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Abstract

Background: Approximate string matching is the problem of finding all factors of a given text that are at a distance
at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text
of length n that are at a distance at most k from any factor of length � of a pattern of lengthm. There exist bit-vector
techniques to solve the fixed-length approximate string matching problem in timeO(m��/w�n) and space
O(m��/w�) under the edit and Hamming distance models, where w is the size of the computer word; as such these
techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string
matching is a generalisation of approximate string matching and, hence, has numerous direct applications in
computational molecular biology and elsewhere.

Results: We present and make available libFLASM, a free open-source C++ software library for solving fixed-length
approximate string matching under both the edit and the Hamming distance models. Moreover we describe how
fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into
established applications for multiple circular sequence alignment as well as single and structured motif extraction.
Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms
of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular
sequences representing regulatory or functional regions. The comparison of the performance of the library to other
algorithms show how it is competitive, especially with increasing distance thresholds.

Conclusions: Fixed-length approximate string matching is a generalisation of the classic approximate string
matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length
approximate string matching. The extensive experimental results presented here suggest that other applications
could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.

Keywords: Approximate string matching, Fixed-length approximate string matching, Dynamic programming,
Software library

Background
Computational problem
Fixed-length approximate string matching (FLASM) is a
generalisation of the classic approximate string match-
ing (ASM) problem. While numerous algorithms exist to
tackle the latter [1], few algorithms exist to tackle the
former. Given two strings, a pattern x and text t, and a
positive integer k, the ASM problem consists of finding all
factors of t that are at a distance at most k from x with
respect to a distance model. With FLASM, the problem
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instead focuses on identifying all factors of t that are at a
distance at most k from any factor of some fixed-length
� ≤ m of x. For example, given a text t = ATGGCAAGT,
a pattern x = AAGATG, and a factor length � = 3, the
factors of length � in x are AAG,AGA,GAT,ATG. Of these
factors, only the first and last find exact matches in t.
Given a positive integer k < �, as the distance threshold
for a match, there could be more matches. If k = 1, the
factor AGA would match AGT with one error. This is the
FLASM problem.
In molecular biology, errors occur at a steady rate in

genetic codes with the average single-nucleotide substi-
tution mutation rate in humans estimated to be 1.20 ×
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10−8 per nucleotide per generation [2]. Apart from single-
nucleotide substitution, there are nucleotide deletion and
insertion mutations, but these occur much less frequently
[2]. Algorithms that operate on genetic sequences need
to work with datasets containing substitutions, insertions,
and deletions. Although specialised error models exist
for molecular biology [3], the edit [4] and Hamming dis-
tance [5] models are often used as reasonable accuracy-
speed trade-offs; these models have practical applications
beyond the scope of biology.
The edit distance model uses substitutions, deletions,

and insertions of letters to find the minimum number of
operations tomake two strings match.While each of these
different operations can have a different edit cost, an edit
cost of 1 is often used for all operations; and we simply call
this cost the “edit distance”. The Hamming distance model
is a simplified variant of edit distance which only allows
substitutions and likewise, a substitution has a cost of 1.
The FLASM problem can be solved efficiently under

the edit [6] or the Hamming [7] distance model; both
algorithms make extensive use of bit-vector techniques to
compute the solution. These techniques take advantage
of low-level processor operations on computer words.
Fast bit-vector operations can substitute regular opera-
tions, slashing the time complexity by a factor of w, the
computer word size. Furthermore, bit-vectors are used
to encode alignment information succinctly, thus improv-
ing the space complexity of the algorithms by the same
factor. Specifically, the problem can be solved in time
O(m��/w�n) and space O(m��/w�) under both distance
models. FLASM is well-suited to solving numerous prob-
lems in computational molecular biology, including, for
instance, multiple circular sequence alignment (MCSA)
[8] and motif extraction [9–11]. FLASM is also very
useful for solving problems outside the confines of com-
putational biology, such as approximate circular string
matching [12] as well as implementing the Chang and
Marr index [13]. A brief description of these applications
follows below.

Biological motivation
Circular sequences are found in various places in the
domain of biology [14, 15]. The bulk of bacterial DNA
is stored in a circular chromosome but bacteria have
additional genes stored in plasmids, circular loops of
double-stranded DNA. Bacteria may harbour a variety of
plasmids, giving them distinctive properties such as the
ability to produce toxins or resist the effects of antibiotics
[16]. Viral genomes also happen to be circular and the
ability to identify regions of interest helps us in the dis-
covery of druggable sites. Circular DNA is also present
in specialised organelles, chloroplasts and mitochondria,
of eukaryotic plant and animal cells. Mitochondrial DNA
(mtDNA), can be found inside mitochondria [17] and

is commonly used in phylogenetic reconstruction and
research into ancestry and evolution. Additionally, some
proteins are noted to share homologous domains but do
not align because of swaposins, domains that are relo-
catable and have the property of circular permutability
[18, 19]. Additionally, some proteins bind on their N and
C termini in order to form a circular chain [15]. The wide
presence of the circular structures in biology attests the
importance of analysing circular sequences and finding
algorithms suitable for its study [20].
Circular sequences have no point of reference by which

