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Abstract

Background: Bioimage classification is a fundamental problem for many important biological studies that require
accurate cell phenotype recognition, subcellular localization, and histopathological classification. In this paper, we
present a new bioimage classification method that can be generally applicable to a wide variety of classification
problems. We propose to use a high-dimensional multi-modal descriptor that combines multiple texture features. We
also design a novel subcategory discriminant transform (SDT) algorithm to further enhance the discriminative power
of descriptors by learning convolution kernels to reduce the within-class variation and increase the between-class

difference.

Results: We evaluate our method on eight different bioimage classification tasks using the publicly available IICBU
2008 database. Each task comprises a separate dataset, and the collection represents typical subcellular, cellular, and
tissue level classification problems. Our method demonstrates improved classification accuracy (0.9 to 9%) on six
tasks when compared to state-of-the-art approaches. We also find that SDT outperforms the well-known dimension
reduction techniques, with for example 0.2 to 13% improvement over linear discriminant analysis.

Conclusions: We present a general bioimage classification method, which comprises a highly descriptive visual
feature representation and a learning-based discriminative feature transformation algorithm. Our evaluation on the
[ICBU 2008 database demonstrates improved performance over the state-of-the-art for six different classification tasks.
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Background
Bioimage informatics has become an increasingly impor-
tant field in recent years owing to the advances in
microscopy imaging technologies [1, 2]. Automated anal-
ysis of microscopy images helps to achieve objective and
consistent cell phenotype recognition, subcellular local-
ization, and histopathological classification, which are
critical to many biological studies [3-8]. In particular,
classification of biological images is an essential algorith-
mic component in such computed-aided analyses.
Existing bioimage classification methods typically com-
prise two main components: feature extraction and
classification. The descriptiveness of feature descriptors
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is essential to the bioimage classification performance,
and much work has been conducted for bioimage fea-
ture extraction. The feature descriptors are often multi-
modal, i.e. integrating multiple different types of features.
The commonly used features include the traditional
approaches such as Gabor filters and Haralick textures,
and more recent descriptors such as the scale-invariant
feature transform (SIFT) and local binary patterns (LBP)
[9-21]. To further enhance the discriminative power of
feature descriptors for specific problem domains, cus-
tomized features have been designed manually [22-28] or
learned automatically [29-32].

With these extracted descriptors, supervised classifi-
cation models such as support vector machine (SVM)
[12, 13, 18, 19, 22-24, 27, 29, 31], subspace learning
[10, 11, 14-16, 26], multiple instance learning [17, 25]
and sparse representation [21, 32] are applied. However,
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the classification performance is often largely affected by
the small number of training data available for bioimage
research. For example, in the IICBU 2008 database [4],
each classification task contains only hundreds of images
categorized into multiple classes. The small amount
of training data would not well represent the feature
space characteristics, and the trained classifier could eas-
ily overfit especially with high-dimensional descriptors.
The applicability and effectiveness of automated feature
learning algorithms would be limited as well. Dimension
reduction techniques are sometimes used in bioimage
classification to avoid the over-fitting problem [18, 22, 24].
However, the effect of applying these techniques is often
not evaluated and the result could actually be negatively
affected due to undesirable information loss.

In the broader computer vision field, high-dimensional
descriptors, such as the improved Fisher vector (IFV) [33],
have become increasingly popular. IFV can be considered
as a variation of the bag-of-words (BOW) encoding of
local descriptors. While BOW assigns the descriptors to a
pool of visual words and computes the histogram distribu-
tion of the visual words, IFV formulates Gaussian mixture
models from the descriptors and computes the first- and
second-order statistics for each feature dimension. With
the original IFV, the local descriptors used are dense SIFT
features, and the resultant feature dimension of IFV is
much higher than BOW. IFV has shown excellent discrim-
inative performance for face recognition, object detection
and texture classification [33—-35].

In addition, descriptors that incorporate spatial pooling
of local descriptors (e.g. LBP [36], histogram of oriented
gradients (HOG) [37], GIST [38] and census transform
histogram (CENTRIST) [39]) can have high dimensions
as well. With spatial pooling, an image is partitioned into
a grid or hierarchy of regions and descriptors computed
at the region-level are concatenated to form a long over-
all descriptor, so that the overall descriptor captures the
spatial structure of the image to some extent. Recent stud-
ies show that high-dimensional descriptors often provide
more discriminative power than the lower-dimensional
counterparts [40—42].

With high-dimensional features, especially IFV, the
linear-kernel SVM classifier is often found to be the
most effective and efficient way of training and classifi-
cation [33, 34]. Furthermore, it has been reported that
better classification results can be achieved with prop-
erly designed dimension reduction techniques [42-45].
For example, a discriminative metric learning method
has been proposed to reduce the dimension of IFV
features and improve the classification performance
for face images [43, 45]. Dictionary learning meth-
ods have also been used to enhance the discrimina-
tive power of feature representations. Examples include
the Fisher discrimination dictionary learning (FDDL)
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[46], and latent dictionary learning (LDL) [47]. They
can also be used for dimensionality reduction when
the dictionary size is smaller than the descriptor’s
dimension.

In this study, we propose a new bioimage classification
method. We have two main methodological contribu-
tions. First, we find that by combining IFV (computed
based on local SIFT features) with LBP, HOG, CENTRIST
and GIST texture features, the resultant high-dimensional
multi-modal descriptor is highly discriminative for a wide
variety of microscopy images and classification objectives
at the subcellular, cellular, and tissue levels. While IFV
has recently been adopted into bioimage classification
[27, 31], these approaches are designed for specific prob-
lem domains, i.e. HEp-2 cell classification and ovarian
cancer classification, whereas our design is validated on
a number of classification tasks and we identify a set of
texture features that provide complementary information
to IFV.

