The Author(s) BMC Bioinformatics 2016, 17(Suppl 17):468
DOI 10.1186/512859-016-1325-x

BMC Bioinformatics

@ CrossMark

Global inference of disease-causing single
nucleotide variants from exome
sequencing data

Mengmeng Wu'?, Ting Chen'? and Rui Jiang'*"

From The 27th International Conference on Genome Informatics
Shanghai, China. 3-5 October 2016

Abstract

Background: Whole exome sequencing (WES) has recently emerged as an effective approach for identifying genetic
variants underlying human diseases. However, considerable time and labour is needed for careful investigation of
candidate variants. Although filtration based on population frequencies and functional prediction scores could
effectively remove common and neutral variants, hundreds or even thousands of rare deleterious variants still
remain. In addition, current WES platforms also provide variant information in flanking noncoding regions, such
as promoters, introns and splice sites. Despite of being recognized to harbour causal variants, these regions are
usually ignored by current analysis pipelines.

Results: We present a novel computational method, called Glints, to overcome the above limitations. Glints is
capable of identifying disease-causing SNVs in both coding and flanking noncoding regions from exome sequencing
data. The principle behind Glints is that disease-causing variants should manifest their effect at both variant and gene
levels. Specifically, Glints integrates 14 types of functional scores, including predictions for both coding and noncoding
variants, and 9 types of association scores, which help identifying disease relevant genes. We conducted a large-scale
simulation studies based on 1000 Genomes Project data and demonstrated the effectiveness of our method in both
coding and flanking noncoding regions. We also applied Glints in two real exome sequencing and demonstrated its
effectiveness for uncovering disease-causing SNVs. Both standalone software and web server are available at our
website http://bioinfo.au.tsinghua.edu.cn/jianglab/glints.

Conclusions: Glints is effective for uncovering disease-causing SNVs in coding and flanking noncoding regions, which
is supported by both simulation and real case studies. Glints is expected to be a useful tool for human genetics
research based on exome sequencing data.

Background

Technical advancement in whole exome sequencing
(WES) has enabled the rapid and cost-efficient detection
of variants in exonic regions or nearby, promoting the
identification of causative variants underlying Mendelian
diseases [1], complex disorders [2], and cancers [3].

* Correspondence: ruijiang@tsinghua.edu.cn

'MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center
for Synthetic & Systems Biology, Tsinghua National Laboratory for
Information Science and Technology, Beijing, China

3Department of Automation, Tsinghua University, Beijing, China

Full list of author information is available at the end of the article

( BioMed Central

Nevertheless, computational analysis of WES data still
remains a great challenge, due to the fact that the
number of distinct variants in a study usually increases
dramatically with the increase of the size of a disease
cohort, and a significant proportion of these variants
occur in extremely low frequency [4]. In addition, WES
can also discover a non-negligible fraction of variants
occurring in flanking regions of captured exons [5, 6].
These regions, with examples including promoters,
splice sites and introns, though having been recognized
to harbor causal variants [7], are typically ignored by
current analysis pipelines.
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Confronting the first challenge, two groups of compu-
tational methods have been developed for prioritizing
candidate variants from WES data. Specifically, targeting
on nonsynonymous single nucleotide variants (nsSNVs),
the first group of methods, with such representative ex-
amples as SIFT [8] and PolyPhen2 [9], utilize sequence,
biochemical and evolutionary information of amino
acids to predict functionally damaging effects of variants.
Some methods, like Condel [10], are developed to inte-
grate multiple functional predictions to provide more
accurate predictions. However, such prediction scores,
though having been announced with high accuracy in
such public data sets as HGMD [11], Siwss-prot [12]
and ClinVar [13], usually have high false positives and
low explanatory power in real experimental studies
[14, 15]. To overcome this limitation, the second group
of methods, represented by eXtasy [16], SPRING [17]
and snvForest [18], integrate multiple functional pre-
dictions of variants, association information between
genes and diseases, as well as phenotype information
to prioritize candidate variants. There also exist several
methods integrating variant functional predictions and
disease-gene association to prioritize disease genes,
such as PHIVE [19] and Phen-Gen [20]. The difference
between variant prioritization and gene prioritization
is significant as former incorporates disease-gene associ-
ation into variants while latter aggregates variant functions
into genes. However, these methods, though capable of
eliminating false positives, usually rely heavily on prior
knowledge about the disease under investigation to make
inference. For example, SPRING takes a set of seed genes
known as associated with the disease of interest as input.
In the case that a query disease has never been investi-
gated for genetic basis, genes associated with 10 diseases
of the highest phenotype similarities with the query dis-
ease are used as seeds. This strategy, though proved to be
valid, can hardly be optimal, since the association informa-
tion between genes and other diseases are all ignored. In
other words, this strategy has the local property because
only diseases having very high phenotype similarity with
the query disease contribute to the inference procedure.

