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Abstract

Background: Dicer is necessary for the process of mature microRNA (miRNA) formation because the Dicer enzyme
cleaves pre-miRNA correctly to generate miRNA with correct seed regions. Nonetheless, the mechanism underlying
the selection of a Dicer cleavage site is still not fully understood. To date, several studies have been conducted to
solve this problem, for example, a recent discovery indicates that the loop/bulge structure plays a central role in the
selection of Dicer cleavage sites. In accordance with this breakthrough, a support vector machine (SVM)-based
method called PHDCleav was developed to predict Dicer cleavage sites which outperforms other methods based on
random forest and naive Bayes. PHDCleav, however, tests only whether a position in the shift window belongs to a
loop/bulge structure.

Result: In this paper, we used the length of loop/bulge structures (in addition to their presence or absence) to
develop an improved method, LBSizeCleav, for predicting Dicer cleavage sites. To evaluate our method, we used 810
empirically validated sequences of human pre-miRNAs and performed fivefold cross-validation. In both 5p and 3p
arms of pre-miRNAs, LBSizeCleav showed greater prediction accuracy than PHDCleav did. This result suggests that the
length of loop/bulge structures is useful for prediction of Dicer cleavage sites.

Conclusion: We developed a novel algorithm for feature space mapping based on the length of a loop/bulge for
predicting Dicer cleavage sites. The better performance of our method indicates the usefulness of the length of
loop/bulge structures for such predictions.

Keywords: Dicer cleavage site, Support vector machine, Loop/bulge length

Background
MicroRNAs (miRNAs) are a type of small RNAs with the
length ∼22 nt, which perform the function of suppress-
ing gene expression at the post-transcriptional level [1, 2].
Usually in vivo, a gene of a miRNA is transcribed to
produce a long, primary miRNA (pri-miRNA) transcript,
which is then processed into a ∼65-nt-long hairpin struc-
ture via cleavage by the Drosha (DGCR8) enzyme. Then,
the resulting pre-miRNA is cleaved by another enzyme
(termedDicer) to generate amaturemiRNA, which is∼22
nt long [3]. Finally, the generatedmiRNA can be combined
with an Argonaute protein to form the protein–miRNA
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complex, which can control various cellular progresses
including development, cell death, and metabolism [4–6].
Dicer is a 1922-amino acid multidomain protein that

belongs to the RNase III family. Dicer generally contains
several domains including ATPase–helicase, DUF283
(a double-stranded-RNA–binding domain), PAZ (Piwi–
Argonaute–Zwille) domain, two RNase III domains, and a
dsRBD [7]. Dicer in various speciesmay contain a different
combination of these domains. Among these domains, the
PAZ domain, RNase III domain, and dsRND are responsi-
ble for the function of substrate cleavage [8]. The cleavage
occurs near the end of the terminal loop of pre-miRNA,
introducing a cut into the hairpin.
Structural analysis of human Dicer revealed that the

PAZ domain contains a 5p phosphate-binding pocket,
which may be necessary for selection of a Dicer cleavage
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site [9]. There are also studies showing that the loop/bulge
structure also determines the accuracy of cleavage activ-
ity [10, 11]. MacRae et al. reported that the 3p-terminal
nucleotide of single-stranded RNA can affect Dicer bind-
ing [12]. In addition, Jin and Lee found that a single
nucleotide polymorphismmay be associated with miRNA
regulation [13]. All these studies revealed that secondary
structures of both the Dicer enzyme and cleavage sub-
strates are essential for cleavage site determination.
With a better understanding of the features of selec-

tion of a Dicer cleavage site, researchers may be able
to elucidate the mechanism of action of enzymes in the
RNA III family as well as the processes of RNA infer-
ence. Thus, it is imperative to explore the factors affecting
the accuracy of Dicer cleavage to gain better insights
into the mechanism of Dicer cleavage. Recently, a sup-
port vector machine (SVM)-based method (PHDCleav)
was developed to predict selection of Dicer cleavage sites
[14]. They proposed feature space mappings from pre-
miRNA nucleotide sequences on the basis of existence of a
predicted loop/bulge structure. SVM is a state-of-the-art
machine learning technology [15] that has been applied
to various areas of pattern recognition in many biologi-
cal fields such as protein classification [16–18], prediction
of RNA secondary structure [19, 20], and drug–nondrug
classification [21, 22].
In this paper, we made use of the length of loop/bulge