Second, to further enhance the discriminative power
of the descriptors, we design a subcategory discriminant
transform (SDT) method to transform the descriptors
before performing classification. SDT has a similar learn-
ing objective to linear discriminant analysis (LDA) in that
the descriptor transform is aimed to minimize the within-
class variation and maximize the between-class differ-
ence. However, SDT performs feature transformation
with learned convolution kernels without dimensionality
reduction, and the learning objective is modelled based on
subcategories rather than the class-level information. We
also compare SDT with the popular discriminative dimen-
sion reduction (LDA, generalized discriminant analysis
(GDA) [48], full matrix learning (FML) [43]), and dictio-
nary learning (FDDL) techniques, and show consistent
advantage over them.

For evaluation, we use the publicly available IICBU 2008
database [4] to perform eight different multi-class classi-
fication tasks in the areas of subcellular localization, phe-
notype recognition and histopathological classification.
Figure 1 shows the sample images. We achieve improved
classification performance over the current state-of-the-
art for six tasks.

Methods

Given a set of training images, we first extract the visual
descriptors of each image. The kernels of SDT are learned
from this training set and the visual descriptors are trans-
formed with these kernels. A multi-class linear-kernel
SVM model is then learned based on the transformed
visual descriptors. To classify a test image, we extract its
visual descriptor, then perform SDT with the learned ker-
nels, and finally obtain its class label with the learned
SVM model. Figure 2 illustrates the overall design of our
method.
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Fig. 1 Sample images of the [ICBU database. Eight datasets from the IICBU 2008 database are used in this study, including the 2D Hela, CHO, RNAI,
muscle aging, terminal bulb aging, lymphoma, liver gender, and liver aging datasets. Each image represents one image class, and the class name is
annotated under the image. Summary of the dataset properties is listed in Table 1. Comprehensive description of the database can be found in [4]

Visual descriptor extraction

To represent the biological images, we propose to use a
combination of five visual descriptors: IFV, LBP, HOG,
GIST and CENTRIST. They describe different aspects
of the visual characteristics, and we expect their com-
bination to give a more comprehensive image descrip-
tion compared to the individual descriptors. While
LBP and HOG are often used in bioimage studies
[15, 16, 23], the other descriptors have rarely been used in
this field.

The IFV descriptor computes the image-level statistics
of a dense set of local SIFT descriptors with Fisher encod-
ing. Specifically, local SIFT descriptors are extracted
densely at multiple scales with the width of the SIFT spa-
tial bins set to 2, 4, 6, 8 and 10 pixels and sampled every
two pixels. These 128-dimensional SIFT descriptors are
reduced to 64 dimensions using PCA and a Gaussian mix-
ture model (GMM) with 64 Gaussian components built
to obtain the Fisher encoding. This process produces a
64 x 64 x 2 dimensional IFV descriptor.

Training data

Test image

Visual Descriptor Extraction

High-dimensional Transformed
Descriptors Descriptors
___________________________ |
! 1
1
1
1
X 1
v v
Subcategory Discriminant -
Transform —) SVM Classification

High-dimensional Descriptor e e e
(IFV, LBP, HOG, CENTRIST, GIST) P

Fig. 2 lllustration of our method design. During the training process, the high-dimensional visual descriptors of the training images are extracted,
and the SDT models are learned. The visual descriptors of the training images are then transformed using the learned SDT models, and a
linear-kernel SYM is learned from the transformed descriptors. During the testing process, the high-dimensional visual descriptor of the test image is
extracted, and then transformed using the learned SDT model. The transformed descriptor is then classified using the learned SVM to produce the
classification output
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To compute the LBP, HOG and GIST descriptors, an
image is divided into 4 x 4 grid of cells. For each
cell, a 58-dimensional LBP (with 3 x 3 pixels neighbor-
hood and uniform quantization), 31-dimensional HOG
(with directed and undirected gradients of 9 orienta-
tions), and 32-dimensional GIST (with 8 orientations and
4 scales) descriptors are extracted. Consequently, the LBP,
HOG and GIST descriptors are of 58 x 16, 31 x 16
and 32 x 16 dimensions, respectively. These descriptors
encode the texture and shape features with spatial infor-
mation provided by the cell subdivision. In addition, a
256-dimensional CENTRIST descriptor is extracted glob-
ally for the whole image, and is used to capture the
overall structural information. Each descriptor is also
L2 normalized.

Block structure of descriptors. We note that each fea-
ture descriptor can be partitioned into multiple blocks of
feature vectors. For example, the IFV descriptor can be
partitioned into 64 x 2 = 128 numbers of 64-dimensional
(difference) vectors. The LBP, HOG and GIST descriptors
can be partitioned by the cells into 16 vectors of 58, 31 or
32 dimensions, respectively. The histogram-based CEN-
TRIST descriptor can be artificially partitioned into four
64-dimensional vectors. Therefore, the descriptor x can
be rewritten asx = {x;, : b = 1, ..., B}, meaning that x is
constructed by concatenating B = 128+ 16 x 3+4 = 180
feature vectors and each vector x;, € R€*!isof C = 64, 58,
31, 32 or 64 dimensions. This block-wise representation
of descriptors is useful in our proposed SDT algorithm as
described in the next section.

Subcategory discriminant transform

While the visual descriptors can be directly used to train a
classification model and classify the test images, we design
a SDT algorithm to further enhance the discriminative
power of the visual descriptors. Formally, let x € R*!
denote the visual descriptor of an image with H dimen-
sions. The objective of SDT is to transform x to a more
discriminative descriptor y € RF*1. To do this, for each
feature vector xp, we compute a transformed vector y, =
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xp * fp with * as the convolution operator and f;, as the
convolution kernel, and y, has the same dimension as x;,.
Then the transformed descriptor is the concatenation of B
transformed vectors, i.e. y = {y, : b = 1,...,B}. Figure 3
illustrates our design of the SDT algorithm.

