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Abstract

Background: The median of k ≥ 3 genomes was originally defined to find a compromise genome indicative of a
common ancestor. However, in gene order comparisons, the usual definitions based on minimizing the sum of
distances to the input genomes lead to degenerate medians reflecting only one of the input genomes.
“Near-medians”, consisting of equal samples of gene adjacencies from all the input genomes, were designed to
restore the idea of compromise to the median problem.

Result: We explore adjacency sampling constructions in full generality in the case k = 3, with given overlapping sets
of adjacencies in the three genomes, where all adjacencies in two-way or three-way overlaps are included in the
sample. We require the construction to be maximal, in the sense that no additional proportion of adjacencies from
any of the genomes may be added without violating the local linearity of the genome. We discover that in
incorporating as many adjacencies as possible, evenly from all the input genomes, we are actually maximizing, rather
than minimizing, the sum of distances over all other maximal sampling schemes.

Conclusions: We propose to explore compromise instead of parsimony as the organizing principle for the small
phylogeny problem.
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Background
In comparative genomics, a median genomem for a set of
k ≥ 3 given genomes g1, . . . , gk in a metric space (G, d)

minimizes

S(m) =
k∑

i=1
d(m, gi) (1)

over all m ∈ G [1]. This is meant to embody a compro-
mise among the given genomes, usually as an inference of
a common ancestor.
While the simplicity of the median concept is appeal-

ing, and it has stimulated a large literature [2], it suffers
from important shortcomings: it is hard to calculate [3–5]
for almost all (G, d), and is not a compromise in the most
important contexts. For example, for k ≥ 3 random signed
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permutations of length n, and for d the “breakpoint dis-
tance”, the median tends to one or more of the given
permutations as n increases [6–8].
The “near median” was proposed to get around these

difficulties [9]. For k random genomes, the same propor-
tion of gene adjacencies is sampled from each one, in such
a way that the union of the samples is compatible – an
“end” of a gene is adjacent to no more than one other gene
end. The proportion of the compromise genome remain-
ing to be constructed can be filled by any matching of the
unassembled gene ends, as in Fig. 1.
If comparable proportions of the constructed genome

are contributed by each of the k genomes, the spirit of
compromise is ensured.The sampling is rapidly carried out.
In the original paper [9], only the following, highly sym-

metrical cases were studied for k = 3: three purely
random genomes, three genomes all with common adja-
cencies forming a proportion ψ of their adjacencies,
and three genomes all with a proportion ψ of common

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1340-y&domain=pdf
mailto: sankoff@uottawa.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The Author(s) BMC Bioinformatics 2016, 17(Suppl 86):473 Page 20 of 86

Fig. 1 a First sampling of θn adjacencies from each of three genomes. b Supplementary sampling of residual adjacencies consisting of two free ends

adjacencies and additional proportions ω1,2,ω1,3,ω2,3 of
adjacencies in their pairwise intersections. We only inves-
tigated the maximum θ such that the same proportion θ

could be sampled from the three input genomes.
In the present paper we extend our analysis to examine

the entire set of compatible triples (θ1, θ2, θ3).
In the process, we discover the surprising fact that not

only does our sampling procedure fail to minimize the
sum in (1), it actually maximizes it! In doing so, it illus-
trates that the search for optimality and compromise are
at cross-purposes. In concluding we suggest how the goal
of compromise may be used as a criterion for the small
phylogeny problem in the place of optimality.

Results
Definitions
Consider three signed genomes, g1, g2 and g3, each con-
sisting of one or more chromosomes – circular orderings
– containing the same n genes and each containing n gene
adjacencies. Although we assume the chromosomes are
circular for technical simplicity, the analysis is essentially
the same for linear, circular, unichromosomal or multi-
chromosomal genomes; the effect of allowing a bounded
number > 1 of chromosomes would be O(n) as would
be the differences between circular and linear models. We
also assume n is large so that for an arbitrary proportion
θ , the O(1) difference between θn and the nearest inte-
ger to θnmay be neglected. The probabilistic justification
behind these assumptions is discussed in [9].
That the genomes are “signed” means the genes have

polarity, so the two ends of a gene have distinct labels.
Each adjacency is thus an unordered pair of the 2n gene
ends, chosen from among