structures and proposed a novel algorithm of feature space
mapping called LBSizeCleav. To evaluate our method,
we used 810 empirically valid sequences of pre-miRNAs
from miRBase and performed fivefold cross-validation.
In the 5p arm of pre-miRNAs, the proposed method
attained higher accuracy (87.4%), whereas the best pre-
diction result of PHDCleav corresponded to the accuracy
of 84.0% (an extended binary pattern, a window of 14-nt
size). In addition, in the 3p arm, the average prediction
accuracy of our method reached 83.0%, whereas PHD-
Cleav achieved up to 79.1% prediction accuracy. These
results suggest that our method LBSizeCleav outperforms
binary patterns of PHDCleav in predicting the position of
Dicer cleavage sites. The better performance may in turn
serve as the evidence that the features utilized by these
two methods are necessary for Dicer cleavage selection.

Methods
In this section, we provide a brief description of feature
space mapping algorithms of PHDCleav using sequences
and secondary structures and propose a novel algorithm
for feature space mapping, LBSizeCleav, based on the
length of a loop/bulge structure.

Feature space mapping procedures of PHDCleav
Given a pre-miRNA sequence, a site between two
successive nucleotides is mapped to a binary vector. In

PHDCleav, a window is generated for each input sequence
where for the positive pattern the center of the window is
exactly located at the cleavage site of 5p (3p) arm and for
the negative pattern the center of the window is located
6 nt away from the cleavage site of 5p(3p) arm. Since
this is based on the assumption that a cleavage site can
shift slightly (1-2 nt in biological experiments) but the
chance is rare that Dicer cuts in the middle of mature
miRNA, 6 nt could be changed under the principle that
the center of the negative pattern is far enough from the
real cleavage site. PHDCleav has shown that there is little
affect to the accuracy of prediction even with the shift-
ing of negative windows among the whole sequence of
pre-miRNA.
A nucleotide in a window having the site at the center

is converted to a four-dimensional vector as [1, 0, 0, 0],
[0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1], for A, U, C, and
G, respectively (see Table 1). Let w denote the size of the
window, where w is a positive even number. Then, a 4w-
dimensional vector is generated for the site.
There are many loops/bulges in the secondary structure

of pre-miRNA where one arm contains extra nucleotides
without counterparts in the other arm [23]. A recent study
indicated that these loops/bulges play an important role in
the selection of a Dicer cleavage site [10]. This observation

Table 1 Binary patterns for nucleotides, A, U, C, G, and a
loop/bulge structure, denoted by L, in PHDCleav [14] and
LBSizeCleav with k ones based on sequences and predicted
secondary structures

Mapping Sequence Structure

PHDCleav

A [ 1, 0, 0, 0] [ 1, 0, 0, 0]

U [ 0, 1, 0, 0] [ 0, 1, 0, 0]

C [ 0, 0, 1, 0] [ 0, 0, 1, 0]

G [ 0, 0, 0, 1] [ 0, 0, 0, 1]

L − [ 0, 0, 0, 0]

Extended PHDCleav

A

−

[ 1, 0, 0, 0, 0]

U [ 0, 1, 0, 0, 0]

C [ 0, 0, 1, 0, 0]

G [ 0, 0, 0, 1, 0]

L [ 0, 0, 0, 0, 1]

LBSizeCleav

A

−

[ 1, 0, 0, 0, 0, . . . 0]

U [ 0, 1, 0, 0, 0, . . . 0]

C [ 0, 0, 1, 0, 0, . . . 0]

G [ 0, 0, 0, 1, 0, . . . 0]

L [ 0, 0, 0, 0, 0, . . . , 0,

k
︷ ︸︸ ︷

1, . . . , 1, 0, . . . ]