We design a subcategory-based discriminative learn-
ing model to derive the convolution kernels {f, : b =
1,...,B}. Specifically, a kernel is defined as an D-
dimensional vector f, € RPX1 D < C. The kernel is
supposed to reduce the within-class feature variation and
increase the between-class feature difference, so that the
transformed vector y, is more discriminative. In other
words, we consider that generally (1) images of the same
class would show inhomogeneous visual features and can
be grouped into subcategories, and (2) images of differ-
ent classes could show similar visual features and the
subcategories from different classes could overlap in the
feature space. By transforming x;, into y;,, we expect that
(1) the subcategories of the same class are closer hence
the within-class variation is reduced, and (2) the subcate-
gories between different classes are more separated hence
the between-class difference is increased.

Formally, we denote a set of N training images as {x(n) :
n = 1,...,N} with n as the index of the training images.
We first cluster the training images into a set of subcate-
gories. Each subcategory contains images from the same
class and exhibiting similar visual descriptors. The subcat-
egories are denoted as {Sy : [ =1,..., Lk =1,...,K},
and a subcategory S, is identified by its class label / and
index k within the class /, with L denoting the number of
classes and K; denoting the number of subcategories in
class I.

The subcategories are generated by first clustering all
training data {x(n) : n = 1,...,N} into L clusters
regardless of the class labels using the locality constrained
subspace clustering (LSC) method [35]. The method
first constructs an affinity matrix using the locality-
constrained linear coding (LLC) [49], then spectral clus-
tering is performed on the affinity matrix to obtain the
clusters. This LSC method is essentially similar to the

IFV LBP HOG GIST CENTRIST
- 1 64 64x128 1 58 58 x 16 31 31x16 1 32 32x16 1 64 64 x4
Original
descriptor L= | °e°- | |x120 | ce°e | [ass | ce | | *61 | °°° | REZ ce |
v v v v
* * * * *
Convolution t D 1. 0 D 1 D 1 D
LN ] LN ) o o0 L ) o 00
kernel 129 145 161 177
v v v v v
64 64x128 1 58 58 x 16 31 31x16 1 32 32x16 1 64 64 x4
Transformed
descriptor [yl ‘ c°c ][Y129\ ce. ][J’145\ ‘e ][Ym\ e ][y177\ e ]
Fig. 3 lllustration of the visual descriptor and subcategory discriminant transform. A total of 180 convolution kernels are learned with each kernel
corresponding to one block of feature vector within the high-dimensional visual descriptor
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popular sparse subspace clustering (SSC) [50], but LLC
is used in place of the standard sparse representation for
efficient computation of the affinity matrix. In our study,
we set the sparsity constant to 20 and the balance param-
eter to le — 4 for all datasets. Then, for each cluster, the
data belonging to the same class are extracted as a sub-
category. In this way, we avoid choosing the number of
subcategories for each class, but just use L (i.e. the number
of classes) for clustering. Note that because of the large
within-class variation and small between-class difference,
each cluster typically contains data from a number of
classes and the number of subcategories for each class is
close to L.

Based on the subcategories, we define the within-class
varlatlon VP (a scalar) and between-class difference

with
be ., (@ scalar) for the transformed feature vectors {y(n) :
n=1,...,N}as:
K; |Slk| K; 2
b b
Viian = Z >k Z ('91,k - 01,k’) M
I=1 k=1 =1
1Sl 2
b b b
Vi =305 LSS (o o ) 2

I=1 k=1 Zl’ 1Kr 1 5o
(2)

where |S;| is the number of descriptors in the sub-
category Syx. GIbk is the mean element (a scalar) of the
transformed vectors derived from the subcategory S; x:

ISkl €

Z Zyb i(m) (3)

where i indexes the feature elements in the C-dimensional
vector y,(n), and m indexes the descriptors in the subcat-
egory S .

Recall that the transformation is computed by y, =
xp*fp. From an element-wise perspective, it can be consid-
ered that the individual element x;; € xj is transformed
toyp,; = hbT’i]be, where /1,; € RP*1 is the vector of length
D extracted from x; with its center at the ith element of
xp. Jp is a D x D dimensional exchange matrix, so that
fp is flipped vertically for computing the convolution. The
mean element ka is then equivalent to:

0}
b= C|S

ISkl C

Z > g m)Infi (4)

mlzl

= C|S

For simpler notation, we rewrite Eq. (4) as

ISkl €

0L = Vil Vik = wro— Z Zh ;(m)Jp (5)

'mltl
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with Vll,?k e RP, By substituting Eq. (5) into Egs. (1)
and (2), we obtain:

bt NN ISl S (s (b _ b
Vi = 122 K — Z( sza) (yl,k_yl,k’> Jo

=1 k=1 =1

(6)
LISl al b b /
Viern=fy ZZ ZZ(VII( Y k’) (yl,k_yl’,k’) Jor U #1
=1 k= 121’ Ky 2=
@)

In these formulations, the terms within the brackets
can be readily computed from the training data. In other
words, we can rewrite Vf/lth beUS/ithfb and ertw =

TUIb’et /b, in which Llwith and U,fetw are obtained from
the feature vectors {x,(n)} and the unknown f} is isolated.
Here U° wigh and u’ et L€ square matrices with dimension
D x D.

By optimizing f;, we expect to maximize the between-
class difference and minimize the within-class variation.
This is formulated as:

Tyrb

u
argmaxfibT ll’ftwfb
S Ty UignSo

The kernel f, is then derived by solving the generalized
eigenvector problem:

b b
ubetwfb = )‘uwithfb (9)

where A is the generalized eigenvalue.

