Acevedo-Luna et al. BMC Bioinformatics (2016) 17:479

DOI 10.1186/512859-016-1354-5 B M C Bi()info rmatiCS

CrossMark

Most of the tight positional conservation of ®
transcription factor binding sites near the
transcription start site reflects their co-
localization within regulatory modules
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Abstract

Background: Transcription factors (TFs) form complexes that bind regulatory modules (RMs) within DNA, to control
specific sets of genes. Some transcription factor binding sites (TFBSs) near the transcription start site (TSS) display
tight positional preferences relative to the TSS. Furthermore, near the TSS, RMs can co-localize TFBSs with each
other and the TSS. The proportion of TFBS positional preferences due to TFBS co-localization within RMs is
unknown, however. ChIP experiments confirm co-localization of some TFBSs genome-wide, including near the TSS,
but they typically examine only a few TFs at a time, using non-physiological conditions that can vary from lab to
lab. In contrast, sequence analysis can examine many TFs uniformly and methodically, broadly surveying the co-
localization of TFBSs with tight positional preferences relative to the TSS.

Results: Our statistics found 43 significant sets of human motifs in the JASPAR TF Database with positional
preferences relative to the TSS, with 38 preferences tight (£5 bp). Each set of motifs corresponded to a gene group
of 135 to 3304 genes, with 42/43 (98%) gene groups independently validated by DAVID, a gene ontology database,
with FDR < 0.05. Motifs corresponding to two TFBSs in a RM should co-occur more than by chance alone, enriching
the intersection of the gene groups corresponding to the two TFs. Thus, a gene-group intersection systematically
enriched beyond chance alone provides evidence that the two TFs participate in an RM. Of the 903 = 43*42/2
intersections of the 43 significant gene groups, we found 768/903 (85%) pairs of gene groups with significantly
enriched intersections, with 564/768 (73%) intersections independently validated by DAVID with FDR < 0.05. A user-
friendly web site at http://go.usa.gov/3kjsH permits biologists to explore the interaction network of our TFBSs to
identify candidate subunit RMs.

Conclusions: Gene duplication and convergent evolution within a genome provide obvious biological mechanisms
for replicating an RM near the TSS that binds a particular TF subunit. Of all intersections of our 43 significant gene
groups, 85% were significantly enriched, with 73% of the significant enrichments independently validated by gene
ontology. The co-localization of TFBSs within RMs therefore likely explains much of the tight TFBS positional
preferences near the TSS.
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Background

Transcription factors (TFs) form molecular com-
plexes that bind regulatory modules (RMs) within
DNA. Many recent experiments attempt to decipher
the code for transcription regulation, but despite ex-
perimental progress, the molecular code for tran-
scription regulation remains an active area of
research. Because in vitro binding experiments do
not mimic in vivo concentrations and conditions,
computational approaches based solely on sequence
data provide reassuring checks on experimental arte-
facts. In addition, computation is much less expen-
sive than experimentation.

Molecular complexes of TFs can contain subcom-
plexes (subunits) that bind to regulatory modules (RMs)
in DNA to perform important functions in human gene
regulation [1-3]. Experiments often focus on subunits
with broad regulatory functions such as non-specific ini-
tiation of transcription [4]. Subunits coordinating TF
regulation in relatively narrow sets of genes may also be
biologically important, but they are probably most stud-
ied in experimental systems outside humans (e.g., bacte-
riophages [5]). In any case, such subunits must interact
with similarly structured regulatory modules (RMs) spe-
cific to the set of genes. Figure 1 illustrates that to form
the RM for each gene, the transcription factor binding
sites (TFBSs) within each RM must display tightly con-
sistent positions relative to each other. In other words,
the TEBSs must co-localize within the RMs.
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Fig. 1 Co-localization of Transcription Factor Binding Sites (TFBSs) within
Regulatory Modules (RMs). The DNA coordinate systems near 12
hypothetical genes (horizontal grey lines) are shown oriented from 5’ to 3'
on the plus strand, as indicated at the bottom. The genes are aligned
according to their TSSs (vertical black lines). Within TF molecular
complexes during transcription, RNA polymerase Il and non-specific TFs
(grey rounded rectangles) interact with DNA in specific positions relative
to the TSS, with different specific TFs interacting with the TFBSs (colored
shapes) within RMs. Because the RMs have similar structures (indicated by
dotted black rounded rectangles), their TFBSs have tight positional
preferences relative to each other. In other words, the TFBSs must co-
localize within the RMs
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Figure 1 illustrates some pertinent features of RMs
near the the transcriptional start site (TSS). It is deliber-
ately simplistic in understating the variability of RMs,
non-specific TFs, RNA polymerase II, etc. In particular,
it does not display at least three important biological
complications. First, a gene may have multiple TSSs; sec-
ond, two TFBSs may overlap; and third, the TBFSs
within an RM may not be adjacent. (Because TF sub-
units are three-dimensional, their contacts with DNA
might not always be contiguous.) Nonetheless, Fig. 1
usefully illustrates some consequences of subunits within
TF complexes, when the subunits recombine promiscu-
ously in TF complexes like domains in proteins, to co-
ordinate the regulation of specific sets of genes.

Figure 1 illustrates that subunits should influence
TEBS positional preferences relative to the TSS near the
TSS itself, e.g., the rightmost subunits over lines 1-6 ap-
pear in a single position, whereas the leftmost subunits
over lines 1-3 and 8-10 appear in two positions. Sub-
units may also interact with RMs far from the TSS, but
intervening subunits may perturb the position of the
corresponding RMs relative to the TSS, e.g., the leftmost
purple triangles over lines 1-3 and 8-10 appear in two
different positions. Thus, tight positional preferences of
some TFBSs may reflect their co-localization with each
other and with the TSS.