they are sequenced or aligned to one another and treat-
ing them as linear sequences leads to poor alignments.
By identifying the correct rotation for a pair of circular
sequences, sequence alignment can be carried out to pro-
duce more reliable results. This is evident when analysing
the linearised human (NC_001807) and chimpanzee
(NC_001643) mtDNA sequences which start at differ-
ent biological regions. Without refining the sequences,
the pairwise sequence alignment of the mtDNA using
EMBOSS Needle [21] gives a similarity score of 85.1 %
with 1,195 gaps. Aligning different rotations of the same
sequences yields a similarity of 91 % with only 77 gaps [8].
MCSA involves aligning three or more circular sequences
simultaneously, which is a common task in computational
molecular biology. As similar to the standard setting, this
alignment can be used to find patterns within protein
sequences and specifically, identify homology between
new and existing groups of related sequences [22]. Just as
importantly, it helps in identifying novel regions or muta-
tions that give a species or breed its distinctive properties
or highlights the cause of disease. A few tools exist to
tackle the MCSA problem [8, 23, 24].
Motif extraction (ME), or motif discovery, involves

detecting overrepresented DNA motifs as well as con-
served DNA motifs in a set of orthologous DNA
sequences. Such conserved motifs may serve as poten-
tial candidates for transcription factor binding sites for
a regulatory protein [25]. The pattern, which is usually
fairly short, 5 to 20 base-long, can be located in different
genes or several times within the same gene.ME, however,
may also be relevant for extracting longer regions within
DNA sequences. A study in [26] shows that there exist
481 regions longer than 200 bases that are absolutely con-
served in the genomes of the human, rat, and mouse. This
fact suggests the possibility of the existence of long motifs
in the presence of substitutions, insertions or deletions,
underscoring the necessity of ME for larger lengths. Many
tools exist to tackle the ME problem for single motifs
[9, 27–29].
In addition to this simple form of single motifs, struc-

tured motifs are another special type of DNA motifs.
A structured DNA motif is made up of two (or even
more) smaller conserved sites with a spacer (gap) located
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between these sites. The spacer is found in the mid-
dle of the motif due to the transcription factors binding
as a dimer. This means that the transcription factor is
made up of two subunits, having two separate contact
points with the DNA sequence. A non-conserved spacer
of mostly fixed or slightly variable length separates these
contact points. Such conserved structured motifs may
serve as potential candidates for transcription factor bind-
ing sites for a composite regulatory protein [30]. A few
tools exist to tackle the ME problem for structured motifs
[11, 31, 32].
ME can also be used on immunoglobulins and T cell

receptors, which aid in the immunity of humans and
other vertebrates. Immunoglobulins, or antibodies, have
the main function of eliminating foreign objects and
pathogens such as bacteria, by attaching to them and neu-
tralizing their effects on the body [33]. Obtaining the
structural information of an antigen is essential for mono-
clonal antibody engineering, which has proven successful
for the treatment of diseases such as Rheumatoid Arthritis
[34]. These antibodies are created by introducing syn-
thetic DNA into specific regions of the antibody, proving
that ME aids with the discovery of common regions in
multiple antigens.
It is well-known that ASM has numerous applications

in computational molecular biology [1]. Average-case
optimal algorithms for ASM [35] are based on a pre-
processing step, namely, implementing the Chang and
Marr index [13]. This step involves constructing an array
D[ 0. .σ q − 1] of integers, such that for every string s of
length q over an alphabet of size σ , s is searched for in pat-
tern x, and D[ s] contains the smallest distance between s
and any match found in x. Storing D requires spaceO(σ q)
and computing it naïvely takes timeO(σ qqm) for the edit
and Hamming distance models.
Approximate circular string matching (ACSM) is the

problem of finding all factors of a given text that are at a
distance k from any of them rotations of a given pattern of
length m. ACSM has various applications such as finding
permutations in proteins [36], but it has other uses out-
side of biology and has been applied extensively in pattern
recognition (see [37], for instance). Many average-case
algorithms exist to tackle the ACSM problem efficiently
for low error ratios k/m [12, 35, 38, 39].

Our contributions
In this article, we present and make available libFLASM, a
free open-source C++ software library for solving FLASM
under both the edit and the Hamming distance models.
For the Hamming distance model, we use our own imple-
mentation (a preliminary version appeared in [40]) of the
MaxShiftM algorithm [7], and for the edit distance model
we generalise the SeqAn [41] implementation of Myers’
bit-vector algorithm [6] for approximate string matching.

Both of these implementations are based on dynamic-
programming approaches accelerated by the use of bit-
vector techniques to achieve their goals. Also, both imple-
mentations are able to handle arbitrary factor lengths; in
particular, factor lengths greater than the computer word
size. Moreover we make the following contributions by
providing extensive experimental results to support our
claims.

a) We incorporate libFLASM into a state-of-the-art tool
to improve the accuracy of MCSA in terms of the
inferred likelihood-based phylogenies;

b) We incorporate libFLASM into a state-of-the-art tool
for ME of patterns longer than what was previously
possible;

c) We show how libFLASM can be used efficiently for
implementing the Chang and Marr index;

d) We show how libFLASM can be used efficiently for
ACSM with high error ratios.

