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Abstract

We published a new method (BMC Bioinformatics 2014, 15:14) for searching for differentially expressed genes from
two biological conditions datasets. The presentation of theorem 1 in this paper was incomplete. We received an
anonymous comment about our publication that motivates the present work. Here, we present a complementary
result which is necessary from the theoretical point of view to demonstrate our theorem. We also show that this result
has no negative impact on our conclusions obtained with synthetic and experimental microarrays datasets.
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Background
To search for differentially expressed (DE) genes in pro-
filing studies, we presented a new method based on fold
change rank ordering statistics (FCROS). For the deriva-
tion of this method, we considered microarrays data from
two biological conditions where n probes (genes) were
used withm1 control andm2 test samples. We performed
k pairwise comparisons (k = m1m2) of the data samples
and computed fold changes (FC) for each gene. The FCs
obtained for each comparison were sorted in increasing
order and their corresponding ranks were associated with
genes. Hence, we can form a matrix of rank values R with
components rij (i = 1, 2, . . . , n, j = 1, 2, . . . , k). We noted
ri =[ ri1 ri2 . . . rik]T the vector of rank values associated
with gene i. We noted r̄i, the average of ranks (a.o.r) value
for gene i. The value for r̄i varies between a = mini{r̄i}
and b = maxi{r̄i}. That allows to associate an unique vec-
tor of a.o.r values with the n genes: r̄ =[ a, (a + δ1), (a +
δ1 + δ2), . . . , (a+ δ1 + . . . + δn−2), b]T where the scalars
δi are the differences between consecutive ordered a.o.r.
Without loss of generality, we assumed that the differ-
ences δi have the same value which is approximated by
their mean: δ = b−a

n−1 . Using these notations, we derived
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a theorem showing a normal distribution for vector r̄ [1].
The content of this theorem was incomplete as shown
in the following lemma we received from an anonymous
reader.

Lemma 1 Let consider the matrix of rank values R
under the assumption that the rank values in each col-
umn are all distinct. Assume uniform random sampling
without replacement model for the columns of R, i.e. each
column of R is an independent draw from the set of
all permutations of {1, . . . , n} with uniform probability
1
n! for each permutation. Then, the asymptotic distribu-
tion of the unordered vector average of rank (a.o.r.), r =(
ri = 1

k
∑k

j=1 Rij
)
, i ∈ 1 . . . n, has a mean n+1

2 1n and
degenerate variance-covariance matrix�(n, n), det� = 0:

� =

⎛
⎜⎜⎜⎜⎜⎝

β α . . . α α

α β . . . α α
...

...
. . .

...
...

α α . . . β α

α α . . . α β

⎞
⎟⎟⎟⎟⎟⎠

(1)

with diagonal element β = n2−1
12 , off-diagonal element α =

− β
n−1 and 1n =[ 1, 1, . . . , 1]T .

Proof Note that for k → ∞, the appearance of all ele-
ments of the set {1, . . . , n} in each row of R under the
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assumed sampling model are equally likely, hence by the
weak law of large numbers ([2], page 235) the asymp-
totic mean is the constant vector

( 1
n

∑n
i=1 i

)
1n = n+1

2 1n.
Under the same observation, the asymptotic variance,
∀� ∈ {1, . . . , n}, is equal to:

Var (r�) −→
k

β = 1
n

[ n∑
i=1

(
i − n + 1

2

)2
]

= n2 − 1
12

(2)

The asymptotic covariance is computed as a two-index
summation over the set {1, . . . , n} with the restriction that
no two indices can be the same since the columns are
permutations by construction, hence ∀� �= m ∈ {1, . . . , n}:

Cov (r�, rm) −→
k

α

= 1
n (n − 1)

n∑
i=1

n∑
j=1
j �=i

(
i − n + 1

2

) (
j − n + 1

2

)
(3)

= 1
n (n − 1)

⎧⎨
⎩

[ n∑
i=1

(
i− n + 1

2

)]2

−
n∑

i=1

(
i− n + 1

2

)2
⎫⎬
⎭ (4)

=− 1
n (n − 1)

n∑
i=1

(
i − n + 1

2

)2
= − β

n − 1
. (5)

Thus, since �1n = 0, it follows that det� = 0.

This lemma shows that the covariance term was missed
in our theorem. In the next section, we present a complete
version of our theoremusing the notationswe adopted in [1].