With the learned kernels {f, : b = 1,...,B}, we
obtain the transformed vectors {y, : b = 1,...,B}.
Each vector y; is then rescaled so that its norm is the
same as that of x;. In this way, the relative magnitudes
and contributions of the various vectors in the trans-
formed descriptor y remain unchanged when compared
to the original descriptor x. The transformed descriptor y
is finally obtained by concatenating the rescaled vectors.
Based on these transformed descriptors, a linear-kernel
multi-class SVM classifier is trained and then applied to
classify the testing data.

8)

—_

IICBU database and implementation

We used the publicly available IICBU 2008 database
for our experiments. This database contains 11 separate
datasets of different bioimage classification problems, and
represents a broad range of real-life biological problems
identified by experimental biologists. Each dataset fea-
tures organelles, cells, or tissues, and includes noisy and
unusual images typically present in biological databases.
Excellent classification performance with near 100%
accuracy has been reported for three datasets. We thus
focused on the other eight datasets. Table 1 lists the
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Table 1 Summary of the IICBU 2008 database used
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Dataset #images # classes Microscopy Description

2D Hela 860 10 Fluorescence Hela cells with 10 stains

CHO 340 5 Fluorescence CHO cells with 5 stains

RNAI 200 10 Fluorescence Fly cells of 10 genes

Muscle aging 252 4 Fluorescence Celegans of 4 ages

Terminal bulb aging 970 7 DIC Celegans of 7 ages

Lymphoma 375 3 Brightfield Malignant lymphoma of 3 subtypes
Liver gender 522 2 Brightfield 6-month mice on AL diet of 2 genders
Liver aging 850 4 Brightfield Female mice on AL diet of 4 ages

DIC: Differential Inference Contrast; CHO: Chinese Hamster Ovary; AL: Ad-libitum

main properties of the eight datasets. Example images are
shown in Fig. 1. The lymphoma, liver gender and liver
aging datasets provide color images. We converted them
into grayscale using the standard RGB to grayscale conver-
sion. For datasets with large intensity ranges, we rescaled
the image intensities linearly to the range of 0 to 255,
before extracting the visual descriptors.

For each dataset, we used five-fold cross validation for
training and testing; and ten splits were used to measure
the overall classification accuracy. For feature extraction
and subcategory generation, we performed initial study
on the terminal bulb aging dataset and experimented with
parameter settings that were commonly used in related
literature. The chosen parameter settings for this dataset
were then used for all the datasets to maintain a common
approach across datasets. The values of parameters have
been described in the previous sections on visual descrip-
tor extraction and subcategory generation. For SDT, the
only parameter is the size D of the convolution kernel
f»- The kernels applied to different feature modalities can
have different sizes, hence there are a total of five size

parameters to select. To do this, we specified that D €
[3,9], and employed a sequential search approach by fix-
ing four size parameters while selecting the best setting
for the fifth one. The sequential search was conducted on
the training data, by performing multiple runs of four-fold
cross validation within the training set and choosing the
parameter D based on majority voting from these runs.

Results and discussion

Classification results using various descriptors

Figure 4 shows the classification results with different
combinations of visual descriptors using (i) linear-kernel
SVM without the SDT component and (ii) our method
with SDT before performing the SVM classification. The
results show that the different approaches provided the
same results for the liver gender and aging datasets, with
saturated classification performance at 99.6% and 100%.
For the other six datasets, our method outperformed the
SVM only approach consistently when different feature
descriptors were used. This demonstrates the advantage
of our proposed SDT algorithm.
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Fig. 4 Classification results comparing various combinations of visual descriptors. Results are obtained by classifying the descriptors using (1) SYM
only without SDT and (2) our method that applies SDT before SVM classification. The feature names IFV, LBP, HOG, CENTRIST and GIST are shortened
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Overall, the results suggest that the ILHC descriptor
should be used for most datasets (2D HeLa, CHO, RNAI,
lymphoma, liver gender and liver aging); and ILHCG,
which includes the additional GIST feature, is more effec-
tive for the muscle aging and terminal bulb aging datasets.
The GIST feature describes the dominant spatial structure
of an image. It provides different perspectives of an image
compared to IFV, LBP and HOG, which summarizes
the local visual information with varying encodings. It is
also different from CENTRIST, which captures the global
shape information. It can be seen from Fig. 1 that there is
little spatial structural information in the 2D HeLa, CHO,
RNAI}, lymphoma, liver gender and liver aging datasets.
Adding GIST could thus introduce noisy data and reduce
the discriminative power of feature descriptors. However,
for the muscle aging and terminal bulb aging datasets,
the spatial distribution of tissues is an important clue for
classification, and hence the ILHCG descriptor is more
suitable.

Figure 5 shows that IFV was the most critical descriptor
that contributed to the overall high classification accu-
racy. The classification performance was much lower if
using only the other four texture features (LBP, HOG,
CENTRIST and GIST, namely L/H/C/G), except for the
terminal bulb aging. The L/H/C/G feature was particu-
larly ineffective for the lymphoma, RNAI and liver aging
datasets. A major difference of IFV from L/H/C/G is
that IFV creates a mid-level feature representation with
Fisher encoding of multi-scale local SIFT features, based
on unsupervised learning of GMM distributions for each
dimension of the local features. Such an encoding effec-
tively exploits the feature space characteristics of the
whole dataset and provides a more comprehensive feature
representation than the other features. For the terminal
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bulb aging dataset, better results were obtained using
L/H/C/G than IFV. We suggest that this is because the
global spatial and structural information in the terminal
bulb images is important for distinguishing the differ-
ent ages. The LBP, HOG and GIST descriptors explicitly
encode such information by concatenating cell-level fea-
tures, and these additional information helps to enhance
the descriptiveness of textures by these descriptors.