Technical background
We provide some definitions following Crochemore et
al. [42]. We define a string x of length m as an array
x[ 0. .m − 1] where every x[ i], 0 ≤ i < m is a letter taken
from an alphabet � of size |�| = σ . String ε denotes the
empty string which has length 0. Given a string y, we call
string x a factor of y if there exist two strings u and v, such
that y = uxv. Consider the strings x, y,u, and v, such that
y = uxv. We call x a prefix of y if u = ε; we call x a suffix
of y if v = ε. When x is a factor of y, we say that x occurs
in y. Each occurrence of x can be denoted by a position in
y. Specifically, we say that x occurs at the starting position
i in y when y[ i. .i + m − 1]= x. It is often relevant to note
the ending position i + m − 1.
A circular string of length m may be informally defined

as a standard linear string where the first-occurring and
last-occurring letters are wrapped around and positioned
next to each other. Considering this definition, the same
circular string can be regarded as a set of m linear
strings, which are all considered to be equivalent. Sim-
ilarly, given a string x of length m, we denote by xi =
x[ i. .m − 1] x[ 0. .i − 1], 0 < i < m, the ith rotation
of x and x0 = x. For instance, by looking at the string
x = x0 = baababac, we obtain the following rota-
tions of x: x1 = aababacb, x2 = ababacba, x3 =
babacbaa, etc.
A q-gram is defined as any string of length q over alpha-

bet �. Given an alphabet � of size σ and a value q, a
de-bruijn sequence B(q, σ) is a circular string of length σ q

such that every possible q-gram appears as a sequence
of consecutive letters exactly once [43]. Several algo-
rithms exist for this construction requiring time linear
with respect to the length of the output sequence; for
instance, see [44].
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Definition 1. Given a string x of length m and a string y
of length n ≥ m, the edit distance, denoted by δE(x, y), is
defined as the minimum total cost of operations required
to transform one string into the other. The allowed edit
operations are as follows:

• Insertion: insert a letter in y, not present in x;
(ε, b), b �= ε

• Deletion: delete a letter in y, present in x; (a, ε), a �= ε

• Substitution: replace a letter in y with a letter in x;
(a, b), a �= b, and a, b �= ε.

Here we only consider edit distance with unit-cost oper-
ations. Given an integer k > 0, if δE(x, y) ≤ k we say that
x and y have at most k differences.

Definition 2. Given a string x of length m and a string y
of length m, the Hamming distance, denoted by δH(x, y), is
defined as the minimum number of substitution operations
required to transform one string into the other.
Given an integer k > 0, if δH(x, y) ≤ k we say that x and

y have at most k mismatches.
We provide some further definitions following Carvalho

et al. [31]. We define a single motif as a string of letters on
an alphabet �. We are given an integer value k denoting
a distance threshold (error threshold). We then say that
a motif on � k-occurs in another string s on �, if there
is a distance (edit or Hamming, for instance) of at most
k between the motif and a factor of s. A set s1, . . . , sN of
strings on �, where N ≥ 2, the quorum 1 ≤ q ≤ N , the
error threshold k, and the length � for the motifs are taken
as input for the single motif extraction problem. Specifi-
cally, it involves identifying all motifs of length �, with each
motif k-occurring in at least q input strings. In this case,
such single motifs are called valid.
We define a structuredmotif as a pair of the form (m, d):

m = (mi) 1 ≤ i ≤ β is a β-tuple of single motifs; and
d = (dmini , dmaxi)1≤i<β is a β − 1-tuple of pairs, which
correspond to β − 1 intervals of distance between the β

single motifs. We denote a structured motif by

m1[ dmin1 , dmax1]m2 . . .mβ−1[ dminβ−1 , dmaxβ−1 ]mβ .

The elements m1,m2, . . . ,mβ of a structured motif are
called boxes. The length of boxmi is denoted by �i. We are
given a β-tuple (ki)1≤i≤β of error thresholds. We then say
that a structured motif (m, d) has a (ki)1≤i≤β-occurrence
in another string s on �, if there is a ki-occurrence m′

i of
mi, for all 1 ≤ i ≤ β , such that:

1. m′
1, . . . ,m′

β occur in s and
2. the distance between the ending position ofm′

i and
the starting position ofm′

i+1 in s is in interval
[ dmini , dmaxi ], for all 1 ≤ i < β .

A set s1, . . . , sN of strings on �, where N ≥ 2, the quo-
rum 1 ≤ q ≤ N , β lengths (�i)1≤i≤β , β error thresholds
(ki)1≤i≤β , and β − 1 intervals (dmini , dmaxi)1≤i<β of dis-
tance are taken as input for the structured motif extraction
problem. Specifically, it involves identifying all structured
motifs that have a (ki)1≤i≤β-occurrence in at least q input
strings. In this case, such structured motifs are called
valid. A problem instance is denoted by

< (�1, k1)[ dmin1 , dmax1] (�2, k2) . . .

(�β−1, kβ−1)[ dminβ−1 , dmaxβ−1 ] (�β , kβ), q > .