On one hand, experimental results already confirm
that some TFBSs have positional preferences. For ex-
ample, chromatin immunoprecipitation and high-
throughput sequencing (ChIP-seq) revealed that many
transcription factors have preferred positions and orien-
tations in GC-rich, nucleosome-depleted, and DNase I
hypersensitive regions [6]. Similarly, the transcription
factor YY1 has distinct activating and repressing func-
tions [7], the specific function depending on position
relative to TSS [8]. Moreover, the relative order and
exact position of adjacent TFBSs within some RMs de-
termine specific activities within some systems [9] such
as the interferon enhanceosome [10].

On the other hand, the extent to which TFBS pos-
itional preferences near the TSS reflect co-localization
within RMs is unknown. Accordingly, this computa-
tional study locates TFBSs near the TSS that have tightly
consistent positions relative to each other, initially locat-
ing TF motifs with positional preferences relative to the
TSS. Some computational studies find TFBSs by identi-
fying statistically overrepresented motifs near proximal
promoters [11-14] or with positional preferences [15—
18], or both [19, 20]. Because variations in the nucleo-
tide composition near the TSS can complicate finding
TFBSs by positional preference, at least one sequence
study used a background model accounting for variation
of dinucleotide compositions across regulatory regions
[21]. The present study therefore identifies TF motifs
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with positional preferences relative to TSS by combining
all three considerations (statistical overrepresentation,
positional preference, and oligonucleotide composition)
into a single p-value described in the Methods section.

By itself, detecting TFBSs with positional prefer-
ences relative to the TSS does not imply that the cor-
responding TFBSs are co-located (i.e., that they have
biologically functional positional preferences relative
to each other), unless the TEBSs co-regulate the same
gene. If they co-regulate, however, the TFBSs co-
occur more than they would by chance alone (see
Fig. 1; also later, Fig. 5). Thus, the presence of an RM
enriches the intersection of the gene groups corre-
sponding to every pair of its TFBSs. Figure 1 illus-
trates RMs enriching the intersections of gene groups.
In Fig. 1, genes 1-6 are all associated with both the
rightmost 6 green triangles and rightmost 6 red cir-
cles; genes 8—10 are all associated with the leftmost 3
purple triangles and leftmost 3 yellow rectangles. Fig-
ure 1 also illustrates that enrichment of gene-group
intersections may also occur for pairs of TFBSs in
different RMs, but more weakly than for TFBSs in
the same RM, e.g., only genes 1-3 are associated with
both the 3 rightmost red circles in one RM and 3
purple triangles in another RM.

Thus, for the initial step of detecting TF motifs with
positional preferences with respect to the TSS, we col-
lected promoter regions in a block alignment without
gaps, with the TSSs aligned in a single column. Our pre-
vious studies [17, 22] examined every oligomer of length
8 from the alphabet {A,C, G, T} for positional prefer-
ences relative to the TSS. In contrast, this study exam-
ined every human TF in the JASPAR database [23, 24]
to detect sets of TF motifs with a tight positional prefer-
ence relative to the TSS. Each significant set of motifs
corresponded to a group of genes [25, 26]. The web tool
for the gene ontology database DAVID (Database for
Annotation, Visualization, and Integrated Discovery,
Version 6.7, 2010 release) at http://david.abcc.ncifcrf.-
gov/ validated the biological functionality of each gene
group, by using a (modified) Fisher exact test to com-
pare each gene group to gene groups with known bio-
logical functions [25-27].

As noted above, the motifs corresponding to two
TEBSs co-localized in an RM should co-occur more than
by chance alone, i.e., the presence of an RM enriches the
intersection of gene groups corresponding to the two TF
motifs. To detect enrichment of the intersection of gene
groups corresponding to each pair of significant sets of
motifs, we performed a right-tailed Fisher exact test.

As described in the Results, Discussion, and Conclu-
sion sections, our statistical results show that in humans,
most of the tight positional preferences of TFBSs near
the TSS entail co-localization of TFBSs with each other.
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Results

Figure 2 illustrates that those motifs with a positional
preference relative to the TSS form clusters within the
alignment columns. A small p-value for a cluster sug-
gests that it contains TFBSs with positional preferences
relative to the TSS. The Methods section details the null
hypothesis (Hp) of the cluster p-value. In its essence, for
any given TF, Hy preserves the number and magnitude
of the observed log-odds scores, but distributes them
uniformly among the alignment columns. The log-odds
scores themselves are the usual logarithm of a ratio,
whose numerator is the product of position-specific
probabilities (estimated from JASPAR TF count matri-
ces), and whose denominator is a 3rd-order Markov
background probability (with transition probabilities re-
estimated empirically every 50 bp).