In PHDCleav binary patterns each nucleotide is represented by a 4-dimensional
vector, and in PHDCleav Extended patterns each nucleotide is represented by a
5-dimensional vector, while in LBSizeCleav the dimension of the vector is 3 + k + N,
in which N denotes the maximum number of length of loop/bulges among all the
pre-miRNAs in the training dataset
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suggests that the loop/bulge structure may be a feature
that is useful for prediction of a Dicer cleavage site. The
extended binary pattern of PHDCleav was developed on
the basis of this assumption.
After obtaining the secondary structure from a given

sequence by some prediction methods, in the extended
binary pattern of PHDCleav, a nucleotide is converted to
a five-dimensional vector as [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0,
0, 1, 0, 0], [0, 0, 0, 1, 0], and [0, 0, 0, 0, 1], for A, U, C, G,
and L, respectively, where L indicates that the correspond-
ing nucleotide is predicted to be in a loop/bulge structure.
Just as the nucleotides in the window, its complementary
nucleotides are also converted to a feature vector. After
that, the dimensionality of the vector is 10w.

Feature space mapping of LBSizeCleav
It is reasonable to consider not only the position but also
the length of loop/bulge structures. Therefore, we propose
novel feature spacemapping (LBSizeCleav) by introducing
the length of a loop/bulge structure into the algorithm.
The binary pattern of LBSizeCleav is an extension of

that of PHDCleav. Let M be the maximal length of loops
and bulges of all the pre-miRNAs in a dataset, and sup-
pose Ll indicates that the corresponding nucleotide is in
a loop/bulge structure of length l. Here we introduce a
new parameter named k into LBSizeCleav, which is a pos-
itive integer representing the effect of length of loops and
bulges to the kernel computation. Then, we designate a
nucleotide without any loop/bulge structure for k as a
(M+ k + 3)-dimensional vector, namely, [ 1, 0, 0, 0, . . . , 0],
[ 0, 1, 0, 0, . . . , 0], [ 0, 0, 1, 0, 0, . . . , 0], [ 0, 0, 0, 1, 0, . . . , 0] for
A, U, C, and G, respectively (see Table 1). A nucleotide

in a loop/bulge structure of length l is represented as
[ 0, . . . , 0, 1, . . . , 1, 0, . . . ], where k ones appear from the
(4 + l)-th element to the (k + 3 + l)-th element. Thus,
for window size w, a 2w(M+ k + 3)-dimensional vector is
generated.
Let x1 and x2 be binary patterns of Ll1 and Ll2 , respec-

tively. If we use the inner product for kernel computation,
then the inner product between the binary patterns is x1 ·
x2 = max{k−|l1−l2|, 0}. If we use the radial basis function
(RBF) kernel, exp{−γ ||x1 − x2||2} = exp{−4γ min{(l1 −
l2)2, k2}}, where γ > 0. These values assume the maxi-
mum when l1 = l2 and decrease according to the differ-
ence |l1 − l2| and k, while k gets larger, the value changes
of kernel function is more sensitive to the size of |l1 − l2|,
in this way by controlling the value k we could control the
sensitivity of our method to length of loops and bulges.
Since PHDCleav used radial basis function (RBF), we also
selected RBF as our kernel function.
Figure 1 illustrates the feature space mapping of LBSize-

Cleav for the pre-miRNA of themiRBase ID hsa-miR-200c
with a predicted secondary structure, where nucleotides
in the region removed byDicer are shown as lowercase let-
ters. CD-5p and CD-3p denote cleavage sites in 5p and 3p
arms, respectively. Sequences in the red rectangles denote
sequences used to generate feature vectors representing
5p and 3p arms, which are selected by the principle that
the cleavage site is located at the center of the sequence.
Here, we generate the feature vector of LBSizeCleav at k =
3 and w = 6 for the site CD-5p and for the site 6 nt away
from CD-5p. The nucleotides in the window in the 5p
arm are UGGgug, and loop/bulge structures are detected
at two positions. As a result, L1GGgL1g is converted to

Fig. 1 Illustration on the feature space mapping of LBSizeCleav. CD-5p and CD-3p denote cleavage sites in 5p and 3p arms, respectively, For two
sites of CD-5p and six nucleotides far from CD-3p, the feature vectors of LBSizeCleav with k = 3 and w = 6 are shown, the red rectangles represent
the window of the positive pattern of CD-5p and the window of the negative pattern of CD-3p
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the 6(M+6)-dimensional binary vector, where loop/bulge
structures Ll are inserted. For the 3p arm, CGUCAU is
converted in accordance with Table 1.