We are now in a position to define the FLASM problem.

Definition 3. Given a pattern x of length m, a text t of
length n ≥ m, an integer � ≤ m, and an integer k < �,
the FLASM problem under the Hamming distance model
finds all factors u of t such that δH(u, v) ≤ k, where v is any
factor of length � of x.
We extend the above definition to the edit distance

model.

Definition 4. Given a pattern x of length m, a text t of
length n ≥ m, an integer � ≤ m, and an integer k < �, the
FLASM problem under the edit distance model finds all
factors u of t such that δE(u, v) ≤ k, where v is any factor of
length � of x.

Theorem 1 ([7]). The FLASM problem under the Ham-
ming distance model can be solved in timeO(m� �

w�n) and
spaceO(m� �

w�), where w is the size of the computer word.
Given a pattern x of length m, a text t of length n ≥ m,

and an integer k < m, Myers bit-vector algorithm solves
the ASM problem under the edit distance model in time
O(n�m

w �) and space O(�m
w �) [6]. Applying this algorithm

for all O(m) factors of length � of x separately solves the
FLASM problem under the edit distance model.

Theorem 2. The FLASM problem under the edit dis-
tance model can be solved in time O(m� �

w�n) and space
O(m� �

w�), where w is the size of the computer word.

Applications
In this section we explain how Theorems 1 and 2 can
be applied to solve problems in computational molecular
biology and elsewhere.

Application I: multiple circular sequence alignment
MCSA is a generalisation of the multiple sequence align-
ment (MSA) problem. Informally, in MSA, the goal is
to compare and visualise a set of N input sequences
s1, . . . , sN such that comparing their bases with each other
reduces the total cost of this alignment through a minimal
application of substitutions, insertions, and deletions. As
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obtaining an optimal MSA is computationally expensive
(using dynamic-programming techniques) [45], an alter-
native approach is to use heuristic techniques [22, 46].
These techniques make an implicit assumption: the left-
and right-most position of each sequence is relevant; how-
ever this does not necessarily apply to circular sequences.
Circular genomes are split and sequenced at a possibly
random position. So when it comes to comparing them,
if they do not start with the same biological region, it
is quite possible to obtain very sub-optimal MSAs. To
resolve this and reduce the total cost of the produced
MSA, the sequences can be refined to different rotations
before going through the MSA algorithm. Theorems 1
and 2 can be applied to find most similar factors among
pairs of sequences (si, sj), which can then determine suit-
able rotations for all input sequences via agglomerative
hierarchical clustering (see [8], for details).

Application II: motif extraction
For single ME, a factor of length � can be considered as a
single motif, extracted once or several times from a subset
of N input sequences s1, . . . , sN . The extraction of motifs
under the Hamming and edit distance models can be per-
formed by applying Theorems 1 and 2, respectively, for
all pairs of input sequences. Specifically, it suffices to per-
form all pairwise sequence comparisons (si, sj) and store
the number of occurrences for each factor of length � of
every sequence. We can thus determine all single motifs
of length �, such that each motif k-occurs in at least q
of the input sequences. The assumption of this approach
is that all reported motifs are strictly valid: they occur
at least once in some sequence with no error (see [9],
for details).
Structured ME is a generalisation of single ME. A struc-

tured motif is made up of single motifs with distance
intervals of varying size between them. Theorems 1 and 2
can be applied to find occurrences of individual motifs
m1,m2, . . . ,mβ , where β is the number of single motifs
within a structured motif; and then merge these occur-
rences efficiently to form structured motifs. The same
validity assumption holds for structured motifs (see [11],
for details).

Application III: Chang andMarr index
The Chang and Marr index aims to find the minimal dis-
tance between every q-gram over � and any factor of
pattern x. We propose here the following implementa-
tion. Given a pattern x of lengthm consisting of σ distinct
letters and a value for q, the de-bruijn sequence B(q, σ)

is constructed using the algorithm of [44]. We also ini-
tialise an integer array D: a numerical representation of
the σ q q-grams permits constant time access to D. The
minimal distance for each q-gram represented inD can be
computed using the Hamming or edit distance between a

factor of length q from the de-bruijn sequence and any fac-
tor of x. A linearised version of the de-bruijn sequence and
pattern x can be used as the input pattern and text, respec-
tively, for FLASM; we also need to set � := q. Hence the
computation can be done in time O(σ q�q/w�m), instead
ofO(σ qqm), by applying Theorems 1 and 2.

Application IV: approximate circular stringmatching
ACSM is the problem of finding all factors of a text t
that are at a distance k from any of the rotations of a
pattern x. We can consider all rotations of x of length
m by creating string x′ = x[ 0. .m − 1] x[ 0. .m − 2]
and sliding a window of length m across x′. Con-
sider the pattern x = AAGATG; we obtain rotations:
AAGATG,AGATGA,GATGAA,ATGAAG,TGAAGA,GAAGAT.
The ACSM problem consists in searching for these
rotations in t. Theorems 1 and 2 can be directly applied
by using x′ as the input pattern and setting � := m. This
means all factors of length � = m of x′, hence all rotations
of x, will be used to search in t.