As illustrated in Fig. 2, clusters are sets of TF motifs
with statistically significant positional preferences rela-
tive to the TSS. To facilitate reproduction of our calcula-
tions, the results give all p-values without any multiple
test correction. We applied statistical tests to the inter-
sections of clusters we considered significant: different
p-value thresholds would lead to different multiple test
corrections. To account for our multiple test protocols,

E

TSS

-2000 bp +1000 bp

cluster
Fig. 2 A cluster (a Set of Motifs with a Positional Preference Relative
to the TSS). Each dashed horizontal line represents a sequence within
our Proximal Promoter (PPR) Database, aligned so that all TSSs are in
a single column. The dotted black horizontal line at the bottom
represents the column coordinates within the alignment, running
from —2000 bp to +1000 bp on the plus strand, as in Fig. 1. For any
fixed TF (e.g.,, SP1), each solid vertical line indicates that the TF's
position-specific scoring matrix has a positive score, corresponding
to a subsequence we call a “motif”. Each motif has a motif width, so
for computational convenience we assigned the motif's position and
score to its 3" base (not its 5’ base, as is more common). The top
sequence, e.g., displays one motif as a horizontal dotted blue line;
and the motif's positive score, by a vertical solid red line at its 3
base. Fig. 2 illustrates each positive score twice, once on top of its
sequence, and vertically below once again on top of the column
coordinates (dotted black horizontal line)
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therefore, before giving uncorrected p-values, the text
also gives the p-value thresholds required for a signifi-
cance level a = 0.05 under the Bonferroni correction [28,
29]. In contrast, all validating DAVID p-values include
DAVID’s Bonferroni correction, thereby accounting dir-
ectly for the fixed number of biological functions that
DAVID examined.

Validation of the TSS position in the PPR database

Our alignment appeared to anchor the TSS accurately
(see Fig. 2), because Figure S1 in the Results section of
the Additional file 1 shows an upward spike in TpA
composition and a downward spike in transposable
element density near the column of the putative TSS.

Significant clusters and their validation by the DAVID

At a =0.05, the Bonferroni correction for multiple tests
on 53 TFs and 2 DNA strands yields a cluster p-value
threshold p =0.05/(53 x 2) =4.72 x 10~ % Of the 53 TFs
in our JASPAR Database, 21 TFs yielded 43 clusters
from the PPR Database significant at p <4.72 x 10~ % In
contrast, our negative control with the Random Data-
base (composed of randomly positioned human DNA
matched for sequence length and number to our PPR
Database) yielded a single cluster with p <0.20 (p =0.14,
in fact). The SI describes another negative control with

Table 1 Significant clusters on the plus strand
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the Random Database with Offsets, which yielded no
cluster with p <0.20. At threshold p <0.20, 53 x2x 2 =
212 tests vyield an expected 212x0.2=424 false
positives for a uniformly distributed p-value, indicating
that with just its single false positive cluster, our cluster
p-value is extremely conservative.

Table 1 displays the 21 significant clusters on the plus
strand; Table 2, the 22 significant clusters on the minus
strand. Figure 2 illustrates some terminology in the Ta-
bles. As mentioned in Fig. 1, for computational reasons,
Fig. 2 assigns position and score to a motif’s 3" base (not
its 5" base, as is more common). The maximal segment
at the bottom of Fig. 2 corresponds to a motif cluster.
The left red vertical segment in the cluster corresponds
to Position From in the Tables; the right, to Position To.
The cluster’s spread is the difference between Position
From and Position To plus one. (Thus, e.g., if every
motif in a cluster ends in the same alignment column,
the cluster has spread 1.) In Fig. 2, the bottom short-
dashed red line contributes three motifs to the cluster,
so it contains two multiple motifs.

For each significant cluster, the Tables give the TF and
its (uncorrected) cluster p-value. They report the smal-
lest DAVID p-value for each cluster, Bonferroni-
corrected to account for the number of biological func-
tions that DAVID examined. Because DAVID p-values

TF Cluster p-value DAVID p-value From (bp) To (bp) % Multiple motifs
RELA 1.29E-195 132E-13 6 9 40
SPIN 1.17E-81 1.01E-09 6 9 1
TFAP2A 3.08E-74 3.86E-12 1 4 21
SP1 848E-74 2.97E-08 -78 -36 44
RXRA-VDR 1.89E-58 1.60E-10 12 13 7
RXRA-VDR 2.68E-43 2.98E-08 4 6 5
MYC-MAX 1.20E-34 5.16E-15 1 2 0
NFKB1 1.17E-33 1.83E-04 7 10 28
RORA_2 8.03E-32 345E-04 5 1
PPARG 7.25E-25 1.25E-06 14 16 3
GABPA 1.90E-23 9.50E-05 7 8 0
SRF 2.56E-18 1.95E-03 2 4 10
NHLH1 1.69E-14 1.04E-06 3 3 0
NHLH1 341E-10 7.85E-03 1 1 0
IRF2 4.72E-10 244E-05 16 17 7
TALT-TCF3 9.83E-08 1.58E-04 2 2 0
ELK4 9.80E-07 1.65E-05 8 14 1
STAT1 1.38E-06 1.85E-06 3 4 1
E2F1 4.17E-06 1.27E-01 5 5 0
GABPA 1.78E-04 1.55E-05 -24 =20 2
GABPA 2.08E-04 3.50E-02 1 2 0
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Table 2 Significant clusters on the minus strand
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TF Cluster p-value DAVID p-value From (bp) To (bp) % Multiple motifs
SP1 0.00E + 00 3.39E-12 -106 23 64
RREB1 5.23E-242 1.25E-06 -1 18 82
RELA 1.60E-135 1.12E-12 8 10 35
TFAP2A 6.52E-73 2.31E-09 4 7 24
NFKB1 7.38E-64 1.67E-08 1" 28
PPARG 1.15E-30 5.52E-06 13 15 3
ETS1 3.94E-27 3.51E-05 7 8 0
TALT-TCF3 143E-17 6.70E-03 4 4 0
MYC-MAX 152E-16 2.78E-04 3 3 0
ELK4 191E-16 4.79E-03 6 7 0
GABPA 2.89E-16 9.55E-07 7 15 2
FOXF2 5.87E-15 3.59E-04 10 10 0
PAX6 5.05E-13 1.29E-02 4 4 0
NHLH1 1.32E-08 5.07E-03 1 1 0
NHLH1 1.76E-08 1.81E-04 3 3 0
E2F1 1.38E-07 5.38E-06 11 23 12
RXRA-VDR 1.48E-06 3.88E-05 13 13 0
SRF 6.91E-06 7.12E-03 4 6 8
ETST 8.67E-05 7.56E-04 -3 4 2
TLX1-NFIC 1.05E-04 1.04E-06 10 1 1
MYC-MAX 1.15E-04 4.34E-03 5 5 0
ELK4 2.14E-04 257E-08 =27 1 9