Results
From our notations, we have r̄ =[ a, a+δ, a+2δ, . . . , a+
(n − 1)δ]T the vector with the a.o.r values. Each compo-
nent of the vector r̄ can be writen as: R� = (a + �δ), � =
0, 1, . . . , n − 1. The theorem 1 in ([1], page 3) should be
read as:

Theorem 1 When the number k of the pairwise com-
parisons grows, the ordered average of ranks (a.o.r.) r̄ have
a normal distribution. The mean of this distribution is
a+b
2 1n, its variance-covariance matrix has diagonal ele-

ment n2−1
12 δ2 and off-diagonal element −n+1

12 δ2, where a
and b are the minimum and the maximum of the observed
a.o.r., r̄, respectively. δ is the average difference between
consecutive ordered a.o.r. r̄.

Proof From the following definitions:

E{R�} = 1
n

n∑
�=1

R�

Var(R�) = E{R2
�} − (E{R�})2

Cov(R�,Rm)m�=� = E{R�Rm} − (E{R�})2

and using δ = b−a
n−1 , a component of the mean of the

normal distribution is:

E
{n−1∑

�=0
(a + �δ)

}
= 1

n

n−1∑
�=0

(a+�δ) = a+ n − 1
2

δ = b + a
2

.

(6)

A component of the variance (diagonal element) of the
normal distribution matrix is:

Var(R�) = E
{n−1∑

�=0
(a + �δ)2

}
−

(
a + n − 1

2
δ

)2

= E
{n−1∑

�=0

(
a2 + 2aδ� + δ2�2

)} −
(
a + n − 1

2
δ

)2

= 1
n

(
na2 + 2aδ

n(n − 1)
2

+ n(n − 1)(2n − 1)
6

δ2
)

−
(
a + n − 1

2
δ

)2
= n2 − 1

12
δ2.

(7)

A component of the covariance (off-diagonal element)
of the normal distribution matrix is:

Cov(R�,Rm)m�=� = E

⎧⎪⎪⎨
⎪⎪⎩

n−1∑
�=0

n−1∑
m=0
m�=�

(a + �δ)(a + mδ)

⎫⎪⎪⎬
⎪⎪⎭

−
(
a + n − 1

2
δ

)2

= E
{n−1∑

�=0

n−1∑
m=0

(
a2 + aδ� + aδm + δ2m�

)

−
n−1∑
�=0

(a + �δ)2
}

−
(
a + n − 1

2
δ

)2

= 1
n(n − 1)

(
n2a2 + n2(n − 1)aδ + n2(n − 1)2

4
δ2

−na2 − n(n − 1)aδ − n(n − 1)(2n − 1)
6

δ2
)

−
(
a + n − 1

2
δ

)2
= −n + 1

12
δ2.

(8)

Table 1 Values of the mean, the variance and the covariance components when n increases

n 10 100 1,000 10,000

r� 1
2 + 5 ∗ 10−2 1

2 + 5 ∗ 10−3 1
2 + 5 ∗ 10−4 1

2 + 5 ∗ 10−5

β� 1
12 − 8.33 ∗ 10−4 1

12 − 8.33 ∗ 10−6 1
12 − 8.33 ∗ 10−8 1

12 − 8.33 ∗ 10−10

α� −9.17 ∗ 10−3 −8.4 ∗ 10−4 −8.34 ∗ 10−5 −8.33 ∗ 10−6
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By setting a = δ = 1 and b = n in the theorem 1, the
mean and the variance-covariance component values are
the same as in lemma 1. These setting values for a, b and δ

correspond to the casewe called ideal situation ([1], page 4).
For the FCROS algorithm, we used the standardized

rank value, i.e., each observed rank value is divided by
n. The mean and variance-covariance components should
be divided by n and n2 respectively. This leads to a mean
component r� = ( 1

2 + 1
2n

)
, and a variance-covariance

matrix with a diagonal component β� =
(

1
12 − 1

12n2

)

and a off-diagonal component α� = −
(

1
12 − 1

12n2

)
1

n−1 .
Table 1 shows the values for r�,β� and α� when n
increases. For a large value for n, the off-diagonal com-
ponents of the variance-covariance matrix vanish. Hence,
when n is large, a good approximation for the mean and
the variance components are 1

2 and 1
12 , respectively.

Discussion and conclusions
As shown, the theorem we previously presented was
incomplete since the covariance term was missed. The
present complementary result is necessary from the theo-
retical point of view, and we are grateful to the anonymous
reader for pointing this out. This result will be use-
ful for small values of n. However, for high throughput
biological datasets, n is large, often greater than 10,000
([1], page 2). For such values of n, the rank deficient
variance-covariance matrix of the normal distribution
associated with the a.o.r values is near a diagonal matrix.
Hence, it is as if the a.o.r values of each gene follow a
normal distribution with parameters 1

2 and 1
12 .
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