Implementation
libFLASM was implemented and packaged as a dynamic
library in the C++ programming language and was com-
piled with gcc v.4.7.3 using optimisation flags -O3,
-funroll-loops, and -msse4.2. The implementa-
tion is distributed under the GNU General Public License
(GPL), and it is available freely at repository https://
github.com/webmasterar/libFLASM.
libFLASM exposes two functions: one to solve FLASM

under the edit distance model; and one for the Ham-
ming distancemodel. Both functions require the following
parameters to operate:

t The text to search
n The length of the text
x The pattern text
m The length of the pattern
� The length of the factor
k The maximum distance allowed between a factor of x

and a factor of t
r A flag to indicate if all or the best matches should be

returned

The functions return a set of tuples in the form < j, i, e >,
where:

j is the ending position of the match in t
i is the ending position of the match in x
e is the distance of the match

The edit distance function was trivially implemented
using SeqAn [41], a free open-source C++ library of
algorithms for sequence analysis. Specifically, we used
the implementation of Myers’ bit-vector algorithm [6] to

https://github.com/webmasterar/libFLASM
https://github.com/webmasterar/libFLASM


Ayad et al. BMC Bioinformatics  (2016) 17:454 Page 6 of 12

perform approximate string matching under the edit dis-
tance model. We adapted it to search for all factors of
x of length � in t in order to solve the FLASM prob-
lem. For the Hamming distance function, we used our
own implementation [40] of the MaxShiftM algorithm [7],
which solves the FLASM problem under the Hamming
distance model. Notice that both functions provided by
the library work for an arbitrary length � using mul-
tiple computer words, thus delivering the O(m� �

w�n)-
time and O(m� �

w�)-space complexity of the proposed
algorithms.
libFLASMmay easily be incorporated into any computa-

tional pipeline; some examples are given below.

Incorporation of libFLASM into BEAR
libFLASMwas incorporated into BEAR (BEst Aligned Rota-
tions) [8], a state-of-the-art tool for improving MCSA.
BEAR uses the library to find most similar factors, under
a pre-specified distance model, between pairs of the input
sequences, which can then determine suitable rotations
for all input sequences. The output of BEAR can then be
used as input for any MSA program.
BEAR takes a MultiFASTA file containing a set of N

sequences s1, s2, . . . , sN as input, performs all pairwise
sequence comparisons, and stores the results in a matrix
M of sizeN×N . Each cellM[ i, j] stores information about
the rotation and distance of every pairwise sequence com-
parison (si, sj). This information is then used as input
for standard agglomerative hierarchical clustering [47] in
order to group closely-related sequences together and
apply the rotations to output a refined dataset of the N
sequences. This refined dataset can in turn be passed to
an MSA program such as MUSCLE [46] or Clustal � [48]
to produce the final MSA.
BEAR provides a selection of algorithms to do the pair-

wise sequence comparison. One of these approaches is
based on FLASM. This was previously restricted to using
only factors of length � ≤ w, but with the incorporation
of libFLASM, it is now possible to use arbitrary values for �

under the edit or the Hamming distance model.

Incorporation of libFLASM into MoTeX-II
libFLASM was incorporated into MoTeX-II [11] (the suc-
cessor of MoTeX [9]), a state-of-the-art tool to identify
single and structured motifs. MoTeX-II uses the library to
find occurrences, under a pre-specified distance model,
of each factor of length � of every sequence in the input
sequences.
MoTeX-II takes a MultiFASTA file containing a set of

N sequences s1, s2, . . . , sN as input. For single ME, it
performs all pairwise sequence comparisons and stores
the number of occurrences for each factor of length
� of every sequence. Hence it can determine all valid
motifs of length �. This was previously restricted to

finding motifs of length � ≤ w, but with the incor-
poration of libFLASM, it is now possible to find motifs
of any length �. A similar approach is followed for
structured ME.

Using libFLASM to implement the Chang andMarr index
The libFLASM library repository contains an example
showing the use of libFLASM to implement the Chang
and Marr index, that is represented by an integer array
D of size σ q. Given a pattern x and a value q, the index
can be implemented under the Hamming or edit distance
model. The minimal distance between each q-gram in the
linearised version of the de-bruijn sequence and any fac-
tor of x is computed using libFLASM by setting the factor
length to � := q. A list of tuples of the form < i, e >

can thus be created, where i is the ending position of a
q-gram s in the de-bruijn sequence and e is the minimal
distance found between s and any factor in x. By using
a numerical representation of s, we can easily construct
array D.

Using libFLASM for performing approximate circular string
matching
The libFLASM library repository comes with another
example program that can be used to perform FLASM
under a pre-specified distance model. There was no need
to modify this program to make it suitable for ACSM.
All that is needed is to double-up the pattern x of length
m, by concatenating it with itself to create string x′ =
x[ 0. .m − 1] x[ 0. .m − 2], and then set the factor length to
� := m.

Results and discussion
The experiments were run on a 64-bit GNU/Linux oper-
ating system on a machine with a quad-core 64-bit Intel
2.8GHz Core-I7 processor with 8GB of RAM.