As for the second challenge, the prediction of func-
tionally damaging effects of noncoding variants is much
more difficult than coding variants. Unlike variants in
coding region, noncoding variants affect biological func-
tions through such complex mechanisms as epigenetic
regulation [21]. Fortunately, with the recent develop-
ment in epigenomics and the release of such large-scale
projects as ENCODE [22] and Roadmap Epigenomics
[23] that aim at dissecting regulatory elements, the pre-
diction of functional effects of noncoding variants has
now become feasible, leading to such methods as CADD
[24], FunSeq [25], GWAVA [26], DeepSEA [27], deltaSVM
[28]. Nevertheless, to the best of our knowledge, there still
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lacks a computational method capable of predicting
causative noncoding variants for a specific type of disease.

To overcome the above limitations, we propose a
novel computational method, called Glints, to prioritize
both coding and flanking noncoding variants in a
disease-specific manner by integrating 14 types of func-
tional scores and 9 types of association scores. We ex-
tracted functional scores for SNVs from dbWGFP [29], a
repository collecting whole genome SNVs and their
functional predictions, and devised a multivariate regres-
sion model to quantify association scores between candi-
date genes and diseases of interest. After converting
both of functional scores and association scores into p-
values, we integrated them with Fisher’s combined
probability test. We conducted a large-scale simulation
studies based on 1000 Genomes Project Phase I data
and demonstrated the effectiveness of our method for
identifying causal variants in both coding and flanking
noncoding regions. We further compared our method
with several existing methods for prioritizing coding
nsSNV, and demonstrated the superior performance of
our method. We applied our method to two real exome
sequencing data, and found that Glints could uncover
known causal variants and discover new variants with
high causality probabilities. Thus, Glints is expected to
contribute to human genetics studies based on exome
sequencing, and facilitates our understanding about
human diseases.

Results

Overview of Glints

The workflow of Glints is illustrated in Fig. 1. Taking a
list of candidate single nucleotide variants (SN'Vs) and a
query disease as input, Glints takes four steps to calcu-
late predictive scores for variants and produce a ranking
list that prioritizes SN'Vs according to their potential for
causing the query disease. The first step is to categorize
candidate SN'Vs into different groups according to their
relative positions to genes and possible effects on protein
functions. With the help of bioinformatics tools like
ANNOVAR [30], we classify candidate SNVs into four
subgroups: 1) Exon, 2) Promoter, 3) Intron and 4) Splice
site. Specifically, Exon refers to nonsynonymous SNV in
coding region, Promoter refers to regions overlapping
500 bp upstream of TSS plus UTR5 and UTR3 regions,
Intron refers to inner 3—10 bp regions from exon/intron
boundaries, and Splice site refers to inner 2 bp regions
from exon/intron boundaries (also called canonical splice
site). SN'Vs located at other regions, e.g. intergenic, are
discarded. In the second step, we annotate each variant
with functional prediction scores of its functionally
damaging effect according to its group information.
Specifically, we select 8 types of whole-genome scores,
named CADD [24], DANN [31], FATHMM-MKL [32],
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Fig. 1 Schematic overview of Glints. Glints requires input candidate SNVs (e.g. VCF) and query disease of interest. The process of Glints consists of
four parts: 1) annotate each SNV into four regions as Exon, Promoter, Intron and Splice site; 2) select and extract functional scores for each
candidate SNV according to its region; 3) infer association between genes hosting candidate SNVs and query disease via multivariate regression;

4) integrate both variant-level and gene-level information via Fisher's method and produces statistical significance (g-value) for each SNV

Eigen [33], GERP [34], phastCons [35], Siphy [36],
Phylop [37], for all these four regions and another 6
types of protein function scores, named MutationAccessor
[38], SIFT [8], LRT [39], MSRV [40], PolyPhen2 [9] and
SinBaD [41], for coding regions only. We convert these
functional scores to p-values for subsequent integration.
In the third step, we identify genes hosting these SNVs
and derive 9 association scores to characterize the poten-
tial association between the genes and the query disease.
This is done by resorting to a multivariate regression
model that explains 3 types of disease phenotype similar-
ities (i.e., UMLS [42], MeSH [43] and HPO [44], detailed
in Additional file 1: Section 1) by using one type of gene
functional similarity measure (i.e., gene expression [45],
gene ontology [46], KEGG pathway [47], microRNA regu-
lation [48], protein domain [49], protein sequence [50],
signaling pathway [51], protein-protein interaction [51],
and transcriptional regulation [52], detailed in Additional
file 1: Section 2). We further convert the resulting asso-
ciation scores to p-values for subsequent integration.
Finally, we apply the Fisher’s method [53] to integrate
the calculated p-values at both the variant and gene
levels with the consideration of dependence correla-
tions between the data sources, and we perform mul-
tiple testing correction by calculating g-values from
integrated p-values according to a statistical method

called pFDR [54]. The final g-values provide a means
for prioritizing candidate SN'Vs.