Results
We retrieved 810 empirically validated sequences of pre-
miRNAs from miRBase (version 21) [24], where cleavage

sites CD-5p and CD-3p are both defined for each pre-
miRNA. The pre-miRNAs were selected under the prin-
ciple that both the cleavage sites of CD-5p and CD-3p
are experimentally validated. (i.e. only precursors with
cleavage sites at both CD-5p and CD-3p are selected,
we made this choice to let our dataset be gen-
erated the in same way as dataset of PHDCleav)

Table 2 Results on average specificity, sensitivity, accuracy, and MCC for both 5p and 3p arms by five-fold cross-validation using
PHDCleav and LBSizeCleav (k = 1, · · · , 5) with window sizes 8, 10, 12, 14 based on sequences and secondary structures predicted by
quikfold server

Method Window size
5p arm 3p arm

Sn Sp Ac MCC Sn Sp Ac MCC

PHDCleav (sequence)

8 0.602 0.503 0.552 0.105 0.662 0.625 0.644 0.287

10 0.541 0.573 0.557 0.115 0.661 0.642 0.652 0.303

12 0.560 0.555 0.557 0.115 0.660 0.656 0.658 0.316

14 0.539 0.572 0.555 0.111 0.654 0.702 0.678 0.356

PHDCleav (structure)

8 0.753 0.814 0.784 0.568 0.670 0.661 0.665 0.330

10 0.784 0.827 0.806 0.612 0.702 0.719 0.710 0.421

12 0.790 0.842 0.816 0.633 0.739 0.764 0.752 0.503

14 0.799 0.857 0.828 0.657 0.779 0.783 0.781 0.562

Extended PHDCleav

8 0.750 0.798 0.774 0.548 0.652 0.716 0.684 0.369

10 0.779 0.827 0.803 0.607 0.674 0.783 0.729 0.460

12 0.809 0.845 0.827 0.654 0.714 0.790 0.752 0.506

14 0.813 0.868 0.840 0.682 0.781 0.801 0.791 0.582

LBSizeCleav (k = 1)

8 0.668 0.924 0.796 0.612 0.630 0.684 0.657 0.315

10 0.709 0.947 0.828 0.675 0.651 0.776 0.713 0.430

12 0.774 0.945 0.859 0.730 0.686 0.847 0.766 0.540

14 0.808 0.933 0.871 0.747 0.758 0.874 0.816 0.637

LBSizeCleav (k = 2)

8 0.662 0.954 0.808 0.645 0.626 0.723 0.674 0.351

10 0.725 0.946 0.835 0.688 0.642 0.806 0.724 0.455

12 0.784 0.938 0.861 0.731 0.665 0.882 0.773 0.560

14 0.820 0.925 0.872 0.749 0.734 0.916 0.825 0.661

LBSizeCleav (k = 3)

8 0.692 0.949 0.821 0.664 0.619 0.735 0.677 0.356

10 0.752 0.941 0.846 0.706 0.618 0.822 0.720 0.450

12 0.803 0.932 0.867 0.741 0.635 0.914 0.774 0.571

14 0.825 0.912 0.869 0.740 0.719 0.942 0.830 0.678

LBSizeCleav (k = 4)

8 0.695 0.949 0.822 0.667 0.614 0.736 0.675 0.353

10 0.767 0.938 0.853 0.716 0.621 0.835 0.728 0.467

12 0.815 0.927 0.871 0.747 0.639 0.912 0.776 0.573

14 0.835 0.909 0.872 0.746 0.723 0.924 0.823 0.660

LBSizeCleav (k = 5)