The high discriminative power of IFV also means that
IFV is already highly optimized. As a result, the improve-
ment by SDT on IFV descriptors was relatively low. It
can be seen from Fig. 4 that with IFV features, less than
1% improvement in classification accuracy was typically
obtained when SDT was applied. However, the improve-
ment by SDT on the multi-modal descriptor was appar-
ent. For example, on the RNAi and lymphoma datasets,
the ILHC descriptor was the least effective when clas-
sified using SVM only, but generated the highest clas-
sification performance when SDT was applied. On the
2D HeLa and terminal bulb aging datasets, the improve-
ment from SDT was minimal when only IFV was used,
whereas the improvement was much larger with the ILHC
or ILHCG descriptor. We found that this was because
the improvement by SDT on the LBP, HOG, CENTRIST
and GIST features was much higher (3 to 16%) than
that on the IFV feature (less than 1%). Since IFV is a
learning-based encoding of local descriptors and the other
features are computed based on predefined rules, our
subcategory-based discriminative learning method could
provide much greater enhancement of the other texture
features than the IFV feature. These improvements led
to the overall improved classification results using the
ILHC or ILHCG descriptors. For illustration, we show the
results using L/H/C/G (the combination of LBP, HOG,

8 SVM only
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Fig. 5 Classification results comparing different descriptors. Results are obtained by classifying the descriptors using (1) SVM only without SDT and
(2) our method that applies SDT before SVM classification. The features tested include IFV, L/H/C/G (denoting the combination of LBP, HOG,
CENTRIST and GIST), features generated using the VGG-VD model pretrained on ImageNet, and features generated using a CNN model trained on
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CENTRIST and GIST) in Fig. 5; but similar improvements
were obtained for subsets of L/H/C/G.

We also conducted paired t-test to verify the statis-
tical significance of improvement by SDT for differ-
ent descriptor choices. The classification outputs using
SVM classification only were compared with the out-
puts using our method, and the null hypothesis was that
both approaches would provide the same results. With
IFV as the feature descriptor, the p-value was around 0.1
for all datasets (except liver gender and aging), indicat-
ing that the improvement by SDT on IFV descriptors was
not statistically significant. However, using the L/H/C/G
descriptors, the improvement was statistically significant
on all datasets, with p-values less than 0.05 (in the range
of 0.001 to 1le — 20). Using the ILHC or ILHCG descrip-
tors, the p-values for the 2D HeLa, CHO, terminal bulb
aging, and lymphoma datasets were all less than 0.05 (in
the range of 0.03 to 2e — 9), while the p-values for the
RNAi and muscle aging datasets were around 0.1. For
the muscle aging dataset, we suggest the insignificant
improvement was mainly because the classification per-
formance using SVM only was already very high and there
was limited scope of improvement for SDT. For the RNAi
dataset, even with the high degree of improvement by
SDT on the L/H/C/G descriptors, the classification per-
formance by the L/H/C/G descriptors was still low, and
hence such improvement could only boost the final clas-
sification results slightly. Also, in the RNAI dataset, each
image class contains only 20 images. This small amount
of images would limit the learning capability of SDT, and
this could be an important factor affecting the degree of
improvement provided by SDT on this dataset.

For further evaluation, we tested two deep learning
approaches with convolutional neural network (CNN)
to generate the feature descriptors, which have recently
become popular in biomedical imaging analysis. First, we
applied the very deep VGG-VD model [51] that was pre-
trained on ImageNet. We chose the VGG-VD model since
it reported the state-of-the-art performance on multi-
ple benchmarks in general computer vision. Second, we
trained a CNN model for each dataset. The well-known
AlexNet [52] was adopted as the base network, with two
middle convolutional layers removed to reduce the net-
work complexity to better accommodate the much smaller
number of images in our datasets compared to ImageNet;
and affine transformation was used for data augmen-
tation. In both cases, the 4096-dimensional descriptor
from the last fully connected layer was used as the image
descriptor.

Figure 5 shows that the CNN features (based on models
trained for each dataset) resulted in the lowest perfor-
mance in most cases. While we tried several variations
of the AlexNet architecture, similarly low classification
performance was obtained. We suggest that this was due
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to the insufficient number of images available to train
the CNN model. Although it would be possible to fur-
ther enhance the CNN models, such experiments were
beyond our scope of this study. Also note that when
classification output from CNN was directly used, the
classification results were 4 to 15% lower than using the
4096-dimension descriptor with SVM. This indicates the
advantage of using SVM in place of the softmax layer
for the trained models. The VGG-VD features performed
generally better than L/H/C/G except for the terminal
bulb aging dataset, implying that the pretrained Ima-
geNet model was transferable to the IICBU datasets. The
IFV features were more effective than VGG-VD, and this
demonstrates the advantage of the Fisher encoding of local
descriptors. It can also be seen that our SDT method pro-
vided the largest improvement when CNN features were
used. This suggests that when the descriptors are less
descriptive, there is larger scope of enhancement by SDT
and the optimization process in SDT could better trans-
form the feature space to reduce the intra-class variation
and increase the inter-class difference. The improvement
by SDT on CNN and VGG-VD features was statistically
significant for all datasets, with p-values in the range
of 0.003 to le — 20. This demonstrates that our SDT
algorithm can be useful to deep learning features, and
hence can be easily applied to other problem domains in
biomedical or general imaging.

In addition, we also tested various other features,
including the more traditional encoding techniques of
local SIFT descriptors (i.e. bag-of-features (BOF) and
LLC), and SURE, gray level co-occurrence matrix (GLCM)
and wavelet features. We found that IFV was more effec-
tive than the BOF or LLC encoded SIFT descriptors, with
on average 15% improvement in classification accuracy.
Inclusion of SURF, GLCM or wavelet features degraded
the classification performance by 3 — 10% compared to
using LBP, HOG, GIST and CENTRIST.