Contributions of our method

Compared with other methods, including our previous
work, Glints makes three main contributions: 1) Glints
introduces a multivariate regression method for infer-
ring disease-gene association, in which three types of
phenotypic similarities (UMLS, HPO, MeSH) are inte-
grated. In contrast, our previous work pgFusion [55]
utilized only one type of phenotypic similarity (UMLS)
with a univariate regression method. 2) Glints incorpo-
rates disease-gene association obtained by multivariate
regression into variant prioritization, and utilize global
network information. Previous work, such as eXtasy
[16], SPRING ([17], PHIVE [19] and snvForest [18] only
utilize disease-gene information locally, such as gene
associated several similar diseases, also called “seed
genes”. Thus, these methods could be ineffective on
some diseases whose similar diseases have no associ-
ated genes or “seed genes” are not available. 3) Glints
incorporates variant functional predictions and disease-
gene association to prioritize flanking noncoding variants
in disease-specific manner, which remains unexplored to
the best of our knowledge.
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Simulation studies

We validated our method using large-scale simulation
data based on the 1000 Genomes Project Phase I data
for both coding and flanking noncoding regions. For this
purpose, we collected known causal variants from HGMD,
which is the largest repository for collecting disease-
causing variants, including coding, regulatory and splicing
variants. Since our inference of association scores is based
on OMIM, we performed mapping between HGMD
disease descriptive texts and OMIM identifiers. We
regarded it as matched if one of the following criterions
was satisfied: 1) HGMD description exactly matched
OMIM description; 2) HGMD disease and OMIM
disease shared the same causal variants, either in DNA
sequence format or rsid; 3) HGMD disease and OMIM
disease shared the same pubmed ID. Obviously, such
rules could introduce inexact mappings, for example,
those variants showing pleiotropic effects could link
different diseases. Thus, when associating a variant
from HGMD with OMIM, we selected the OMIM
uniquely mapped to the HGMD text description of the
variant and discarded those variants which were
mapped into multiple OMIMs. With such strict filter-
ing, we discarded many candidate variants in order to
ensure the quality of the remaining variants. Finally we
compiled a dataset consisting of 9872 causal variants
(shown in Table 1) with high reliability in both coding
(exon) and flanking noncoding regions (promoter,
intron and splice site) and used them as ground truth.
For each of the four regions, we extracted corresponding
SNVs from the 1000 Genomes Project and used them as
controls. For example, we extracted all SN'Vs in promoter
regions of each individual from 1000 Genomes Project
and these variants were used as controls for promoter
regions. Different functional scores varied significantly in
terms of coverage across different regions, as shown in
Additional file 1: Table S1, highlighting the advantage of
data integration as improving coverage. Some of these
functional predictions, such as CADD, DANN, Eigen etc,
utilize neutral variants from 1000 Genomes Project to
build predictive model (Additional file 1: Table S2), which
may result in circulatory validation and overestimated

Table 1 Summary statistics for data used in simulated experiment
across different regions

Exon  Promoter Intron  Splice site
Causal Variant 8350 114 303 1105
Gene 1063 34 132 280
Control (average)  Variant 9512 18,181 2532 78
Gene 5336 8486 2102 77

For control, the numbers of neutral variants across different regions are
average number of corresponding neutral variants in 1092 individuals from
the 1000 Genomes Project Phase |
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results. Thus, we also assessed performance of Glints after
excluding these functional predictions (Table 2).

For each of the four different regions, we separately
spiked each causal variant from the region into the pool
of corresponding control SNVs of each individual from
1000 Genomes Project to simulate real sequencing data.
We then prioritized the mixed SNVs using Glints and
observed the relative positions of causal SNVs in the
final ranking list. In order to eliminate bias and possible
information leakage, we removed all known genes asso-
ciated with the query disease to mimic the scenario
under which the genetic basis for the query disease was
totally unknown. To evaluate the performance of our
method quantitatively, we defined the rank ratio of a test
variant as the rank of the variant divided by the number
of neutral variants and the mean rank ratio (MRR) of a
disease as the average rank ratio of causal variants corre-
sponding to that disease. We then took the average
MRR for these diseases as a metric to assess overall
performance. Since a smaller MRR means that disease-
causing variants are enriched in the top-ranking posi-
tions, better performance is indicated with smaller MRR.
We could also obtain both false-positive and true-
positive rates by defining a threshold for rank ratio and
easily compute the area under ROC curve (AUC)
through varying the threshold. Another important indi-
cator is the number of causal variants which are ranked
in the top 10 (TOP), and a higher TOP number means
higher performance.

We first evaluated the ability of Glints to prioritize
nsSNVs (Fig. 2(a)). The average number of nsSNVs in
each exome was around 9000 ~ 10,000. The three Afri-
can populations had a slightly higher number of nsSNVs,
which is consistent with previous findings. The average
number of causal variants ranked in the top 10 was
around 4736, out of 8350, demonstrating that more than
one half of causal nsSNVs can be prioritized in top ranks
by our method. We also noticed that the three African
populations had a slightly smaller number of top 10-
ranked variants with average 4686 in top 10, consistent
with the fact that these populations have relatively
higher number of neutral variants. The overall average
MRR was around 2.12%, and the corresponding AUCs
were around 97.6%. We found significant difference on
performance across different populations with ANOVA
analysis and p-values were 3.24 x 1072, 542 x 107'° and
2.06 x 10™** for Top, MRR and AUC. The differences can
be attributed to difference on number of candidate vari-
ants across different populations (p-values < 2 x 10 °for
all these four regions) and significant relationship between
performance and candidate number (Additional file 1: Fig-
ure S1).