Experiment I: performance
We first evaluated the performance of libFLASM by cre-
ating two random 10,000 base-long DNA sequences for
the text t and the pattern x. Different factor lengths were
used in the range 32, . . . , 1, 024. The distance threshold k
was set to 1

2�, while the length n of the text, the length m
of the pattern, and the word size w = 64 remained con-
stant. The results shown in Fig. 1 confirm the theoretical
findings.
The results clearly show the linear growth of the time

required to complete the computation with respect to the
factor length � in accordance with the time complexity of
O(m� �

w�n). Note also that the first three points, which
use factors of length 32, 48, and 64 are represented on the
graph as a straight horizontal line, indicating that there
is no increase in the time required to compute them.
This is trivially explained by the � �

w� factor in the time
complexity.
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Fig. 1 Experiment I. Elapsed time in seconds of libFLASM under edit and Hamming distance models for n = m = 10, 000 and increasing factor
length �

Experiment II: approximate circular string matching
We then evaluated the performance of libFLASM against
state-of-the-art algorithms for solving the ACSM prob-
lem. Two fast average-case algorithms, both of which
support the edit and Hamming distance models, were
identified from the literature: CMFN [35] and ACB [38].
The corresponding implementation of the algorithms
were obtained via communication with the authors.
ACB is an algorithm designed with the purpose of solv-

ing the ACSM problem. CMFN is an algorithm designed
to solve the general problem of multiple approximate
string searching—that is, searching for a set of N patterns
x1, x2, . . . , xN simultaneously in the text. We thus adapted
CMFN to search for all rotations of x in order to com-
pare the speed of the three programs. This was done by
considering all rotations of x as the set of input patterns.
Unfortunately, the implementation of ACB is restricted
to searching patterns of length less than or equal to the
computer word size (m ≤ w).
We ran the three programs with the following settings.

ACBwas run with the option -k to set the distance thresh-
old and the list of patterns were read in on the console
from a file. CMFN was run with the options: -D -B -Sb
-t 6 -k k. This uses a q-gram length of 6, which is
noted for its suitability in [35]. Hamming distance was
enabled using the option -s. To test libFLASM, we used
the example application that is packaged with the library.
The distance model, the factor length �, and the distance
threshold k options were set accordingly.
A one million base-long DNA sequence was randomly

generated as the text t to be searched. Patterns of length
m = 32, 64, 128, 256 were randomly picked from t. In

the case of libFLASM, each pattern was concatenated with
itself and the factor length was set to � := m. With ACB,
only 32 and 64 base-long patterns were tested because of
the limitations of its implementation. Both the Hamming
and edit distance versions of the programs were tested.
The other parameter considered was the performance of
the programs with regards to the distance threshold k. A
series of values for k from the range 0, . . . , 12� was used.
The results are shown in Fig. 2.
The results of this experiment show that ACB and

CMFN are fast for small values of k, but once k is
increased we find that libFLASM becomes competitive
and goes on to perform significantly better. This is
explained by the fact that the time complexity of ACB
and CMFN depends on k, while libFLASM is indepen-
dent of k. This is clearly captured by the graphs in
Fig. 2. Apart from its speed and robustness, another
benefit of using libFLASM, not shown here, is alphabet
independence.

Experiment III: multiple circular sequence alignment
Nine synthetic datasets were generated using INDELible
[49] in order to test the accuracy of BEAR with libFLASM
for improving MCSA. INDELible is a program which
generates DNA or protein sequences with substitutions,
insertions, and deletions at rates defined by the user. For
input datasets we used files containing 12, 25, or 50 DNA
sequences (number denoted by α) of length approximately
2,500 (length denoted by γ ). Three unique substitution
rates (denoted by θ ) were applied, per dataset, using the
substitution model JC69 [50], at 5 %, 20 %, and 35 %.
The insertion and deletion rates were set, respectively, to
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Fig. 2 Experiment II. Elapsed-time comparison in log10 seconds of different programs for ACSM under edit and Hamming distance models for
m = 32, 64, 128, 256, n = 1, 000, 000, and increasing distance threshold k

4 % and 6 % (denoted by κ and ω), relative to a substi-
tution rate of 1. We will call these datasets the Original
datasets.
We then proceeded to randomly rotate each of the

sequences in the datasets to create a new set of files. We
call these the Random datasets. The goal of this experi-
ment was to use BEAR with libFLASM under the edit dis-
tance model to refine the random rotation of each of the
sequences in the Random datasets. The refined datasets
we would obtain after rotating the sequences are called the
Restored datasets. We ran BEAR using the FLASMmethod
for pairwise sequence comparisons under the edit dis-
tance model. We used two combinations of factor length �

and distance threshold k to run the experiments: � = 40,
k = 10; and � = 100, k = 45.
We then used MUSCLE [46], a fast and accurate MSA

program, to produce the alignments in PHYLIP format for
each Original dataset. The alignments were then passed
to RAxML [51], a program for inferring a phylogenetic
tree, under the maximum likelihood criterion, for a given

