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Abstract

Background: To study a biological phenomenon such as finding mechanism of disease, common methodology is
to generate the microarray data in different relevant conditions and find groups of genes co-expressed across
conditions from such data. These groups might enable us to find biological processes involved in a disease
condition. However, more detailed understanding can be made when information of a biological process
associated with a particular condition is obtained from the data. Many algorithms are available which finds groups
of co-expressed genes and associated conditions of co-expression that can help finding processes associated with
particular condition. However, these algorithms depend on different input parameters for generating groups. For
real datasets, it is difficult to use these algorithms due to unknown values of these parameters.

Results: We present here an algorithm, clustered groups, which finds groups of co-expressed genes and conditions
of co-expression with minimal input from user. We used random datasets to derive a cutoff on the basis of which
we filtered the resultant groups and showed that this can improve the relevance of obtained groups. We showed
that the proposed algorithm performs better than other known algorithms on both real and synthetic datasets. We
have also shown its application on a temporal microarray dataset by extracting biclusters and biological information
hidden in those biclusters.

Conclusions: Clustered groups is an algorithm which finds groups of co-expressed genes and conditions of co-
expression using only a single parameter. We have shown that it works better than other existing algorithms. It can
be used to find these groups in different data types such as microarray, proteomics, metabolomics etc.

Background
To capture the behavior of an organism under different
experimental conditions, we need a method that simultan-
eously study and compare the gene/protein expression
level measured for different conditions (e.g. time points,
tissue types) [1]. High-throughput techniques like micro-
array [2, 3] and recently RNA-seq techniques [4] are used
to measure mRNA levels of all genes in the genome of a
studied organism across a range of conditions of an ex-
periment. In such high throughput data, instead of looking
at the expression levels of each gene separately, it is more
informative to look at the groups of genes coexpressed

across conditions, since they may represent a biological
process [5]. Moreover, in a microarray data where condi-
tions are time points, linking perturbed biological pro-
cesses temporally can help us relating initial perturbed
biological processes with the processes perturbed at later
time points. A common method to extract such clusters
from a high-throughput data is ‘clustering’ [5, 6]. Another
extension of such method is ‘biclustering’ which is useful
to capture the genes that are correlated only in a subset of
samples [7].
Many algorithms have been introduced since the year

2000, which extract groups of co-expressed genes and asso-
ciated conditions of co-expression from a microarray data.
Few of them are CC algorithm [7], ISA algorithm [8],
BiMax algorithm [9], SAMBA algorithm [10] and QUBIC
algorithm [11]. These algorithms require different input pa-
rameters for generating biclusters from high throughput
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microarray data. This is the first limitation of these algo-
rithms. On a real dataset, it is difficult to know apriori
about the values of these parameters to find the biclusters
and hence, wrong input parameter may lead to wrong re-
sult. Hence an algorithm with very less parameters, prefera-
bly no parameter, is expected to be more useful on real
datasets. The second limitation of the existing algorithms is
that none of them have been tested on the data (real or syn-
thetic) where the biclusters are overlapping in presence of
noise. These algorithms were tested on synthetic dataset
with implanted biclusters and real datasets with known
biclusters and compared their performance to recover im-
planted or known biclusters [9, 12, 13]. The algorithms
were evaluated on datasets with increase in noise levels.
But, these synthetic dataset did not have any overlapping
biclusters, which is very common in real biological data.
To overcome these two limitations, we introduce a

new algorithm which uses only one parameter: depend-
ing on whether we want overlapping biclusters in the re-
sult or not. Accordingly, we set the parameter equal to 1
for overlapping bicluster and 0 for non-overlapping. In
our algorithm, we first discretize each gene and then
group them based on their similar discretized profiles.
Finally, we select clusters (or groups) with high correl-
ation coefficient and large size. These high correlation
coefficient clusters along with the discretization informa-
tion gives the biclusters with both genes and conditions.
Our method is similar to ‘Correlation maximization
biclustering methods (CMB)’ which seeks for subsets of
genes and samples where the expression values of the
genes (samples) correlate highly among the samples
(genes) [13]. Other CMB algorithm such as CC algo-
rithm [7] also uses similar method to extract biclusters
by imposing the condition that the mean square residue
is below some threshold value δ.
In the present paper, we first introduce the algorithm

and then show its performance on synthetic and real
datasets. We then compare our algorithm with other
existing algorithms from literature. Finally, we show the
application of our algorithm on a real biological dataset
obtained from a mouse liver tissue.