We then evaluated the ability of Glints to prioritize
promoter SNVs. To accomplish this, we performed the
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Table 2 The prioritization performance of Glints and individual scores on 1000 Genomes Project based simulated data

Method Exon Promoter Intron Splice site
TOP MRR AUC TOP MRR AUC TOP MRR AUC TOP MRR AUC

CADD 171 12.86% 87.13% 0 14.66% 85.33% 7 20.29% 79.71% 776 1333% 87.14%
DANN 108 10.97% 89.03% 0 18.99% 81.02% 35 18.60% 81.41% 844 9.21% 91.29%
FATHMM-MKL 127 11.80% 88.19% 0 15.20% 84.80% 74 11.25% 88.70% 850 8.67% 91.84%
Eigen 95 547% 94.50% 29 21.97% 78.05% 4 14.95% 85.06% 218 19.89% 80.52%
LRT 0 13.17% 86.95% NA NA NA NA NA NA NA NA NA
MSRV 1872 7.53% 92.38% NA NA NA NA NA NA NA NA NA
MutationAccessor 583 9.81% 90.16% NA NA NA NA NA NA NA NA NA
PolyPhen2 0 825% 91.77% NA NA NA NA NA NA NA NA NA
SinBaD 150 7.62% 92.36% NA NA NA NA NA NA NA NA NA
SIFT 0 13.64% 86.29% NA NA NA NA NA NA NA NA NA
GERP 58 16.49% 83.51% 2 24.29% 75.70% 50 17.01% 82.96% 736 12.43% 88.06%
Siphy 60 36.37% 63.63% 8 23.70% 76.30% 5 47.26% 52.75% 391 35.16% 65.06%
Phylop 119 12.96% 87.02% 19 26.24% 73.73% 79 15.87% 84.06% 863 9.03% 91.46%
PhastCons 0 14.12% 85.78% 0 28.52% 71.48% 0 15.88% 84.06% 585 16.22% 84.21%
gexp 1330 17.36% 8261% 55 21.18% 78.77% 101 21.25% 78.74% 673 20.59% 79.80%
gobp 3006 10.44% 89.40% 56 11.47% 88.33% 173 10.09% 89.78% 937 11.03% 89.39%
kegg 2321 20.21% 79.85% 10 19.53% 80.44% 143 20.30% 79.77% 737 22.16% 78.34%
mrma 1462 24.25% 75.73% 31 30.62% 69.52% 96 32.99% 67.05% 437 29.47% 70.86%
pfam 2297 17.69% 82.30% 53 20.93% 79.13% 137 2049% 79.54% 717 20.02% 8042%
pseq 1194 22.21% 77.87% 7 2521% 74.91% 55 23.15% 76.96% 697 23.78% 76.70%
sign 1447 28.10% 72.07% 54 25.19% 7491% 111 32.49% 67.75% 507 31.01% 69.49%
strg 3086 10.96% 88.92% 57 631% 93.46% 140 11.51% 88.39% 922 11.28% 89.17%
tsfc 1248 30.07% 69.83% 37 35.64% 64.28% 103 33.45% 66.47% 490 33.58% 66.59%
Glints® 4646 2.12% 97.61% 82 4.51% 95.26% 209 4.12% 95.68% 1012 5.20% 95.29%
Glints 4736 2.12% 97.62% 82 3.63% 96.20% 219 3.65% 96.13% 1047 4.06% 96.43%

NA denotes unavailability of the individual score on corresponding region. Glint* denotes conservative results of Glints after excluding CADD, DANN, FATHMM-MKL,
MSRV and SinBaD. TOP denotes number of causal variants ranked in top 10, MRR denotes mean rank ratio and AUC denotes area under rank ROC. Some abbreviations
for score name: gexp gene expression, gobp gene ontology, kegg KEGG pathway, mrna microRNA regulation, pfam protein families, pseq protein sequence, sign signaling

pathway, strg protein-protein interaction, tsfc transcriptional regulation

1000 Genomes Project-based simulation studies, as
noted above. Since each individual harbors 19,055 Pro-
moter SNVs on average (Fig. 2(b)), pinpointing causal
Promoter SNVs from this large pool is challenging.
Nonetheless, Glints achieved a satisfactory result with
about 82 of 114 causal promoter SNVs ranked in the top
10, significantly more than expected by chance. The
average MRR is 3.63%, and corresponding AUCs is
96.20%, both better than expected by chance. We also
observed significant difference on performance across
different populations (p-values <2 x 107 for Top, MRR
and AUC), but this difference cannot be attributed to
varying size of candidate number across different popu-
lations except for Top (Additional file 1: Figure S1).

We next evaluated the ability of Glints to prioritize in-
tronic SNVs by the same method described above. As

shown in Fig. 2(c), on average, each individual carries
about 2532 intronic variants when considering inner 3-
10 bp only, with the single exception of these three African
populations, who carry more (p-value <2 x 10™°). Glints
ranked about 219 out of 303 causal variants in the top 10,
which was significantly better than expected by chance.
The corresponding MRR and AUC were 3.65 and 96.13%,
respectively, on average, suggesting the effectiveness of our
method.