alignment. RAxML was used again to compare the trees
against each other via calculating the pairwise Robinson
and Foulds (RF) distance [52]. In particular we calcu-
lated the RF distance between the Original trees and the
Random trees, as well as the distance between theOriginal
trees and the Restored ones, to measure how well the
programs had performed in refining the sequences in each
of the datasets.
The results in Table 1 show the RF distances between

the Original datasets and the Random datasets, shown
in Column 1. The distance between the Original datasets
and the Restored ones using Cyclope [23], another tool for
MCSA, is shown in Column 2, and the distance between
the Original datasets and the Restored ones using BEAR is
shown in Columns 3 and 4. BEAR was run under the edit
distance model with � = 40 and k = 10, shown in Col-
umn 3 and again with � = 100 and k = 45, shown in
Column 4. Table 1 shows that BEAR produces very good
results: an RF distance of 0 was obtained for all datasets
when using � = 100. Table 1 shows the necessity of using a
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Table 1 RF distance between the Original and Random datasets
as well as the RF distance between the Original and Restored
datasets using Cyclope and BEAR

Dataset < α, γ , θ , κ ,ω > Random Cyclope BEAR BEAR
� = 40 � = 100

< 12, 2500, 0.05, 0.06, 0.04 > 0.000 0.000 0.000 0.000

< 12, 2500, 0.20, 0.06, 0.04 > 0.000 0.000 0.000 0.000

< 12, 2500, 0.35, 0.06, 0.04 > 0.000 0.000 0.000 0.000

< 25, 2500, 0.05, 0.06, 0.04 > 0.000 0.000 0.000 0.000

< 25, 2500, 0.20, 0.06, 0.04 > 0.000 0.000 0.000 0.000

< 25, 2500, 0.35, 0.06, 0.04 > 0.045 0.045 0.000 0.000

< 50, 2500, 0.05, 0.06, 0.04 > 0.085 0.000 0.021 0.000

< 50, 2500, 0.20, 0.06, 0.04 > 0.043 0.000 0.000 0.000

< 50, 2500, 0.35, 0.06, 0.04 > 0.043 0.000 0.021 0.000

factor length larger than the word size, as it producesmore
accurate results than when using � = 40. This is expected
as longer factors are more likely to provide information
about reliable rotations than shorter factors, which could
potentially have multiple occurrences with at most k dif-
ferences. Elapsed-time comparisons are shown in Table 2.
The results show that BEAR performs significantly faster
than Cyclope. Ultimately, these results demonstrate that
libFLASM can be applied effectively and efficiently in BEAR
for improving MCSA.

Experiment IV: motif extraction
We carried out experiments on real data retrieved from
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Database [53]. Three sets of data were obtained made up
of: RNA polymerase proteins; viruses; and hypothetical
proteins. Single ME was carried out on these datasets. All
datasets contain 11 sequences: the first dataset is made
up of RNA Polymerase sequences, with all sequences
containing 4 distinct matching motifs of varying length;
the second dataset is made up of virus sequences, all

Table 2 Elapsed-time comparison in seconds of Cyclope and
BEAR

Dataset < α, γ , θ , κ ,ω > Cyclope BEAR � = 40 BEAR �=100

< 12, 2500, 0.05, 0.06, 0.04 > 79.09 15.92 46.53

< 12, 2500, 0.20, 0.06, 0.04 > 77.47 15.06 44.52

< 12, 2500, 0.35, 0.06, 0.04 > 76.76 14.85 45.44

< 25, 2500, 0.05, 0.06, 0.04 > 332.69 69.81 203.78

< 25, 2500, 0.20, 0.06, 0.04 > 342.94 69.28 208.85

< 25, 2500, 0.35, 0.06, 0.04 > 344.50 71.14 208.82

< 50, 2500, 0.05, 0.06, 0.04 > 1,317.81 293.45 851.07

< 50, 2500, 0.20, 0.06, 0.04 > 1,303.51 300.37 837.66

< 50, 2500, 0.35, 0.06, 0.04 > 1,359.90 286.88 854.83

Table 3 Single motif extraction from real datasets

Dataset Parameters Motif Quorum (%)

RNA < 350, 110 > RNA polymerase 100
Rpb2, domain 6

Polymerase < 60, 28 > RNA polymerase 100
Rpb2, domain 4

< 40, 12 > RNA polymerase 100
Rpb2, domain 5

< 90, 30 > RNA polymerase 100
Rpb2, domain 7

Viruses < 350, 150 > Viral methyltransferase 100

< 130, 50 > Cucumber mosaic 100
virus 1a protein

< 70, 48 > Cucumber mosaic virus 1a 100
protein C terminal

< 250, 130 > Viral (Superfamily 1) RNA 100
helicase

Hypothetical < 130, 45 > Type III restriction enzyme, 100
res subunit

Proteins < 60, 30 > Helicase conserved 100
C-terminal domain

containing 4matching motifs; the third dataset is made up
of hypothetical proteins, containing 2 distinct matching
motifs.
Table 3 shows the results obtained when parameters of

the form < �, k > were used to extract the single motifs
from the datasets. The quorum shows the percentage of
sequences which contained the listed motif. A quorum
of 100 shows that for each set of input sequences, all
sequences contained the same single motif, as expected.
Table 3 shows thatMoTeX-II was able to identify all motifs
of various lengths when used with libFLASM. These real
datasets show the necessity of using a factor length larger
than the word size for ME.
Synthetic data was also used to extract structuredmotifs

from sequences. We generated 50 random 1,000 base-
long DNA sequences. Structured motifs were implanted
in half of the DNA sequences. Table 4 shows that the