are only for validation, and are therefore already condi-
tional on a multiple-test corrected cluster p-value, they
require no further multiple-test correction. As indicated
in Tables 1 and 2, by being Bonferroni-corrected, the
DAVID p-value also provides an upper bound on the
false discovery rate (FDR). Each of the 43 significant
clusters corresponds to a gene group, and DAVID inde-
pendently validated 42/43 (98%) gene groups with FDR
<0.05 (see Tables 1 and 2).

Figure 1 illustrates that as a typical cluster moves away
from the TSS, biological noise should randomly perturb
motif positions relative to the TSS, thereby impairing
cluster detection. In accord with this expectation, all sig-
nificant clusters in the PPR Database had “To” positions
between —36 and 23 bp, near the TSS.

Eight TFs (E2F1, ETS1, NFKB1, PPARG, RELA, SP1,
TAL1-TCF3, and TFAP2A) had two significant clusters;
three TFs (ELK4, MYC-MAX, and RXRA-VDR) had
three; and two TFs (GABPA and NHLHI1) had four. To
identify clusters uniquely, we join the TF, Position From,
Position To, and the strand (+/-) with colons. Thus,
NFKB1:+7:+11:— is the NFKBI cluster from +7 to
+11 bp on the minus strand. Similarly, GABPA:—-24:—
20:+ is the GABPA cluster from -24 to —20 bp on the
plus strand.

The SI describes our measures of TFBS information
content, reverse palindromic tendencies, and GC con-
tent. The only significant clusters with spreads exceeding
10 bp were E2F1:+11:423:—, ELK4:-27:+1:—, RREB1:—
1:+18:—, SP1:-78:-36:+, and SP1:-106:+23:—. The corre-
sponding transcription factors (E2F1, ELK4, RREBI1, and
SP1) have neither unusual information content nor un-
usual reverse palindromic tendencies, but the GC-
content of their JASPAR count matrices ranked highly
among the TFs studied (SP1 — 1st, E2F1 — 2nd, ELK4 —
8th, and RREBI1 - 9th), suggesting their length might be
an artefact of the high GC-content in proximal pro-
moters. DAVID p-values strongly validated the clusters’
biological functionality, however: 538 x107°
(E2F1:+11:423:-), 2.57 x 10~® (ELK4:~27:+1:-), 1.25 x 10
6 (RREB1:-1:+18:-), 2.97 x 10~® (SP1:-78:-36:+) and
3.39 x 1072 (SP1:-106:+23:=). Thus, although the un-
usually wide clusters have GC-rich count matrices, they
appear biologically functional.

Like composition, tandem repeats can also cause arte-
factually low cluster p-values, because the null hypoth-
esis underlying the cluster p-value assumes independent
motif positions. To evaluate repetitive artefacts, we ex-
amined TF logos in MotifMap [30, 31], but few (if any)
displayed obvious periodicities. A sequence with #n



Acevedo-Luna et al. BMC Bioinformatics (2016) 17:479

motifs contains #—1 multiple motifs that might contrib-
ute to repetitive artefacts, however, so beyond DAVID’s
validation, we evaluated repetitive artefacts with: (1) the
fraction of motifs that were multiple motifs; and (2)
cluster spreads (because narrow clusters lessen the op-
portunity for repetitive artefacts).

Other computations found homotypic clusters in hu-
man and other vertebrate genomes for all five significant
clusters whose spreads exceeded 10 bp [32, 33]. Experi-
ments also support the biological importance of SP1
homotypic clusters [34]. All five clusters had high mul-
tiple motif fractions, between 9 and 82%, consistent with
a biological functionality for their homotypic clusters.

Of the remaining 38 significant clusters, only one has
a validating DAVID p-value p > 0.05 (E2F1:5:5:+, with p
=0.127). E2F1:5:5:+ has spread 1, so tandem repeats
make no contribution to its cluster p-value. Tandem re-
peats are therefore unlikely to have an essential influence
on significant clusters having spreads of 10 bp or less.

The intersection of cluster gene-groups

As illustrated in Fig. 1, biological co-functionality of TFs
can enrich the intersection of the corresponding gene
groups. Accordingly, the right-tailed Fisher Exact p-value
tested the 43 * 42 / 2 =903 intersections of pairs of the
cluster gene-groups for enrichment. The left-tailed
Fisher Exact Test provided a successful negative control
on the right-tailed test: no p-value was significant. Sur-
prisingly, however, only one uncorrected left-tailed p-
value was less than 0.20. The expected number of uni-
formly distributed p-values less than m is 9037w, ie.,
903 x 0.20 ~ 181 for p < 0.20. The Discussion section and
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SI conclude, however, that our PPR Database has biases
in the genes it contains, artefactually but harmlessly
reducing the number of p-values p < 0.20.