Finally, Glints was evaluated for its ability to prioritize
splice site SN'Vs, still using the same method as described
above. As shown in Fig. 2(d), on average, each individual
has 80 splice site variants. Glints ranked 1047 out of 1105
causal splice site variants in the top 10. We observed a
greater proportion of splice site variants receiving top
ranking as a result of the smaller number of candidates in
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Fig. 2 Results on simulation studies based on sequencing data from 1000 Genome Project. For each region, results on simulation studies are
summarized as four metrics: (1) the number of neutral variants; (2) TOP, the number of causal variants ranked in top 10; (3) MRR, the average rank
ratio of causal variants; (4) AUC, the average area under the rank ROC. Regions are categorized into a Exon; b Promoter; ¢ Intron; d Splice site.
The x axis denotes different populations. Population abbreviations: ASW, people with African ancestry in Southwest United States; CEU, Utah residents
with ancestry from Northern and Western Europe; CHB, Han Chinese in Beijing, China; CHS, Han Chinese South, China; CLM, Colombiansin Medellin,
Colombia; FIN, Finnish in Finland; GBR, British from England and Scotland, UK; IBS, Iberian populations in Spain; LWK, Luhya in Webuye, Kenya; JPT,
Japanese in Tokyo, Japan; MXL, people with Mexican ancestry in Los Angeles, California; PUR, Puerto Ricans in Puerto Rico; TSI, Toscani in ltalia; YRI,
Yoruba in Ibadan, Nigeria. Ancestry-based groups: AFR, African; AMR, Americas; EAS, East Asian; EUR, European

this region. The corresponding MRR and AUC were 4.06
and 96.43%, respectively, on average, again suggesting the
effectiveness of our method.

Comparison with existing methods

To the best of our knowledge, Glints is the first method
able to prioritize flanking noncoding variants in a
disease-specific manner. Therefore, we only performed
comparison between our method and existing ap-
proaches on nsSNVs. We selected three representative
methods, termed eXtasy [16], SPRING [17] and snvFor-
est [18], and compared them with Glints. We excluded
PHIVE [19] and Phen-Gen [20] from comparison since
they were designed to prioritize candidate genes and we
found them unsuitable for variant prioritization via the
same simulation studies. From the Swiss-Prot database,
we collected 24,300 disease variants and 38,910 neutral
variants for evaluation. To maintain consistency with the
original studies of SPRING, we sampled half of the neu-
tral variants for testing. Each disease variant was ranked

against 19,455 neutral variants, and performance was
evaluated using MRR and AUC, as defined above. We
set a rank ratio threshold and calculated the false-
positive rate as the fraction of neutral variants whose
rank ratios were below the threshold and true-positive
rate as the fraction of disease variants whose rank ratios
were below the threshold. By varying the threshold from
0 to 1, we drew a curve similar to ROC and called it
rank ROC, which is used for gene prioritization [56].
From Fig. 3(a), we observed obvious advantages of Glints
over the other three methods. For example, at false-
positive rate of 1%, true-positive rates are 86.8, 81.7, 70.2
and 36.1% for Glints, snvForest, SPRING and eXtasy re-
spectively. Here, we focused on the performance with
false positive rate below 1% to evaluate the performance
of these methods on discovering real causal variants
while controlling for false positive rate meanwhile. For
the 1478 diseases tested, we took the mean rank ratio of
corresponding causal variants as the MRR of diseases
and drew their distribution in Fig. 3(b), which also
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Fig. 3 Comparsion of Glints with existing methods on prioritization of nsSNV. Comparsion is performed on disease variants and neutral variants
from Swiss-prot database. Both partial rank ROC (a) and boxplot (b) indicate the superior performance of Glints
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showed that Glints outperformed other methods. Spe-
cifically, the mean MRR of these 1478 diseases for
Glints, snvForest, SPRING and eXtasy were 0.10, 0.22,
0.59 and 2.56% respectively. We also used one-sided
Wilcoxon test to assess significance of difference and
found that Glints gave significant lower MRRs than the
other three methods. The p-values for comparing Glints
with snvForest, SPRING and eXtasy are 4.31 x 10, 6.77 x
1072 and 8.44 x 10772 respectively. We also evaluated the
performance of these three methods on 1000 Genomes
based simulation studies as above and found that Glints
assigned significant topper ranks to causal variants with p-
values as 2.8 x 10, 0 and 0 for snvForest, SPRING and
eXtasy respectively. These results collectively suggest
superior performance of Glints over alternative methods.

Contribution of individual scores
We included 14 types of different functional prediction
scores in Glints, and these scores differed in several
aspects, such as principles, training data, learning algo-
rithms and applicability etc (Additional file 1: Table S2).
Even for the same score, difference may exist when ap-
plied in different regions. We first evaluated the correla-
tions between these functional prediction scores and
scores with similar underlying learning procedures are
expected to show high correlations and tend to cluster
together. For each of these four regions, we selected cor-
responding causal variants used in aforementioned simu-
lation studies and corresponding functional scores. We
then computed Pearson’s correlation coefficients between
each pair of functional scores. SIFT and LRT were trans-
formed with 1-SIFT and 1-LRT respectively, in order to
keep consistency in direction for expressing deleterious-
ness, e.g. higher values indicating higher deleteriousness.
As shown in Fig. 4, we observed different patterns in
these regions. The correlations between PhastCons and