Table 4 Structured motif extraction from synthetic datasets

Parameters Implanted Implanted
structured structured
motifs motifs

extracted

< (80, 15)[ 5, 15] (60, 10)[ 5, 20] (230, 20) > 25 25

< (100, 15)[ 5, 15] (80, 10)[ 5, 20] (250, 20) > 25 25

< (120, 15)[ 5, 15] (100, 10)[ 5, 20] (270, 20) > 25 25

< (140, 15)[ 5, 15] (120, 10)[ 5, 20] (290, 20) > 25 25

< (160, 15)[ 5, 15] (140, 10)[ 5, 20] (310, 20) > 25 25

< (180, 15)[ 5, 15] (160, 10)[ 5, 20] (330, 20) > 25 25

< (200, 15)[ 5, 15] (180, 10)[ 5, 20] (350, 20) > 25 25
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incorporation of libFLASM into MoTeX-II has allowed
for structured motifs with lengths �1, . . . , �β > w
to be extracted. The parameters are in the form
< (�1, k1)[ dmin1 , dmax1] (�2, k2)[ dmin2 , dmax2] (�3, k3) >

where [ dmini , dmaxi ] represents the range of the distance
interval allowed between each motif box. In each test,
25 structured motifs were implanted into the sequences
and MoTeX-II was able to identify all of these structured
motifs in all cases. The statistical significance test con-
ducted using MoTeX-II or other tools is beyond the scope
of this article.

Experiment V: Chang andMarr index
We carried out experiments on synthetic data to test the
implementation of the Chang and Marr index under the
Hamming and edit distance models when using libFLASM
in comparison to a naïve implementation. Table 5 shows
the elapsed time to compute the Chang and Marr index
for q-grams of lengths 5 to 10 under the Hamming and
edit distance model, using a pattern of length 32. Table 6
shows likewise for a pattern of length 64. Both patterns
were generated randomly (uniform distribution) over the
DNA alphabet.
The time taken to compute the Chang and Marr index

using a naïve implementation for the Hamming and edit
distance can be seen under the columns titled Naïve.
That which is computed using the libFLASM library can
be seen under the columns titled libFLASM. It is evident
that using libFLASM significantly decreases the time taken
to compute the Chang and Marr index. This can clearly
be seen as the value of q increases, when we obtain an
implementation which is faster by more than an order of
magnitude.

Conclusions
FLASM is a generalisation of the classic ASM problem
and, hence, has numerous direct applications in compu-
tational molecular biology and elsewhere. In this article,
we presented libFLASM, a free open-source C++ library
aimed at solving the FLASM problem under the edit and
Hamming distance models. Specifically, given a pattern x

Table 5 Elapsed-time comparison in seconds for implementing
the Chang and Marr index using a pattern of length 32

Edit distance Hamming distance

q-gram length Naïve (s) libFLASM (s) Naïve (s) libFLASM (s)

5 0.01 0.00 0.01 0.00

6 0.08 0.02 0.08 0.01

7 0.67 0.9 0.55 0.05

8 6.20 0.50 4.81 0.25

9 34.00 2.74 23.99 1.43

10 145.56 11.76 96.71 6.24

Table 6 Elapsed-time comparison in seconds for implementing
the Chang and Marr index using a pattern of length 64

Edit distance Hamming distance

q-gram length Naïve (s) libFLASM (s) Naïve (s) libFLASM (s)

5 0.04 0.01 0.04 0.00

6 0.23 0.03 0.22 0.02

7 1.45 0.15 1.31 0.09

8 10.76 0.82 9.27 0.46

9 95.01 5.29 76.21 2.76

10 673.17 24.51 520.12 12.51

of length m, a text t of length n ≥ m, an integer � ≤ m,
and an integer k < �, it finds all factors of t that are
at a distance at most k from any factor of length � of x.
The main advantage of libFLASM is that it implements
state-of-the-art algorithms to achieve a time complex-
ity of O

(
m� �

w�n)
, and a space complexity of O

(
m� �

w�),
which are independent of the distance threshold k and the
alphabet size.
libFLASM is freely distributed and can be incorporated

easily into any computational pipeline. As proof of con-
cept, we incorporated libFLASM into BEAR, a state-of-the-
art tool to improve the accuracy of MCSA in terms of
the inferred likelihood-based phylogenies. Furthermore,
we incorporated libFLASM into MoTeX-II, a state-of-the-
art tool for ME of patterns longer than was previously
possible. Finally, we showed how libFLASM can be used
efficiently for ACSM with high error ratios as well as
implementing the Chang and Marr index. The extensive
experimental results presented here suggest that other
applications could benefit from using libFLASM, and thus
further maintenance and development of libFLASM is
desirable.

Availability and requirements
Project name: libFLASM
Project home page: https://github.com/webmasterar/
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License: GNU GPL
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