In contrast, the right-tailed p-values displayed a full
range of values, from 0.00 to 1.00. At a=0.05, the
Bonferroni correction for multiple tests involving 903
pairs yields a threshold p = 0.05/903 = 5.54 x 10~ °. Under
the correction, the right-sided Fisher Exact test declared
768/903 (85%) of the cluster-pairs significant at a = 0.05.
DAVID validated 564/768 (73%) of the significant
cluster-pairs with p < 0.05.

On theoretical grounds, we suspected that our cluster
p-values were very conservative. To verify the suspicion
empirically, we examined a superset of the 43 clusters
consisting of 66 clusters with an uncorrected cluster
p-value of p <0.20, to determine the fraction of intersec-
tions with significant Fisher p-values and their validation
by DAVID. At a=0.05, the Bonferroni correction for
multiple tests involving 66 * 65 / 2 =2145 pairs yields a
threshold p = 0.05/2145 = 2.33 x 10” . Under the Bonfer-
roni correction, the right-sided Fisher Exact test declared
1374/2145 (64%) of the cluster-pairs significant at a =
0.05. DAVID validated 869/1374 (63%) of the significant
cluster-pairs with p <0.05. Thus, the superset of 66 clus-
ters had many intersections with significant Fisher
p-values validated by DAVID.

Figure 3 summarizes qualitatively the patterns of
significance and validation for the superset, given in full
in Additional file 2. To aid experimental biologists in
examining results for particular TFs, however, our
results are available on the Web in a user-friendly form
at http://go.usa.gov/3kjsH. As noted above, our cluster

Fisher Exact Test

Fig. 3 A graphical summary of p-values in the SI for gene-group intersections. The two matrices display the p-values for the gene-group intersec-
tions in graphical form. The matrices correspond to the two tabs in the Sl file intersection_p-valuesxisx (although http://go.usa.gov/3kjsH displays
the p-values more conveniently). The matrices omit their upper triangle, because they are symmetric. They also omit their diagonal, because it
corresponds to the intersections of each gene group with itself. In each matrix, each of the 66 (unlabeled) rows corresponds to a single gene
group in the SI. In the Sl and in Fig. 3, each gene-group corresponds to an uncorrected cluster p-value p < 0.20. (In contrast, the present, main
article confines itself to examining clusters significant at a = 0.05 with p <4.72x 10~ *) The row order in each matrix follows the S, where the sort
is primarily alphabetical on the TF and then on the p-value. The magnitudes of the Fisher Exact p-values for the gene-group intersections are in
shades of gray: black indicates 0.0; white, 1.0; and 50% gray, the threshold for significance at a = 0.05. For the Fisher Exact Test p-values, the
threshold is p=2.77 x 10” ® after the present article’s multiple correction; for validating DAVID p-values, p = 0.05. The font for the (unreadable)
p-values is 50% gray, making gray on black significant; gray on white, not significant; 50% gray, borderline significant, etc. Each of the 12 white
entries in the DAVID matrix indicates a p-value that DAVID censored because the gene-group intersection was too small
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p-value is extremely conservative, and validation with
DAVID p-values indicates that even some clusters with
p=020 have biological functions. The file intersec-
tion_p-values.xlsx in the SI therefore contains a
complete table of right-sided Fisher Exact p-values for
all clusters whose uncorrected cluster p-value p < 0.20.
Because of their number, the Discussion section can
examine only a few intersections explicitly.

Discussion

A subunit within a TF complex interacts with DNA at an
RM containing TFBSs with tight positional preferences
with respect to one another (see Fig. 1). If the RM has a
positional preference relative to the TSS, the preference
propagates to the TFBSs in the RM. Some TFBSs have
tight positional preferences relative to the TSS, but the
fraction of these TFBSs associated with co-localization in
RMs is unknown. Our methods found 43 significant sets
of TF motifs with positional preferences relative to the
TSS (“motif clusters”, see Fig. 2). Only five clusters lacked
a tight positional preference (+5 bp). Note that a statistical
method using broad bins [20] would likely be unsuitable
for detecting an RM with tight positional preferences.

Each motif cluster corresponded to a group of 135 to
3304 genes, so each gene group contained 2.3 to 56.6%
of the 5834 genes in our PPR Database. The correspond-
ing numbers for tight clusters were 135 to 1696 genes
(2.3 to 29.1%). When predicting TFBSs with TF muotifs,
false positives are more common than false negatives.
Moreover, the Methods subsection, “A Cluster Probably
Includes Most TFBSs within Its Columns as Motifs,”
shows that false negatives are likely rare within motif
clusters. The percentages given are therefore larger than
their probable true values, justifying calling at least some
gene groups a “specific set of genes”.

Tight positional preferences relative to the TSS do not
imply that two TFBSs have a biologically functional tight
positional preference relative to each other, unless the TFBSs
co-regulate the same gene. As Figs. 1 and 5 illustrate, motifs
corresponding to two TFs in an RM should co-occur more
than by chance alone, however, enriching the intersections
of the corresponding gene groups. Thus, a gene-group inter-
section systematically enriched beyond chance alone pro-
vides evidence that the two TFs participate in an RM. Using
the 43 gene groups corresponding to the 43 significant clus-
ters, a right-tailed Fisher Exact test found that 768 pairs of
gene groups had significantly enriched intersections.

An analysis of gene ontology using DAVID validated the
biological functionality of many significant gene groups,
sometimes with false discovery rates less than 107*
In addition, DAVID validated many intersections of gene
groups. On one hand, some TF studies have validated
their results with the same experimental TF sites that
contributed to the count matrices used for discovery. In
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contrast, DAVID p-values validated significant clusters
and their intersections, making validation here independ-
ent of discovery.