FATHMM-MKL were 0.96, 0.82, 0.97 and 0.89, for ex-
onic, promoter, intron and splice site respectively, which
were consistent and high across all regions, and they
clustered together all the time, possibly because both
methods relied on multiple genome alignment and
FATHMM-MKL put high weight on evolutionary infor-
mation via multiple kernel learning. Apart from Phast-
Cons and FATHMM-MKL, some obvious, but different,
correlations existed in those regions. For the exonic re-
gion, we observed obvious correlations between Phylop,
SinBaD, GERP and Eigen with possible reason that the
former three methods rely heavily on evolutionary con-
servation and Eigen incorporates such information with
high weight via unsupervised learning. In addition, Eigen
also has high correlations with PolyPhen2 and Mutatio-
nAccessor, due to these two scores are also incorporated
by Eigen. For the promoter region, an obvious correl-
ation existed between Phylop, GERP and PhastCons, as
well as between CADD and Eigen. For the intronic region,
we observed correlations between all methods except
Siphy. Although Siphy relied on evolutionary conservation
as the others did, it used multiple sequence alignment of
ENOCDE regions as training data while the others used
multiple sequence alignment of different species genome.
For the splice site region, we observed correlation between
Eigen and GERP. We also observed that SiPhy had almost
no correlations with other methods. Additionally, the cor-
relation between CADD and DANN was low, except for
the intronic region. Although both methods use the same
training data, they differed in that CADD used linear
SVM, while DANN used deep neural network. Thus,
DANN is able to discover more nonlinear relationships
than SVM, and, hence, it exhibits better performance on
several testing datasets [57]. We also found that DANN
outperformed CADD in the exonic, intron and splice site
regions when tested individually (as shown in Table 2),
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while CADD had better performance in the promoter re-
gion. Thus, DANN and CADD supplied different informa-
tion, making it essential to include both of them in our
method.

We assessed the performance of each individual score
in each region by repeating the same simulation studies
with the score only, as shown in Table 2. For example,
several scores were only available for exonic nsSNVs, in-
cluding LRT, MSRV, SIFT, SinBaD, MutationAccessor
and PolyPhen2. Therefore, we did not assess their per-
formance in regions other than exon. All gene scores

were not restricted to single variant, thus were available
for all regions. From Table 2, we clearly saw the advan-
tages of integrating multiple data sources, which resulted
in better performance when compared to all individual
scores. For example, in the exonic region, MRRs of indi-
vidual scores ranged from 5.47 to 36.37%, while corre-
sponding TOPs range from 0 to 3086. In contrast, with
integration, Glints achieved an MRR of 2.12% and TOP
of 4736. In the promoter region, MRRs of individual
scores range from 6.31 to 30.62%, while corresponding
TOPs range from 0 to 57. With integration, Glints
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achieved an MRR of 3.63% and TOP of 82. In the in-
tronic region, MRRs of individual scores ranged from
10.09 to 47.26%, while corresponding TOPs ranged from
0 to 143. With integration, Glints achieved an MRR of
3.65% and a TOP of 219. Finally, in the splice site region,
MRRs of individual scores ranged from 9.03 to 35.16%,
while corresponding TOPs ranged from 218 to 922. With
integration, Glints achieved an MRR of 4.06% and TOP
of 1047. We also removed CADD, DANN, FATHMM-
MKL and Eigen from Glints due to their usage of 1000
Genomes Project as training data, and the resulting
Glints also show better performance than any individual
score (Table 2).

Application on real sequencing data

In order to assess the effectiveness of Glints on real
sequencing data, we collected two recently published
exome sequencing data and applied Glints to them. We
only assessed Glints’ performance on coding variants
due to difficulty of accessing data for flanking noncoding
variants. The first case was a study on epileptic encephalo-
pathies (MIM: 615369), which described a heterogeneous
and deleterious group of childhood epilepsy disorders with
syndromes associated with severe cognitive and behavioral
disturbances. In this study [58], 264 probands with their
parents were recruited for exome sequencing, and strong
statistical evidence on the association between de novo
mutations with this disorder was found. In total, we col-
lected 192 candidate nonsynonymous de novo mutations
from this study and applied Glints to prioritize them with
the objective of identifying functional mutations. Of those
candidates, 30 mutations were reported to show obvious
statistical evidence in the original literature; therefore,
those mutations were considered functional. Using the
identical procedure as that used in the simulation experi-
ments described above, we removed all known genes asso-
ciated with this disorder and all genes overlapping those
candidate mutations to prevent possible information leak-
age. In the prioritized list, 23 out of the top 25 were func-
tional, highlighting the capability of our method for this
case. A one-sided Fisher’s exact test suggests that the
probability of ranking 23 functional mutations among the
top 25 by chance is only 2.14 x 10™*%, further supporting
our method for enriching functional mutations in top
positions. Among those top 25 mutations, two mutations
were not reported as functional in the original study. One
was on gene GABRBI, which was recently proved to be
associated with thalamus volume and intelligence [59].
The other one was on gene GNAOI1, which was also
recently reported to play a significant role in epileptic
encephalopathy [60, 61]. In comparison, SPRING ranked
17 functional SN'Vs among top 25, and the numbers for
eXtasy and snvForest were both also 17.
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Another case was a study on autism spectrum disorders
(ASD, MIM: 209850) and Neale et al. [62] sequenced the
exomes of 175 ASD cases and their parents. Through
statistical modeling of de novo mutations in the cohort,
several genes were identified as key factors involved in
ASD with strong evidence. From this study, we collected a
total of 104 synonymous SNVs as candidates, among
which five were reported as likely functional in the ori-
ginal study. We applied Glints to this list of candidates
using a strategy similar to that described above in order to
eliminate possible information leakage. In the final priori-
tized list, five functional SNVs received ranks of 1, 2, 9, 11
and 38. A one-sided Fisher’s exact test suggests that the
probability of ranking 3 functional SNVs in the top 10 by
chance is only 0.022. In comparison, SPRING gave these
functional variants ranks of 2, 3, 7, 11, 52, while eXtasy
gave ranks of 5, 8, 17 and filtered out two functional vari-
ants. snvForest gaves ranks of 4,9,10,11,70 to these func-
tional variants. These two real cases both indicated better
performance of Glints than the other three methods on
real exome sequencing data.