8 0.700 0.947 0.824 0.668 0.594 0.771 0.682 0.371

10 0.772 0.936 0.854 0.717 0.578 0.862 0.720 0.459

12 0.821 0.924 0.872 0.749 0.634 0.921 0.777 0.579

14 0.838 0.909 0.874 0.749 0.724 0.932 0.828 0.671

Sn, Sp, Ac, and MCC denote sensitivity, specificity, accuracy, and Matthews correlation coefficient, respectively
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All the pre-miRNAs are selected from human pre-
miRNAs.
We used these cleavage sites as positive examples using

windows of size 8,10,12,14 nt, where each window was
selected so that a cleavage site is located at the center of
the window, and we generated negative examples on the
same sequence so that both centers of the positive and
negative examples were 6 nt away from each other, as in
the previous study [14]. This approach is based on the
assumption that for most pre-miRNAs, the Dicer cleavage
site is seldom selected at the center of the hairpin struc-
ture. In PHDCleav, two secondary structure predictors,
quikfold [25] and RNAFold from ViennaRNA [26] were
used, hence, we used both the RNAFold fromViennaRNA.
and the quikfold server (version 3.0, http://mfold.rna.
albany.edu/?q=DINAMelt/Quickfold) for prediction of
RNA secondary structures. The results were given in
Tables 2 and 3. Because in PHDCleav, the accuracy of

prediction by nucleotide composition was worse than that
by binary patterns, we compared our method with the
binary patterns of PHDCleav. We used the libSVM 3.18
package [27] with the RBF kernel to utilize SVM because
the RBF kernel was used in PHDCleav.
The performance of prediction methods was assessed

by means of sensitivity, specificity, accuracy, and the
Matthews correlation coefficient (MCC), defined as
follows:

sensitivity = TP
TP + FN

, (1)

specificity = TN
TN + FP

, (2)

accuracy = TP + TN
TP + FP + TN + FN

, (3)

MCC = TP · TN − FP · FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (4)

Table 3 Results on average specificity, sensitivity, accuracy, and MCC for both 5p and 3p arms by five-fold cross-validation using
PHDCleav and LBSizeCleav (k = 1, · · · , 5) with window sizes 8, 10, 12, 14 based on secondary structures predicted by RNAFold

Method Window size
5p arm 3p arm
Sn Sp Ac MCC Sn Sp Ac MCC

Extended PHDCleav

8 0.746 0.744 0.745 0.490 0.772 0.750 0.761 0.522

10 0.792 0.783 0.787 0.575 0.779 0.800 0.790 0.580

12 0.798 0.799 0.798 0.597 0.785 0.830 0.808 0.616

14 0.778 0.813 0.795 0.591 0.805 0.853 0.829 0.659

LBSizeCleav (k = 1)

8 0.739 0.805 0.772 0.545 0.785 0.790 0.788 0.576

10 0.798 0.820 0.809 0.618 0.795 0.815 0.805 0.610

12 0.792 0.815 0.803 0.607 0.822 0.840 0.831 0.662

14 0.815 0.822 0.819 0.638 0.851 0.852 0.851 0.703

LBSizeCleav (k = 2)

8 0.753 0.788 0.771 0.542 0.792 0.788 0.790 0.580

10 0.816 0.795 0.806 0.612 0.811 0.794 0.803 0.606

12 0.836 0.784 0.810 0.621 0.814 0.803 0.808 0.617

14 0.845 0.769 0.807 0.616 0.867 0.800 0.834 0.669

LBSizeCleav (k = 3)

8 0.751 0.794 0.773 0.546 0.784 0.797 0.790 0.581

10 0.808 0.808 0.808 0.615 0.795 0.813 0.804 0.608

12 0.822 0.800 0.811 0.623 0.808 0.835 0.821 0.643

14 0.816 0.803 0.809 0.619 0.853 0.838 0.846 0.692

LBSizeCleav (k = 4)

8 0.764 0.772 0.768 0.536 0.809 0.772 0.790 0.581

10 0.824 0.762 0.793 0.587 0.824 0.766 0.795 0.590

12 0.841 0.737 0.789 0.581 0.842 0.756 0.799 0.600

14 0.871 0.678 0.774 0.559 0.898 0.697 0.797 0.607

LBSizeCleav (k = 5)