The results in the present computational study there-
fore incidentally (and unsurprisingly) support the exist-
ence near the TSS of RMs coordinating the regulation of
specific sets of genes. Gene duplication and convergent
evolution provide obvious biological mechanisms for
generating the RMs. To facilitate further experimental
discovery of such RMs, biologists can mine the user-
friendly interface at http://go.usa.gov/3kjsH, to trace TF
interactions corresponding to significantly enriched
intersections and thereby to discover candidate RMs.

Many computer programs predict TFBSs (reviewed by
[35]). Some programs focus on sequence pattern
(P-Match [36]; SiTaR [37]), particularly early programs
(reviewed in [38]). Several exploit combinations of mo-
tifs, but not consistent positioning (Cister [39]; COMET
[40]; AliBaba2 [41]; Ahab [42—-44]; SCORE [45]). Pro-
grams based on Hidden Markov models can discover
tightly organized RMs, but few such programs exist
(EMCMODULE, [46]). Instead, most newer programs
combine phylogeny and possibly other information with
TEBS patterns, either with consistent positioning (Stubb
[47]; EMMA [48]; TWINE [49]) or without it ([50];
PhyloCon [51]; CisPlusFinder [52]; cisTargetX [53, 54]).
Programs searching a single genome for the consistent
positional preferences within RMs are therefore surpris-
ingly rare [55].

Notably, all our significant clusters occurred within
about 40 bp of the TSS. The absence of significant clus-
ters distant from the TSS tends to deny the existence of
RMs distant from the TSS but with tight positional pref-
erences relative to it. (Note, however, that our study uses
DNA sequence only, so DNA structural preferences rela-
tive to the TSS remain a possibility in three-dimensions).

The 43 significant clusters yielded 768 pairs of gene
groups with significantly enriched intersections. The
present article cannot examine every significant intersec-
tion, but the narrow, scattered results below suggest that
specialists might find results in the SI and at the URL
http://go.usa.gov/3kjsH interesting. Although the arte-
fact in the previous paragraph influences left-sided
Fisher exact p-values, DAVID validation of gene-group
intersections indicates that the artefact had no essential
effect on the right-sided Fisher exact p-values.

At http://go.usa.gov/3kjsH, by clicking radio buttons
for ETS1 and GABPA, and then clicking “Submit”, we
find that ETS1:+7:+8:— has cluster and validating DAVID
p-values of 3.94 x 107" and 3.51 x 10~%; GABPA:+7:+8:+,
of 1.90 x 107** and 9.50 x 107> their intersection, Fisher
Exact and validating DAVID p-values of 1.91 x 107'¢*
and 6.56 x 107>, The extraordinarily small p-values indi-
cate with remarkable surety that: (1) the two TF motif
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clusters ETS1:+7:48:— and GABPA:+7:+8:+ correspond to
TEBS clusters; and (2) the bidirectional TFBS clusters inter-
act biologically. In fact, the literature confirms the conclu-
sions. GABPA redundantly occupies ETS1 TEFBSs in
promoters of housekeeping genes, whereas ETS1 specific-
ally occupies the ETS1 TFBSs in enhancers of T cell-
specific genes [56]. Moreover, a p53 mutant preferred bind-
ing to the bidirectional promoters if several ETS1 and
GABPA TFs were bound nearby [57]. Interestingly, GABPA
has another significant cluster on the opposite strand near
GABPA:+7:4+8:+: GABPA:+7:+15:— has cluster and validat-
ing DAVID p-values of 4.83x10™* and 1.06 x 107> the
intersection of GABPA:+7:+15:— and ETS1:+7:+8:—, Fisher
Exact and validating DAVID p-values of 4.83 x 10™* and
1.06 x 10™°. Thus, the unidirectional pair GABPA:+7:+15:—
and ETS1:4+7:48:—, though much less striking than the bi-
directional pair previously mentioned and apparently un-
known, probably also has biological functions.

SP1 motifs provide general transcription signals
near TSSs. Indeed, a colored table in the SI highlights
their enriched intersections with many other TF motif
clusters, graphically displaying the striking promiscu-
ity of the two SP1 motif clusters in Tables 1 and 2.
Our statistical methods tuned their single adjustable
parameter, so that most significant motif clusters had
tight positional preferences relative to the TSS
(x5 bp). The absence of broad bins (e.g., a window
size of 31, as in [20]) suggests that motif clusters like
the SP1 clusters, whose spreads are unusually broad
(e.g., about 100 bp), have biological functions dis-
tinctly different from participation in an RM [58].
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At http://go.usa.gov/3kjsH, by clicking radio buttons
for Spl and E2F1, and later Spl and ETS1, we find that
the Sp1 clusters had several significant intersections with
both E2F1 and ETS1. Experiments supported E2F-Spl
interactions near: dihydrofolate reductase in Chinese
hamster [59], dihydrofolate reductase in human osteo-
sarcoma [60], fibroblast CTP:phosphocholine cytidylyl-
transferase in mouse embryo [61], thymidine kinase in
mouse [62], RIP140 in human [63], CDKN2A [64],
HMGAL1 [65], MYCN [66], and CDKN2C [67]. They also
supported ETS-Spl interactions near the Runx2 P1 pro-
moter [68], PAI-1 [69], ITGA11 [70], and Nprl [71].