(2n
2
)
possibilities. For a genome

to be “compatible”, no gene end may be part of more
than one adjacency. There is no constraint involving the
two ends of the same gene, other than that both ends
of all genes must eventually be included in any genome

we construct. E.g., there is no constraint against the two
ends of the same gene being adjacent, forming a minimal
circular chromosome.
We are given that g1, g2 and g3 have a proportion ψ

of common adjacencies and proportions ω1,2,ω1,3,ω2,3 of
adjacencies in their pairwise intersections.
The breakpoint distance between two genomes can be

defined as d = n−a, where a is the number of adjacencies
they contain in common. For example d(g1, g3) = n−ψ −
nω1,3.
For a genome x the sum of the normalized distances to

the three input genomes,

s(x) = 1
n

3∑

i=1
d(x, gi), (2)

is called its score.
A sample is defined by a triple of (θ1, θ2, θ3) each

between 0 and 1 and summing to less than 1− ψ − ω1,2 −
ω1,3 − ω2,3 such that a random choice of θ1n adjacencies
from g1, nθ2 from g2, and nθ3 from g3 are compatible with
each other and with the adjacencies in the overlaps. A
sample is “randomly completed” to form a genome with n
genes by the addition of 1 − ψ − ω1,2 − ω1,3 − ω2,3 adja-
cencies constructed by randomly pairing gene ends that
are not in any of the adjacencies in the sample or in the
overlaps. In other words, to focus on the purely statisti-
cal consequences of the sampling procedure we thus do
not consider the increment in the number of adjacencies
obtainable in individual instances by the ad hoc match-
ing algorithms developed in [9]. The random completion
process does not add to the number of adjacencies in the
sample in common with one, two or three of g1, g2 and g3.
A “maximal” sample is one where none of the θi may be

increased without causing a number (greater than O(n))
of incompatible adjacencies.
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The construction
From the three input genomes, we construct a set con-
taining adjacencies sampled in various proportions among
g1, g2 and g3 and including the adjacencies in the given
two-way and three-way overlaps, randomly completed by
pairs of gene ends matched from among the remain-
ing unsampled ends. The only constraint in adding an
adjacency is that it must have two “free ends”; i.e., no adja-
cency previously included, whether given or sampled, may
contain either of these two ends.
Note that two random permutations can be expected to

have virtually no adjacencies in common; the expectation
of the number of adjacencies goes to a small constant as n
increases [10].
As an illustration, consider the case where ψ = ω1,2 =

ω1,3 = ω2,3 = 0. As a first step, we may select θ1n adja-
cencies from g1, where 0 ≤ θ1 ≤ 1. Then for g2, the
expected proportion of “two free ends”, adjacencies where
neither end appears in a previously selected g1 adjacency,
is (1 − θ1)2. As long as θ1 �= 1, we can pick θ2n adjacen-
cies from genome g2 that do not conflict with any of those
selected from g1, where 0 ≤ θ2 ≤ (1 − θ1)2.
Similarly, having then selected θ1n pairs of gene ends

from g1 and θ2n pairs of gene ends from g2, the expected
proportion of pairs in g3 with two free ends is (1−θ1−θ2)2.
As long as this quantity is greater than zero, we can chose
some θ3n compatible pairs from g3.
For a maximal sample we should take the maximum

number of pairs from g3, i.e., the maximum θ3, given θ1
and θ2, i.e.,

θ3 = (1 − θ1 − θ2)
2. (3)

Adding the remainder of the gene ends not in any adja-
cency in g1, g2 or g3 using any matching to form pairs, we
obtain a genome x, and Eqs. (2) and (3) give

s(x) = 3−(θ1+θ2+(1−2θ1−2θ2+2θ1θ2+θ21+θ22 )). (4)

Figure 2 depicts a surface described by the values of s(x)
of the vertices in a Delaunay triangulation of (θ1, θ2, θ3)
in barycentric coordinates [11, 12]. It appears from this
depiction that “compromise” values of (θ1, θ2, θ3), i.e.,
around the interior of the triangle, give the largest values,
not the smallest, value of s(x).
Indeed, the derivative of the expression in (4) with

respect to either θ1 or θ2,

s′(x) = 1 − 2θ1 − 2θ2, (5)

is zero iff θ1 + θ2 = 0.5. The second derivatives are
negative, so the surface is convex.
Examining some values of max θ3 and s(x) in Table 1,

we confirm that the maximum value of s(x) occur for a
genome x where θ1 + θ2 = 0.5 and θ3 = 0.25.

Fig. 2 Surface of distance sum as a function of θ1, θ2, θ3, in barycentric
coordinates when θ3 is maximized as a function of θ1 and θ2

By symmetry, we can obtain all of:

θ1 + θ2 = 0.5 (6)
θ2 + θ3 = 0.5
θ3 + θ1 = 0.5.

