric, with significant dissimilarity between columns (predictions) but not rows (training observations).
b Distribution of each fitted model parameter, β̂m , across all cell-lines considered in this study
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relationship between histone modifications and mRNA
transcript abundance in normal-versus-cancerous cell-
lines. Although our results demonstrate that some cell-
lines are inherently more difficult to model than others,
this trait appears to be more closely associated with
the extent of cellular differentiation than carcinogenic
state; e.g. models of h1-hESC embryonic stem cells per-
form 12 % worse than terminally-differentiated GM12878
lymphoblasts. Although the NHEK (Normal Human
Epidermal Keratinocytes) cell-line is both terminally-
differentiated and exhibits the worst-performing mod-
els, this may be attributed to the phenotypic plastic-
ity of keratinocytes between epithelial and mesenchymal
states (necessary for wound healing). We therefore spec-
ulate that the predictability of a cell-line’s genome-wide
expression levels from epigenetic data is proportional to
its transcriptomic rigidity; i.e. cells with signal-induced
phenotypic plasticity are less likely to exhibit a stable,
predictive epigenome.
Interestingly, hierarchical clustering of the 8 inves-

tigated cell-lines by mRNA transcript abundance
residuals (gene-level prediction errors) was able to group
the closely-related, mesodermal-derivative cell-lines
GM12878, K562 and HUVEC; again, carcinogenic state
appeared to have little effect on the propensity of two
cell-lines to cluster together. Taken together with the
observation that many genes exhibited large and consis-
tent residuals across all cell-lines, these results suggest
that gene-level residuals are non-random and, more-
over, that the transcriptional activity of many genes are
decoupled from their local epigenetic landscape. These
observations are consistent with and extend upon the
findings of our earlier studies [2, 3], and we hope that
future studies will leverage distributed computational
modelling to further accelerate progress in this field.

Additional file

Additional file 1: A single-node implementation of our code is provided
for convenient reproduction of our experimental results. (ZIP 363 kb)
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