Conclusions

Our statistics found 43 significant sets of human motifs
in the JASPAR TF Database with positional preferences
relative to the TSS, with 38 preferences tight (+5 bp).
Each set of motifs corresponds to a group of genes. Of
all intersections of these 43 significant gene groups, 768/
(43*42/2) ~ 85% were significantly enriched with 564/768
(73%) intersections independently validated by DAVID
with FDR < 0.05. The co-localization of TFBSs within
RMs therefore likely explains much of the tight TEBS
positional preferences near the TSS.

Methods (Fig. 4)

The PPR and random databases

The publicly available Database of Transcriptional Start
Sites (DBTSS) [72] provided about 1.8 million experi-
mentally characterized 5'-end clones from full-length

Human Genome
NCBI Build 37.1

Random Database
29,204 Human DNA Regions
of length 3001 bp, randomly chosen

1 Gene Group

Negative
p<0.2(p=0.14)

Control

gives details

53 Human TF Matrices

DAVID Database

Fig. 4 An overview of the workflow in the methods. Primary data sources appear as yellow boxes; the derived data, as blue boxes. The black
arrows indicate the primary workflow, with bordered grey arrows indicating ancillary contributions. The pink box contains the workflow for the
primary negative control; the green box, the validation workflow, with its grey arrows indicating validation steps. All p-values shown are
uncorrected. The p-values on the right all retained significance at a =0.05 against multiple-test corrections. The Materials and Methods section

DBTSS
425,117 Experimental TSSs

PPR Database
29,204 Proximal Promoter Regions
of length 3001 bp, aligned on TSS

JASPAR Database

Clustering

43 Gene Groups

Web Tool p<4.72x1074
£ %
Validation w =
Biological 779 Intersections
Literature p<2.77x1075
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human cDNAs. The experimental clones corresponded
to 425,117 transcription start sites (TSSs). Because of al-
ternative TSSs, the experimental TSSs corresponded to
14,628 human RefSeq [73] genes. Our “PPR Database” of
proximal promoter regions (PPRs) initially contained
every RefSeq TSS within +1000 bp of the start of an an-
notated RefSeq gene transcript. If several RefSeq TSSs
were within +£1000 bp of the same start, we discarded all
but the RefSeq TSS closest to the experimental TSS.
Henceforth, “TSS” refers solely to the remaining RefSeq
TSS. We aligned the corresponding PPRs in DBTSS to
the human genome (NCBI build 37.1).

Standard nomenclature designates the two strands as
“plus” (non-template) and “minus” (template). In the fol-
lowing, coordinates in bp correspond to the numbering
on the plus strand, with positive bp indicating the 3" dir-
ection from the TSS; negative bp, the 5° direction. The
standard coordinate system places the TSS at +1 bp; the
next base in the 5° direction on the plus strand, at
-1 bp.

As in previous studies [22], if a PPR mapped unam-
biguously, we extended it to include 3001 bp, with coor-
dinates —2000 to -1 bp and +1 to +1001 bp; otherwise,
we discarded the PPR [14]. We also discarded replicate
sequences and sequences containing nucleotides outside
the unambiguous alphabet {A,C, G, T}, leaving 29,204
sequences.

We formed a (gapless) block alignment by anchoring
the 3001 bp of each of the 29,204 PPR sequences on the
corresponding TSS, i.e., we placed each putative TSS in
alignment column 2000. After discounting alternative
TSSs and alternative splices, the 29,204 PPR sequences
corresponded to 5834 distinct genes. As a negative con-
trol, we also extracted 29,204 sequences from the human
genome (NCBI, build 37.1), one for each of the se-
quences in the PPR Database. Chosen independently
and uniformly at random, each sequence had length
3001 bp. The corresponding 29,204 random sequences
constituted our “Random Database”.

The PPR Database contained 29,204 sequences but
only 5834 genes, so many of its sequences overlapped
with each other. Although the Random Database does
not control for overlaps in the PPR sequences, the Add-
itional file 1 describes an extra, unusually elaborate
negative control, the “Random Database with Offsets”,
which we constructed to rule out spuriously low p-
values due to sequence overlaps.

JASPAR count matrices

We then extracted 53 count matrices labelled “species
Homo sapiens” from the JASPAR database of transcrip-
tion factor binding sites [23, 24]. The SI details the fol-
lowing calculations, which we performed for each of the
53 TF matrices from JASPAR.
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Local sum statistic for detecting TFBSs with positional
preferences

At each position within each sequence of the PPR Data-
base, we calculated a log-odds score for the presence of
a TF motif. For the null hypothesis, we re-estimated
background probabilities every 23 columns from a 3rd-
order background Markov model fitted to a window of
length 50 =23 + 21 + 3 + 3. The number 23 is the differ-
ence between 50 (a nice, round but otherwise arbitrary
number) and a sum corresponding to the maximum
length (21) of a JASPAR count matrix [IRF1 or REST],
plus the letter-triples before (3) and after (3) a putative
site. The letter-triples are required to calculate the site
probability under a 3rd-order Markov model accounting
for sequence context on both sides of a site. (The SI de-
scribes the mathematics of the “context-2 model” [74]).
Now, fix the TF under discussion. For the alternative hy-
pothesis of a TFBS, we calculated model probabilities
from the JASPAR count matrix for the TF and a non-
informative Dirichlet prior (pseudo-count 0.5 for every
nucleotide). The sum of the log-odds scores within each
column of the block alignment scored the column for
the presence of the TF motif. Negative sums were ig-
nored by setting them to 0, yielding scores x; > 0.