Comparison with existing studies

Table 2 shows our classification results in comparison
with the existing studies. We obtained better results
over the state-of-the-art for six of the eight datasets
(except terminal bulb aging and RNAi) for both ILHC
and ILHCG descriptors. In addition, among the com-
pared approaches, three approaches [8, 9, 13] focused
on performing general bioimage classification for differ-
ent problem domains. Our method was also designed to
support general bioimage classification without involving
domain-specific processing, and achieved much higher
accuracy over these approaches for all datasets. Further-
more, from Fig. 4 and Table 2, we can see that even
with SVM only, the best performing descriptor provided
better classification accuracy over the state-of-the-art for
six datasets (except RNAi and terminal bulb aging). For
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Table 2 Classification accuracies (%) compared to the existing studies

Dataset Ours-ILHCG Ours-ILHC ) [8] [13] [15] [11] [10] [23] [14]
2D Hela 97.6+1.4 98.3+1.2 84 68.3 94.4 94.4 90.7 - - -
CHO 99.5+0.4 99.9+0.1 93 93.1 98.5 99.4 98.4 - - -
RNAI 85.5+25 86.5+3.3 82 55.0 67.5 92.0 90.1 - - -
Muscle aging 98.3+2.7 97.91+3.6 53 89.6 - - - - - -
Terminal bulb aging 69.5+24 64.8+24 49 511 446 - - - - 69.9
Lymphoma 94.6+2.7 96.8+3.1 85 709 - - - 92.7 63.3 -
Liver gender 99.6+0.8 99.6+0.8 69 91.7 - - - 99.2 97.3 -
Liver aging 100.0+0.0 100.0£0.0 51 73.8 - - - 96.4 - -

Boldface indicates the best result on the individual dataset

example, using ILHCG and SVM classification without
SDT, we obtained 96.1% classification accuracy, compared
to 94.4% of the state-of-the-art [13, 15] for the 2D HeLa
dataset. These results further demonstrate the effective-
ness of our proposed visual descriptor.

For the terminal bulb aging dataset, our classification
result was 0.4% lower than the state-of-the-art [14]. The
approach [14] involves a multi-level classification model
with additional middle classes. It is however unknown
how this approach would perform for the other datasets.
To further analyze our method performance, we gener-
ated the confusion matrices using the SVM only approach
and our method, as shown in Fig. 6. A comparison
between the two confusion matrices shows that our
method obtained consistent improvement for each class
over the SVM only results. The first two classes were easily
differentiated from the other classes with distinct struc-
tural patterns in the tissues (examples shown in Fig. 7a.
For the other five classes, we observed that the images
become more blurred as the terminal bulb ages, and it
becomes more difficult to distinguish the different ages.

Figure 7 shows examples of misclassification between days
4 and 6, and between days 10 and 12. It can be seen
that the visual characteristics in these images are hard to
differentiate between different classes, and images of the
same class show varying characteristics as well. It would
thus be challenging to obtain a feature representation to
effectively classify the images. Furthermore, we found that
including more spatial information into the feature rep-
resentation, such as by extracting extra texture features
from the middle region of the images, could improve
the classification performance. This would be our future
study as a customized design for the terminal bulb aging
classification.

For the RNAI dataset, the compared approaches [11, 15]
outperformed our method. In particular, the approach
[15] included a shape-based feature design based on the
GLCM representation, and provided the state-of-the-art
classification result with 5.5% advantage over our method.
However, the approaches [11, 15] were less effective for
the 2D HeLa and CHO datasets and hence less generaliz-
able when compared to our method. We suggest that the

Ours
day0 day2 day4 dayé day8 dayl0 day12
day0 0.00 0.00 0.00 0.00
day2 0.01 0.02 0.01 0.00
day4 [ 0.00 0.13 047 0.25 0.13 0.01 0.01
day6 | 0.00 0.06 0.14 022 0.02 0.00
dayd | 0.01 0.01 0.09 0.15 0.03 0.04
day10 | 0.00 0.00 0.02 0.10 0.19 047 0.23
day12 | 0.00 0.00 0.00 0.00 017 0.20 m

SVM
day0 day2 day4 day6 day8 day10 day12
day0 0.00 0.00 0.00 0.00 0.00
day2| 0.01 0.05 0.01 0.02 0.00 0.01
day4 [ 0.00 016 | 038 025 0.19 0.01 0.01
day6 | 0.00 0.06 018 | 043 032 0.02 0.00
day8 | 0.01 0.02 013 023 m 0.04 0.04
day10| 0.02 0.02 0.03 016 021 034 023
day12| 0.00 0.00 0.02 002 022 028 | 046
shown

Fig. 6 Results on the terminal bulb aging dataset. Confusion matrices of the classification results using SVM only and our method (SDT+SVM) are
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Day 4

(b)

Fig. 7 Visual results on the terminal bulb aging dataset. The samples show a images of class ‘day 0" and ‘day 2’ that are correctly classified; b cases
where class ‘day 4’ (top row) or ‘day 6’ (bottom row) are classified as ‘day 4' (left column) or ‘day 6’ (right column); and ¢ cases where class ‘day 10’ (top
row) or ‘'day 12" (bottom row) are classified as ‘day 10 (left column) or ‘day 12’ (right column). In' b and ¢, the two off-diagonal images illustrate the

misclassification cases

Day 10

()

main uniqueness of the RNAi dataset is that the images
contain many well isolated cells and the spatial struc-
ture is not informative when classifying the images. These
characteristics thus limited the effectiveness of our fea-
ture descriptor for the RNAi dataset. Figure 8 shows the
confusion matrix obtained using our method. The low-
est classification accuracy was observed for the class of
gene CG3938, and 20% of it was misclassified as CG7922.
Example of misclassification is shown in Fig. 9. It can be
seen that while the two genes have different functionali-
ties, i.e. regulation of cell cycles or DNA repair, they show
similar visual characteristics and could be easily confused
to the untrained eyes. Based on these comparisons, we
suggest that a customized feature design at the individual