8 0.782 0.747 0.764 0.529 0.822 0.744 0.783 0.568

10 0.836 0.732 0.784 0.572 0.829 0.726 0.777 0.558

12 0.867 0.699 0.783 0.574 0.864 0.682 0.773 0.556

14 0.899 0.626 0.763 0.546 0.917 0.619 0.768 0.562

Sn, Sp, Ac, and MCC denote sensitivity, specificity, accuracy, and Matthews correlation coefficient, respectively

http://mfold.rna.albany.edu/?q=DINAMelt/Quickfold
http://mfold.rna.albany.edu/?q=DINAMelt/Quickfold


Bao et al. BMC Bioinformatics  (2016) 17:487 Page 6 of 11

where TP,TN , FP, FN denote the number of true posi-
tive, true negative, false positive, and false negative results,
respectively.
We performed fivefold cross-validation, and used the

average sensitivity, specificity, accuracy, and MCC. We
examined size w of a window from 8 to 14 and the num-
ber k of ones in LBSizeCleav from 1 to 5 for 5p and 3p

arms of pre-miRNAs. Table 2 shows the results of PHD-
Cleav and LBSizeCleav (k = 1, · · · , 5) based on sequences
and secondary structures predicted by the quikfold server.
In terms of prediction performance in the 5p arm of pre-
miRNA, the best result of PHDCleav corresponded to
the accuracy of 84.0%, whereas LBSizeCleav at k = 5
achieved the accuracy of 87.4%. In addition, the values

Table 4 Variances of specificity, sensitivity, accuracy, andMCC for both 5p and 3p arms by five-fold cross-validation using PHDCleav and
LBSizeCleav (k = 1, · · · , 5) with window sizes 8, 10, 12, 14 based on sequences and secondary structures predicted by quikfold server

feature extraction method Window size
CD-5p CD-3p

Sn Sp Ac Mc Sn Sp Ac Mc

PHDCleav (sequence)

8 0.0137 0.0008 0.0074 0.0036 0.0072 0.0015 0.0094 0.0066

10 0.0184 0.0004 0.0111 0.0018 0.0044 0.0005 0.0072 0.0024

12 0.0208 0.0001 0.0223 0.0003 0.0078 0.0011 0.0031 0.0046

14 0.0293 0.0009 0.0174 0.0037 0.0065 0.0007 0.0048 0.0029

PHDCleav (structure)

8 0.0042 0.0039 0.0067 0.0155 0.0187 0.0013 0.0091 0.0062

10 0.0026 0.0043 0.0088 0.0177 0.0100 0.0014 0.0050 0.0059

12 0.0042 0.0027 0.0034 0.0109 0.0051 0.0011 0.0024 0.0045

14 0.0047 0.0031 0.0034 0.0125 0.0039 0.0012 0.0014 0.0047

Extended PHDCleav

8 0.0029 0.0032 0.0063 0.0128 0.0123 0.0025 0.0043 0.0103

10 0.0030 0.0038 0.0061 0.0154 0.0064 0.0019 0.0016 0.0075

12 0.0040 0.0033 0.0050 0.0136 0.0054 0.0015 0.0011 0.0059

14 0.0059 0.0027 0.0016 0.0108 0.0032 0.0013 0.0010 0.0052

LBSizeCleav(k = 1)

8 0.0030 0.0025 0.0044 0.0115 0.0100 0.0004 0.0074 0.0019

10 0.0022 0.0015 0.0013 0.0064 0.0078 0.0011 0.0015 0.0042

12 0.0050 0.0024 0.0010 0.0090 0.0077 0.0015 0.0002 0.0051

14 0.0075 0.0035 0.0010 0.0132 0.0036 0.0007 0.0002 0.0026

LBSizeCleav(k = 2)

8 0.0042 0.0018 0.0008 0.0066 0.0053 0.0010 0.0036 0.0041

10 0.0038 0.0020 0.0009 0.0076 0.0034 0.0010 0.0010 0.0039

12 0.0051 0.0029 0.0016 0.0115 0.0042 0.0017 0.0008 0.0063

14 0.0051 0.0028 0.0012 0.0107 0.0043 0.0008 0.0002 0.0024

LBSizeCleav(k = 3)