Discussion

It is also worth noting that several aspects of our
method can be improved in the future. First, our method
is restricted to flanking noncoding regions that are
nearby gene regions. Intergenic regions are not suitable
for the application of our method since it is hard to as-
sign gene to variations that locate at these regions. It is
technically feasible to apply our method to deeper in-
tronic regions, but we cannot evaluate its performance
without available data for this region. With the accumu-
lation of variation data and advance in assigning genes
to intergenic variants, our method can be extended to
handle these regions. Second, our method is restricted
to single nucleotide variants, but several other kinds of
variants, such as indel, structural variation etc, are also
important for human diseases. How to extend our meth-
odology to other forms of variations is one research dir-
ection for future. In addition, our method for integration
can also inspire methodological developments for inte-
gration of other types of biological data. The volume of
genomic and genetic data has increasingly accumulated,
but how to integrate such bulky data to distill meaning-
ful biological insights is far from trivial. Analogy to our
method, each type of genomic data can be converted
into p-values followed by integration with weighted Fisher’s
method. The combined p-values represent collective evi-
dence from a variety of data, and can effectively reduce
false positives compared with single type of data.

One major challenge for developing computational
methods for identifying causative variants is the scar-
city of public real sequencing data. After surveying
hundreds of literatures, we find only two exome
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sequencing data and real data for noncoding variants
is not available. In the future, increasing number of
public sequencing datasets will benefit the methodo-
logical development.

Conclusions

In this study, we present a novel computational method,
called Glints, to prioritize both coding and flanking non-
coding SNV with respect to the query disease in exome
sequencing studies. It can also be useful in whole se-
quencing studies if only coding and flanking noncoding
variants are focused. Our method integrates 14 types of
functional prediction scores for variants, including pre-
dictions for both coding and noncoding regions, and 9
types of association scores which quantify the association
between genes hosting candidate variants and diseases of
interest. Based on large-scale simulation studies, we con-
clude that our method has satisfactory performance and
competitive accuracy over existing methods. It is expected
that Glints can serve as a useful tool in human genetics
studies based on exome sequencing, and it can save time
and cost for follow-up experimental studies and facilitate
discovery of disease-causing variations.

Methods

Multivariate linear regression for association inference
With the assumption that phenotype similarity between
two diseases can be explained by genotype similarity
between them, known as the “guilt by association”
principle [63], Glints extends our previous work [55, 64]
and simultaneously regresses three types of phenotype
similarities derived from HPO, MeSH and UMLS by each
of the nine functional similarities between genes. In detalil,
given two diseases indexed by d and e, we present their
phenotype similarities as yg. = (y1,¥2 .- yp)T with p=3.
For a given gene functional similarity measure (e.g., gene
expression), we define the genotype similarity between the
two diseases as

Kde = ZZ‘pgh (1)

gD heE

where D and E represents sets of genes known as associ-
ated with diseases 4 and e, respectively and ¢, func-
tional similarity between two genes g and /% under the
given functional similarity measure. The multivariate re-
gression model is then written as

Vi = a+%zb +eqe (2)

with a, b the regression intercept and slope, respectively
and e, a p dimensional Gaussian noise.

In order to characterize the strength of association
between a candidate gene g and a query disease d, we
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assume that g is the only gene associated with disease
d, and we rewrite the regression model as

Y=XO+E (3)

where Y = (y1, ..., Yp)u xp With y; = (315 ...,y,,,»)T,, «1 for i=
1, ..., p denotes the p different types of phenotype similar-
ities between disease d and all other n diseases, X = (1, x)
with 1,=(1,..,1)%,.; and x=(xy,...,%,)",«1 the corre-
sponding genotype similarities between disease d and all
other # diseases (in other words, similarities between gene
g and all genes known as associated with other diseases),
©=(0y,...,8,).,with 0;=(a;,8)", a=(aj,..,a,) and
B =(B1,.... B,) the vector of regression intercepts and
slopes for p different types of phenotype similarities,
E=(g,....€,) " «pWith &= (g1,..., 8,»p)T and g;~N(0,X,)
for i =1, ..., n iid Gaussian noise.