CG1258 0.00 000 015 000 000 000 000 0.00

CG3733 0.00 000 000 000 000 020 000 0.00

CG3938 | 0.00 010 000 000 000 000 000

CG7922|0.00 000 0.10 000 000 000 000 000 000

CG8114|020 0.00 0.00 0.00 0.00 0.00 0.00
CcG8222 (0.00 000 0.00 0.00 0.00 0.00
CG9484 (000 000 0.00 0.00 0.00 0.00

CG10873 (000 005 0.05 0.05

000 000

CG12284 | 000 000 005 000 000 000 005

CG17161| 000 000 000 000 000 000 000 000 0.00

Fig. 8 Results on the RNAI dataset. Confusion matrix of the
classification results is shown

cell-level could be investigated for further improving the
classification performance of the RNAi dataset.

It is worth noting that in our experiments we conducted
ten runs of five-fold cross validation, while the compared
approaches used different cross validation techniques, as
summarized in Table 3. For example, the approach [14]
used a single three-fold cross validation. As a result of
the difference in evaluation protocol, their performance
advantage of 0.4% on the terminal bulb aging dataset
might not be conclusive.

Comparison with dimension reduction

While our SDT method does not involve dimension
reduction, it adds an additional step prior to the SVM
classification, and has some similarity with LDA that
the transform tries to reduce the within-class variation
and increase the between-class difference based on dis-
criminative learning. In addition, considering the small
number of images in the datasets, dimension reduction
could be useful to address the over-fitting issue. We
compared our method with several popular discrimina-
tive dimension reduction techniques: LDA, GDA [48],
FML [43], and FDDL [46]. GDA is a kernelized ver-
sion of LDA. FML is based on distance metric learning
and demonstrates good performance when coupled with
IFV and SVM [45]. FDDL, being a supervised dictio-
nary learning technique with Fisher discrimination con-
straints, can be used for dimension reduction as well.
To have direct comparison with SDT, the dimension
reduced descriptors from LDA, GDA and FML were
classified using linear-kernel SVM. For FDDL, we used
the integrated sparse representation-based classification
technique. The parameters used in these approaches were
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CG3938

CG3938
CG3938

CG7922

CG7922

CG7922

Fig. 9 Visual results on the RNAI dataset. The left and middle images are of class ‘CG3938" and the rightimage is of class 'CG7922". The left and right
images are correctly classified, but the middle image is misclassified as class 'CG7922'

tuned manually. We also performed the paired t-test to
verify the statistical significance of improvement of SDT
over LDA, GDA, FDDL and FML.

As shown in Fig. 10, when the classification accura-
cies were near 100% on the CHO, liver gender and aging
datasets, our method performed similarly to GDA and
FDDL. The improvement provided by our method is more
clearly observed for the other five datasets with non-
saturated classification accuracies. Compared to the SVM
only approach, FDDL and GDA resulted in slightly higher
accuracies for some datasets while LDA and FML often
affected the results negatively. The advantage of SDT over
LDA, GDA and FML was statistically significant with p-
values less than 0.05 for all five datasets. The improvement
of SDT over FDDL was statistically significant for the
2D HeLa, terminal bulb aging and lymphoma datasets.
For the RNAi and muscle aging datasets, FDDL per-
formed similarly to SVM, and the improvement of SDT
over FDDL on these datasets was insignificant. To explain
this insignificance, our previous discussion regarding the
improvement of SDT over SVM can be applied here as
well. Overall, these results demonstrate that it is not
advantageous to apply dimension reduction techniques
on the high-dimensional descriptor before SVM classi-
fication. Compared to the commonly used dimension
reduction techniques, our SDT method could retain and
enhance the discriminative information of the descriptors
to a larger extent. Therefore, it is generally more effective
by first transforming the feature descriptors with our SDT
model before SVM classification.

Table 3 Evaluation protocol of compared approaches

Use of subcategories

In SDT, the within- and between-class variations are
computed based on subcategories. To analyze the effect
of such a subcategory-based model, we compared our
results with an alternative approach that replaces the
subcategory-level computation by class-level computa-
tion. We name this alternative approach Fisher discrimi-
nant transform (FDT). Briefly, we change Egs. (1) and (2)
to measure the within- and between-class variations sim-
ilarly to the standard Fisher discrimination, by computing
the distance between data samples and class means, and
between class means and the overall mean. This trans-
form also keeps the descriptor dimension unchanged.
The subcategory information is not used in FDT, hence
result comparison between FDT and our SDT method
would indicate the use of subcategories in the feature
transform.

Figure 10 shows the evaluation results. It can be
seen that FDT generally outperformed all the com-
pared approaches, indicating the benefit of discriminative
descriptor transform via a block-wise convolution-based
design. In addition, our subcategory-based method shows
higher classification accuracies than FDT consistently for
all datasets. In general imaging, it is generally considered
that sub-categorization methods could better accommo-
date the feature space variation, and encouraging per-
formance has been reported recently [35, 53-55]. Our
comparison with FDT confirms the advantage of the
subcategory-based feature space modeling over the usual
class-level representation.