The unique solution of all three equations is θ1 = θ2 =
θ3 = 0.25.
Turning to the more general case where ψ and the ωi,j

are not required to be zero, as illustrated in Fig. 3, Eq. (4)
becomes

s(x) = 3 − (θ1 + θ2 + max θ3 +
3∑

i�=j
ωi,j + ψ). (7)

and Eq. (6) become

θ1 + θ2 = 0.5 − ω1,2 − ω2,3 − ω1,3 − ψ (8)
θ2 + θ3 = 0.5 − ω1,2 − ω2,3 − ω1,3 − ψ

θ3 + θ1 = 0.5 − ω1,2 − ω2,3 − ω1,3 − ψ .

The unique solution of all three equations is

θ1 = θ2 = θ3 = 0.25− 0.5(ω1,2 + ω2,3 + ω1,3 + ψ) (9)

which maximizes s(x) over all maximal samples.
We might imagine that it would be “fairer” to distribute

adjacencies among the θ ’s in the proportions:

θ1 : θ2 : θ3 = 1
2
(ω1,2 + ω1,3) + ψ

3
:
1
2
(ω1,2 + ω2,3)

+ ψ

3
:
1
2
(ω1,3 + ω2,3) + ψ

3
,

(10)

where each genome would contribute a number of adja-
cencies in proportion to the number it has already con-
tributed in ψ and the ω’s. However, this is not a solution
for the equations in (8) for general values of ω1,2,ω1,3 and
ω2,3, and upon reflection, there is no reason to consider
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Table 1 Maximizing θ3 for various combinations of θ1 and θ2

θ1 θ2 max θ3 s

0.15 0.15 0.4900 2.2100

0.20 0.4225 2.2275

0.25 0.3600 2.2400

0.30 0.3025 2.2475

0.35 0.2500 2.2500

0.20 0.15 0.4225 2.2275

0.20 0.3600 2.2400

0.25 0.3025 2.2475

0.30 0.2500 2.2500

0.35 0.2025 2.2475

0.25 0.15 0.3600 2.2400

0.20 0.3025 2.2475

0.25 0.2500 2.2500

0.30 0.2025 2.2475

0.35 0.1600 2.2400

0.30 0.15 0.3025 2.2475

0.20 0.2500 2.2500

0.25 0.2025 2.2475

0.30 0.1600 2.2400

0.35 0.1225 2.2275

0.35 0.15 0.2500 2.2500

0.20 0.2025 2.2475

0.25 0.1600 2.2400

0.30 0.1225 2.2275

0.35 0.0900 2.2100

this a better compromise than an equal division of adja-
cencies among the three genomes, beyond the unbalances
already inherent in the pairwise overlaps.

Discussion
The breakpoint median minimizes the sum of the break-
point distance to three given genomes but in doing
so foregoes any property of “compromise” among the
three, despite this being the original motivation for the
median. The anti-median represents a complete empha-
sis on “compromise” instead of on shortest distances.
Somewhat surprisingly, the anti-median actually max-
imizes the sum of the breakpoint distance to three
given genomes, in the process assuring that none of the
three input genomes is disproportionately represented,
other than through its given overlap with the other two
genomes.
Note that the anti-median genomes are constructed to

have precise normalized distances from g1, g2, and g3, in

Fig. 3 Sampling scheme showing variable proportions θ1, θ2, θ3, and
given two-way intersections ω1,ω2,ω3 and three-way intersection ψ .
All these contributions lower s.White area in genome h represent the
randomly completed portion

the sense of their limiting behaviour as n → ∞. This
behaviour is predicated on the inclusion of all the adja-
cencies in the two-way and three-way overlap, and the
completion of the sampled genome by random match-
ing of unpaired ends. These anti-medians contrast with
arbitrary random genomes whose normalized sums of
scores to g1, g2, and g3 approach 3. At the other extreme,
they also contrast with the “near medians” [9] com-
pleted by maximum matching algorithms, whose scores
are less than those of the randomly completed samples
constructed here.

Conclusions
Median constructions form the basis of the steinerization
strategy for solving the small phylogeny problem, finding
the ancestral genomes to populate the ancestral nodes of
a given phylogeny when the genomes at the leaf nodes
are known. Each ancestral node in turn is subjected to a
median search, based on its three neighbors, and this is
iterated until convergence. This constitutes a search for
a most parsimonious solution. But if we wish ancestral
nodes to reflect all three neighboring nodes (in a binary
tree), there is no obstacle in using anti-medians instead of
medians, and actually searching for a least parsimonious
solution, so that compromise becomes the organizing
principle in the reconstruction. Exploring this becomes
themost important project for future work on this subject.
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