8 0.0025 0.0013 0.0008 0.0050 0.0070 0.0010 0.0021 0.0042

10 0.0039 0.0022 0.0012 0.0086 0.0064 0.0013 0.0006 0.0048

12 0.0063 0.0031 0.0012 0.0119 0.0039 0.0015 0.0005 0.0055

14 0.0060 0.0033 0.0015 0.0130 0.0073 0.0016 0.0003 0.0046

LBSizeCleav(k = 4)

8 0.0029 0.0016 0.0009 0.0064 0.0066 0.0020 0.0030 0.0078

10 0.0046 0.0025 0.0011 0.0095 0.0071 0.0014 0.0006 0.0049

12 0.0061 0.0032 0.0014 0.0124 0.0033 0.0011 0.0007 0.0041

14 0.0051 0.0030 0.0015 0.0120 0.0088 0.0025 0.0002 0.0082

LBSizeCleav(k = 5)

8 0.0029 0.0017 0.0009 0.0066 0.0062 0.0021 0.0031 0.0082

10 0.0055 0.0029 0.0013 0.0113 0.0032 0.0011 0.0005 0.0042

12 0.0051 0.0029 0.0015 0.0114 0.0029 0.0011 0.0009 0.0044

14 0.0047 0.0029 0.0016 0.0116 0.0076 0.0023 0.0002 0.0076

Sn, Sp, Ac, and MCC denote sensitivity, specificity, accuracy, and Matthews correlation coefficient, respectively
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Fig. 2 Results on ROC curves by LBSizeCleav and PHDCleav with window size w = 14 for 5p arm. From the figure we could see that the ROC curve of
LBSizeCleav from k = 1 to k = 5 is significantly better than binary Pattern and extended binary pattern of PHDCleav for both 5p and 3p arms

of prediction accuracy of LBSizeCleav at w = 12, 14
were higher than those of PHDCleav. As for prediction
performance in the 3p arm of pre-miRNA, the best result
of PHDCleav corresponded to the accuracy of 79.1%,
whereas LBSizeCleav achieved the accuracy of 83.0%.

Table 3 shows the results of PHDCleav and LBSizeCleav
(k = 1, · · · , 5) based on sequences and secondary struc-
tures predicted by the RNAFold. In terms of prediction
performance in the 5p arm of pre-miRNA, the best result
of PHDCleav corresponded to the accuracy of 81.3%,

Fig. 3 Results on ROC curves by LBSizeCleav and PHDCleav with window size w = 14 for 3p arm. From the figure we could see that the ROC curve of
LBSizeCleav from k = 1 to k = 5 is significantly better than binary Pattern and extended binary pattern of PHDCleav for both 5p and 3p arms
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Fig. 4 Regression analysis examples of LBSizeCleav(k = 5) compared with PHDCleav extended binary

whereas LBSizeCleav at k = 1 achieved the accuracy of
82.2%. As for prediction performance in the 3p arm of
pre-miRNA, the best result of PHDCleav corresponded to
the accuracy of 82.9%, whereas LBSizeCleav achieved the
accuracy of 85.1%.

To better evaluate the performance we also calculated
the variance of each prediction result in Table 4. Figures 2
and 3 show the results of LBSizeCleav and PHDCleav
on receiver-operator characteristic (ROC) curves at win-
dow size w = 14 in 5p and 3p arms. Judging by the

Fig. 5 Result on accuracy of LBSizeCleav(k = 5) compared with PHDCleav extended binary and SGL of prediction in CD-5p
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performance evaluation, our newly developed method
outperformed the binary patterns of PHDCleav; this
finding was suggestive of efficiency of the feature repre-
senting the length of loop/bulge structures.
Since in our results, LBSizeCleav with parameters of

w = 14, k = 5 outperforms the others, we selected these
parameters as our parameters for prediction model. For
an input sequence, we created a shift window of size 14
nt shifting from the 5p arm to the 3p arm. For each shift
window we performed an SVM regression analysis using
our model. Here we randomly selected 2 precursors from

the dataset and showed the score of the extended binary
pattern of PHDCleav and LBSizeCleav with k = 5. From
the result we could see that although both tools have pre-
dicted the cleavage site correctly, LBSizeCleav predicted
more true negatives than extended binary pattern of PHD-
Cleav, which indicates a better performance in identifying
negative patterns of LBSizeCleav (see in Fig. 4).
We also compared the performance of our tools with

another state-of-art method, a recent published paper
introduced an easy way named SGL (Simple Geometric
Locater) to calculate the cleavage site of miRNA which