Ours [9] [8] [13] [15] [11] [10] (23] [14]
# Folds in cross validation 5 - 5 10 5 5 - 3
# Splits 10 1 5 1 100 1 1 1
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2D Hela CHO RNAi Muscle aging
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Fig. 10 Classification results comparing our method with the other related techniques. Results are obtained using our method (SDT+SVM), SYM
only classification, the discriminative dimension reduction techniques (LDA, GDA, FML and FDDL), and FDT that replaces the subcategory-based
computation in SDT with a class-based formulation. The mean accuracy and standard error are shown

Regarding the clustering method for generating the sub-
categories, we chose the LSC algorithm mainly due to
its efficiency. For example, on the smallest RNAi dataset
of 200 images, LSC clustering took about 0.4 seconds
while the well-known SSC method took about 50 minutes.
SSC is similar to LSC except that SSC used the standard
Lasso for sparse representation while LSC used the highly
efficient LLC algorithm. Such a long computation time
prevented us from using SSC for our current study. In
addition, k-means clustering is also quite efficient, requir-
ing about 0.6 seconds for the RNAi dataset. However, the
classification performance using k-means clustering was
on average 0.5% lower than that using LSC clustering for
all datasets.

Further analysis of SDT
To further elaborate the effect of our SDT method, we
provide analysis of the intermediate results when applying
the method. The underlying objective of SDT is to min-
imize the within-class and maximize the between-class
differences. We thus measured the within- and between-
class differences before and after applying SDT, and the
margins between separation hyperplanes from the trained
SVMs correspondingly. These measures help to demon-
strate the use of SDT intuitively.

Recall that our ILHCG descriptor x is partitioned into
B blocks of feature vectors x = {x; : b = 1,...,B} with
B = 180, and the within- and between-class differences

b b :
Vi, and V7., are derived for each vector x;, separately.

We computed the ratio between ertw and V;ﬁz ., for each
xp, and concatenated the ratios together as the overall
measurement of the feature space distribution. Figure 11a
shows the ratios obtained before and after applying SDT
on the training set of the terminal bulb aging dataset. It

can be seen that the ratios became higher after SDT was

applied, indicating larger between-class difference com-
pared to within-class variation. Such an observation is
aligned with the optimization objective of SDT in Eq. (8).
It was also found that in the original feature space, the
separation margin between hyperplanes from the trained
SVM was on average 0.14. In the transformed feature
space after applying SDT, the separation margin became
0.19. Therefore, with SDT the transformed features could
be better separated between different classes and more
accurate classification became possible.

On the other hand, an important aspect is if the effect of
SDT shown on the training set is transferable to the test-
ing set. To analyze this, we computed the ratios on the
testing set. As shown in Fig. 11b, among the 180 ratios
corresponding to 180 blocks of feature vectors, 130 ratios
became higher after applying SDT. This helps to explain
the higher classification performance using our method
compared to using only SVM without SDT as shown in
Fig. 4. The overall increase in ratios after applying SDT
was lower than those on the training set. This is because
similar to the other discriminative learning techniques
(e.g. SVM), the testing set typically exhibits some different
feature space characteristics from the training set. Such
differences would subsequently affect the effectiveness of
the learned model when applied to the testing set.

In addition, as a feature transform method, SDT can be
considered related to the artificial neural network (ANN).
Specifically, in SDT, the learned kernels are convoluted
with the feature vectors to generate the transformed
descriptor; and in ANN, the outputs of hidden layers
are transformed descriptors with the weights optimized
based on the classification objective. The main difference
of SDT from ANN is that our optimization objective is
constructed based on the intra- and inter-class variations
derived from subcategories and SDT is applied to each
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Fig. 11 Effects of SDT on feature space distribution. Ratios between Vgerw and V2 1, are computed before and after applying SDT, from a the training
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block of feature vectors rather than the whole feature
descriptors.

To compare our optimization method with ANN in
a fair manner, we designed the following ANN-based
approach. First, since in our method we learned 180 con-
volution kernels for the 180 blocks of feature vectors, we
trained 180 ANNSs correspondingly as well. Each ANN
was configured to have an input layer for the feature vec-
tors, one hidden layer as the feature transform layer, and
one output layer for classification. The hidden layer had
the same number of nodes as the input feature vector,
so that the feature dimension remained unchanged after
this layer, simulating the effect of our SDT-based feature
transform. After training the 180 ANNS, the transformed
features generated at the hidden layer were then concate-
nated together to produce the transformed descriptors,
which were then used to learn an SVM classifier. For
a testing image, the transformed descriptor was derived
from the learned ANNs and then classified using the SVM.

The results show that our SDT method outperformed
this ANN-based method on six datasets, with improve-
ment in classification accuracy of 1.8% (2D HeLa), 0.3%
(CHO), 1.5% (RNAI), 0.8% (muscle aging), 7.7% (terminal
bulb aging), and 3.0% (lymphoma). The same results were
obtained on the liver gender and aging datasets. Also, the
ANN-based method outperformed the SVM only classi-
fication and dimension reduction techniques with 0.5 to
2.0% improvement for five datasets (except CHO, liver
gender and aging), while we found that a standard ANN
classification (using 3-layer ANN to classify the high-
dimension feature descriptors directly) underperformed
the SVM only classification by 0.3 to 9%. This implies
the advantage of having block-wise feature transform
and the additional SVM classification of the transformed
descriptors. We suggest that it could be possible to fur-
ther enhance the ANN-based method with convolutional

layers, and this would be an interesting direction in our
future study.

Conclusions

In this paper, we present a general method for bioim-
age classification. The images are represented with highly
discriminative high-dimensional visual descriptors com-
prising multi-modal features. A subcategory discriminant
transform (SDT) method is designed to further enhance
the discriminative power of the descriptors using block-
wise convolution processing, in which the convolution
kernels are learned based on subcategory-level discrimi-
native modeling. We have evaluated our method on the
publicly available IICBU 2008 database, which contains
eight individual datasets of various types of microscopy
images and different multi-class classification problems.
Our method outperformed state-of-the-art approaches
for six datasets.
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