For consistency with previous notations, let the seg-
ment (i,j] denote the integer subset {k:i<k<j}. Add-
itionally, let g be an arbitrary parameter (to be
determined later). Given the “global sum” S; = Z,’; 1% —
9= Z§= 1%; — ig, define the “segmental sum” S(;;;=S;-S;
for each segment, and the “local sum” S =max.;< 7S]
for each alignment column j. Others note analogies be-
tween local sums and the BLAST statistic in sequence
alignment [75], so we call g a “gap penalty”. The Ruzzo-
Tompa algorithm calculates maximal segments (i, j] [75].
The maximal segments, which satisfy S;;;=38;> 0, yield
contiguous alignment columns rich in motifs [76, 77].
(See Fig. 2.) Karlin-Altschul statistics [78] provide p-
values to evaluate the statistical significance of the local
scores §;=S;; corresponding to the maximal segments
(i, /] [40].

The motifs contributing to each maximal segment (i, j]
therefore form a “(motif) cluster” whose score equals
the sum of the contributing motif scores. (See Fig. 2.)
The motifs in the cluster determine a “gene group”. In
Fig. 2, e.g., each motif in the maximal segment corre-
sponds to a gene, namely, the sequences corresponding
to short-dashed red lines.

A cluster probably includes most TFBSs within its
columns as motifs

This assertion fits into the flow of the discourse here, al-
though it is important only in the Discussion section. By
definition, a TF motif is a subsequence with positive
score x;>0. The cluster therefore includes every TFBS
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Fig. 5 An RM enriches the intersection of two gene groups. A
hypothetical RM (indicated by dotted black rounded rectangles) is
illustrated, similar to an RM in Fig. 1. The RM contains three TFBSs,
corresponding to an orange rectangle, a green triangle, and a red
circle. The “red circular TF" yields motif scores (vertical red lines)
corresponding to the maximal segment and motif cluster shown in
Fig. 2. Like the red circular TF, the green triangular TF yields its own
motif scores (vertical green lines). Not every “red” or “green” motif
corresponds to a TFBS in the RM, but nonetheless, the RM enriches
the intersection of the two cluster gene groups (horizontal lines,
either red dashed or green dotted)

with a positive score x; > 0 within its columns (see Fig. 2.).
The log-odds scores x; derive from JASPAR count matri-
ces; the matrices themselves derive from experimental
TEBSs. Thus, each TFBS has a positive score x; > 0, unless
it has a sequence pattern inconsistent with other, experi-
mentally derived TFBSs. By definition, such inconsistency
is rare, whenever most TFBSs have a consistent sequence
pattern. Consequently, most genes (within the PPR Data-
set) regulated by TFBSs at positions corresponding to a
cluster contribute motifs to the cluster.

Choice of the gap penalty g

Thus far, g has been arbitrary. Now, for each TF, we
normalize g by the TF’s average score per column 3
= n"!S,. Thus, g = ps, where the factor 5 is TF-specific,
but all TFs share the arbitrary parameter p. The normal-
ized gap penalty p then controls the spread of all TF
clusters simultaneously, as follows. As in local alignment
[79, 80], extreme-value statistics pertain in a logarithmic
regime (here, detailed calculations show that the loga-
rithmic regime corresponds to p > 1) [81-83]. Moreover,
the cluster spreads decrease as p increases (a
phenomenon analogous to alignment lengths decreasing
as the alignment gap penalty increases). In accord with
the biological aims expressed in the legend of Fig. 1, to
infer that a typical significant cluster corresponds to the
tight positional preference of a TFBS within a RM, the
typical cluster spread should be no more than (say)
10 bp (ie, =5 bp). Empirically, we found that such
spreads corresponded to a normalized gap penalty of

Page 10 of 12

about p=14. The SI details the exploratory process
leading to p = 1.4. The resulting clusters were relatively
robust against perturbations p = 1.4 + 0.1.

DAVID web tool for evaluating the biological function of
a group of genes

The DAVID Web Tool Version 6.7 (2010 release) at
http://david.abcc.ncifcrf.gov/ provides a modified Fisher
exact test to validate the biological functionality of a
gene group by comparing the gene group to gene groups
with known biological functions [25-27]. Our “DAVID
Dataset” represented each cluster’s gene group as a set
of RefSeq NP numbers, uniqued so that each gene corre-
sponded to exactly one RefSeq NP.

The genes in DBTSS have biases (e.g., expression) that
could propagate to the PPR Database and thence to our
DAVID Dataset. To mitigate biases, therefore, we used
the DAVID Dataset (and not the full complement of hu-
man genes) as the universe of genes under consideration
when: (1) DAVID assessed our clusters’ functionality,
and (2) the Fisher Exact test assessed the enrichment of
the intersections of cluster gene-groups. (See Fig. 5.)

Fisher exact tests of intersections of cluster gene-groups
A right-tailed Fisher Exact test assessed whether pairs of
cluster gene-groups had an unusually large intersection,
suggesting possible enrichment by an RM (see Fig. 5).
We used the left-tailed test as a negative control (since
we did not expect the left-tailed test to yield statistical
significance). The Results section describes our 43 sig-
nificant clusters. Because their 43 x 42/2 = 903 intersec-
tions are so numerous, we relegate the complete report
of their right-tailed Fisher Exact and their DAVID p-
values (as described above) to the SI. The p-values are
also available through our user-friendly interface at
http://go.usa.gov/3kjsH. To achieve significance level a
=0.05, the Fisher Exact tests needed to yield p <0.05/
(2x903) =2.77 x 10”°.

Additional files

Additional file 1: Contains supplementary Methods, Results, and
Discussion. (DOCX 448 kb)

Additional file 2: Contains the intersection p-values diagrammed in
Fig. 3. (XLSX 78 kb)
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