Fig. 6 Secondary structures of hsa-mir-221, hsa-mir-138-1, hsr-mir-15a predicted by quikfold server. The black arrowmeans the cleavage site
validated by biological experiments
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Table 5 Number of patterns predicted only by LBSizeCleav(k = 1, 4)/PHDCleav(extended binary) using secondary structure predicted
by quikfold

5’-arm 3’-arm

Positive
Only predicted by LBSizeCleav (k = 1) compared with PHDCleav (extended binary) 39 39

Only predicted by PHDCleav (extended binary) compared with LBSizeCleav (k = 1) 57 38

Negative
Only predicted by LBSizeCleav (k = 1) compared with PHDCleav (extended binary) 82 65

Only predicted by PHDCleav (extended binary) compared with LBSizeCleav (k = 1) 23 12

Positive
Only predicted by LBSizeCleav (k = 4) compared with PHDCleav(extended binary) 39 39

Only predicted by PHDCleav compared with LBSizeCleav (k = 4) 57 38

Negative
Only predicted by LBSizeCleav (k = 4) compared with PHDCleav(extended binary) 82 65

Only predicted by PHDCleav (extended binary) compared with LBSizeCleav (k = 4) 23 12

outperforms other methods. We generated a benchmark
to compare our method as well as PHDCleav with SGL of
prediction in CD-5p, which result is shown in Fig. 5. In
this benchmark we selected the threshold (0.0) of LBSize-
Cleav as well as PHDCleav and calculated the EAEs(End
Absolute Error, the absolute error of the predicted minus
the true position for a specific duplex end) from the
true cleavage site and compared it with the SGL method.
From the result we could see that although at high EAEs
PHDCleav outperforms LBSizeCleav, LBSizeCleav out-
performs both PHDCleav and SGL at EAE 1, which indi-
cates that LBSizeCleav predicted less false positives than
PHDCleav.

Discussion
There were several pre-miRNAs, such as pre-mir221,
pre-mir138-1, and pre-mir-15a, that were identified by
LBSizeCleav but were not identified by PHDCleav in the
prediction results from the 5p arm of a pre-miRNA with
a shift window of 14 nt (see Fig. 6). By comparing these
three pre-miRNAs, we found that all of them contain a
part of loop/bulge structures that is more than 1 nt long
in their mature parts. This result indicates that the length
of a loop/bulge structure is an important determinant of
a cleavage site. Careful analysis revealed that pre-mir221
and pre-mir138-1 contain their loop/bulge structures in
their bulge parts, whereas pre-mir-15a has its loop/bulge
structure in its loop part, proving that both loop and
bulge structures can affect the cleavage site selection. To
further evaluate the effect of the length of a loop/bulge
structure in affecting the cleavage site selection we cal-
culated the number of pre-miRNAs which LBSizeCleav
identified successfully while PHDCleav failed to identify
and vice versa (see Table 5). From the result we could
see that for the positive patterns our method performs
almost the same as PHDCleav, but for negative patterns
our method shows a significant improvement in accu-
racy. This result indicates that our method has a better
resolution in identifying negative patterns.

Conclusions
In this study, we proposed a novel method—
LBSizeCleav—for prediction of Dicer cleavage sites. By
integrating information on the length of a loop/bulge
structure of a pre-miRNA (as predicted by the quikfold
server), we developed novel feature space mapping.
We performed fivefold cross-validation for validated
pre-miRNA sequences from miRBase. In both 5p and 3p
arms, the proposed method showed better performance
than did the binary patterns of PHDCleav. This study
shows a new way of feature evaluation; moreover, the
better performance of our method points to the effective-
ness of analysis of loop/bulge length at detecting Dicer
cleavage sites.
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