We solve this regression model through maximum
likelihood estimation and obtain point estimators of the
parameters a, 8 and X, as

a=y-xp (4)
B = (xx) XY, (5)
S.=m-2)"E'E (6)

where x, = (x;-%, ...,x,,ffc)Tnxl, Y, = (yl—ln‘yl,‘..,yp—ln‘y»

nxp

with y= 3r7p), . and E = Yc—xcﬁ . Furthermore,

sampling distributions for these estimations are:

B-N (B. (x/x) =) @)

(1-2)8¢ = E E~W (%, n-2) (8)

where W, stands for the Wishart distribution.

To infer whether the candidate gene is associated with
the query disease, we test the relationship between the
phenotype similarities and the genetic similarity, i.e., the
capability of explaining the phenotype similarities using
the genetic similarity. If target gene g is associated with
query disease d, we should observe positive relationship.
Since we have f, ..., B, to represent correlations between
genetic similarity and p different phenotype similarity, we
seek for simplicity to test the hypothesis:

Ho:fy+..+B,=0 vs Hi:fy+..4+8,>0 (9)

Obviously, a significant p-value for rejecting the null
hypothesis represents strong support against the correl-
ation between the genetic similarity and the phenotype
similarities and leads to strong evidence for association
between the candidate gene and the query disease. A
more general form of (9) is:
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Ho:A"B=0 vs H :ATB>0 (10)

where A is the weight of different phenotype similarity
measures and we set A=(1,1, l)T in our studies. To
solve this problem, we propose a statistic that is sub-
jected to the student ¢ distribution (derivation in Addi-
tional file 1: Section 4), as:

ATB-ATB
(AT (xCTxC) 712?,,)\) v

tho (11)

Therefore, by selecting the test statistic as

T = (12)

we calculate a p-value as p = P(¢,,_, > T), which characterize
statistical significance of association between candidate
gene and query disease.

Calibration of p-values

We used 14 types of functional prediction scores on
variant-level and 9 types of association scores on gene-
level. Those scores are heterogeneous for quantities and
implications, which makes it difficult to integrate them
directly. Therefore, before integration, we converted all
those scores into p-values, which can be integrated with
Fisher’s method.

For each type of variant-level score, we first sorted all
available scores stored in a database (e.g. dbWGFP) and
built an empirical null distribution after excluding
known causal variants. Although some unknown causal
variants may still exist, their impact on the estimation of
the empirical null distribution is negligible, due to the
low odds of causal to neutral variants, which results
from natural selection. Then, we compared a query
score with the corresponding empirical null distribution
and calculated the proportion of more extreme scores as
the empirical p-value. For SIFT and LRT, smaller scores
indicate higher deleteriousness, and hence “more ex-
treme” means smaller than the query score. For all the
other scores, larger scores indicate higher deleteriousness,
and “more extreme” means greater than the query score.

For gene-level scores, it is also necessary to calculate
empirical p-value. Although we can obtain analytical
p-values from regression analysis as detailed above,
those p-values can be biased when the underlying as-
sumption is violated. We therefore built an empirical
null distribution for each type of association score from
corresponding analytical p-values of neutral genes, which
are not reported as causative for any diseases. Then, for
each gene-level analytical p-value, we compared it with
corresponding empirical null distribution and calculate
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the proportion of more extreme values as empirical p-
values. Here “more extreme” means smaller than the ana-
lytical p-value of the query gene.

Fisher’'s method with dependence correction

We adopted a Fisher’s method to combine p-values ob-
tained from different data sources. Specifically, given the
p-values to be integrated, denoted as py, ..., px, where K
denotes the total number of different data sources. We
defined the Fisher’s statistic as

(13)

where V;=-2logp;. It is evident that p; ~ Uniform|0, 1]
and V; ~ x5 under the null hypothesis. Since obvious cor-
relations exist between different data sources, we assume
that U follows a scaled chi-squared distribution with
scale 7 and degrees of freedom v under the null hypoth-
esis. We then adopted the method of moments to derive
the matching equations as

E[nx}] = nv = E[U] = 2K

K K
Var(nx?] = 2n*v = Var[U] = 422 cov(V;Vj)
=1 j=1

(14)
and obtain parameter estimates as

Zii1 Z;il COV(VZ" Vj)

K?

= and v =27K (15)

We estimated cov(V;,V;) with the method proposed by
Yang. We first convert a p-value p; into a statistic z; via
normal transformation z;= ® (1 - p;), where @ is the
cumulative function of the standard normal distribution,
and it is obvious that z; ~ N(0, 1) under the null hypothesis.

As suggested in Yang [53], let

) o 1-p;°
py=Cor(Zy2) and p; Pz‘f(l * 2n—11> (1e)

We calculated the covariance as

COV(Vﬁ Vj) = alf)ij + ﬂz[)iz/ + a3[)i3j + tl4ﬁ$« (17)
where a; =3.263119, a5 = 0.709866, a; = 0.026589, a, =
- 0.709866/n, with n the sample size.

We also calculated g-values [54] for the combined p-
values to control positive false discovery rate (pFDR), which
showed significant improvement in power in some studies
compared with the traditional Benjamini-Hochberg ap-
proach [65]. It is also desirable that our method can easily
handle the missing data source problem, in which we de-
creased the total number of p-values to be combined.
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