Methods
Algorithm to find groups of co-expressed genes and con-
ditions of co-expression
Given a microarray mRNA data matrix with N number
of genes across C number of conditions, we need to find
groups of co-expressed genes and the conditions of co-
expression. We first started with each gene separately
and determined the conditions where it is expressed. We
used the idea similar to one proposed by [14] where the
whole set of expression values of a gene across condi-
tions is used to determine whether the gene is perturbed
or not. However, in [14], the set of conditions where the

gene is perturbed was not determined. To take care of
this limitation, we modified the above idea by using the
first difference formula (detailed below) for each gene
separately resulting in discretization of genes. We then
grouped genes based on their discretization pattern
resulting in clusters. The clusters with high correlation
coefficient were further combined resulting in a set of
clusters. We then described each obtained clusters by
two parameters: cluster size (number of genes) and cor-
relation coefficient (correlation of genes within the clus-
ter). Next, we need to derive a cutoff on these two
parameters to filter biclusters with high correlation coef-
ficient and high size. For this, we considered a matrix of
genes with expression randomly generated from a nor-
mal distribution with mean zero and a given variance.
We calculated the values of these two parameters (clus-
ter size and correlation coefficient) using the biclusters
obtained from this random matrix and derived a cutoff
(detailed below) on these two parameters, which is used
to filter biclusters.
Below, we are presenting the steps of the algorithm one

by one in detail. For better understanding of the algorithm
we are providing a small dataset example depicting applica-
tion of each step of our algorithm. To enable readers to
replicate our results, a small dataset example with its out-
put bicluster results has been provided as Additional file 1:
File S1 and output of each step of our algorithm on dataset
is depicted in Additional file 2: Figure: S1. For reader’s
benefit, the steps of the algorithm are presented in the fol-
lowing format as different functions as done in [11, 15].

Step1 (DISCRETIZE function)
Given a microarray mRNA data for N number of genes
across C number of conditions, we first normalized the data
by dividing each gene by the square root of the sum of the
squares of their expression across the conditions. To find
groups of co-expressed genes and the conditions where this
co-expression occurs, we first need to find the condition(s)
where each gene is expressed. For this, we used expression
profile (i.e. expression of a gene across all the conditions) of
each gene separately, e.g. gene ‘a’ and identified the condi-
tion(s) where gene ‘a’ shows high expression value relative
to other condition(s). These condition(s) are obtained by
taking the consecutive differences of sorted absolute nor-
malized expression profile of gene ‘a’. This helps us to iden-
tify the index with maximum difference. The condition(s)
corresponding to this identified index and all other indices
above this index gives us the condition(s) where the gene is
expressed. This step is illustrated in Fig. 1b and c for two
genes with selected conditions circled in left panels and
corresponding indices encircled in right panels. Some more
example genes are provided in Additional file 3: Figure S2.
This is the DISCRETIZE function of the algorithm outlined
in Fig. 1a, which discretizes each profile (rows in the DATA
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matrix) one by one to transform the DATA matrix to a
DISCRETE DATA matrix.

Step 2 (GROUP function)
Once we have the discretized data, in the next step, we
group them into different clusters using the GROUP func-
tion. After discretizing each gene based on its expression
values, we added the sign of expression i.e. positive or
negative depending on its up or down regulation. Then,
we grouped genes with same signed discretized profiles
into a cluster. Each cluster is shown in a 2-D plot (Fig. 1a)
by a point where its coordinates are size (i.e., the number
of genes present in the cluster) and correlation coefficient
(i.e., the average correlation coefficient between expression
profiles of each pair of genes in the cluster).

Step 3 (CORRELATION function)
This step of the algorithm generates cluster correlation
matrix which is used to find cluster pairs sufficiently
similar to each other and hence could be merged. We
termed this step as CORRELATION function. We used
this step on the clusters (obtained using the GROUP
function) to get the cluster correlation matrix (details in

Correlation coefficient within and between clusters). The
cluster coefficient matrix contains values of correlation
coefficients within and between the clusters. Here, we
made negative correlation values zero to ensure that the
corresponding pairs don’t come as correlated pairs. Each
row of this matrix contains set of correlation values of each
cluster with all other clusters which we call correlation pro-
file of the cluster. In the next step, we used the CLUSTER
MERGE CHECK function on this correlation matrix to find
cluster pairs with close correlation coefficients.

Step 4 (CLUSTER MERGE CHECK function)
In this step we have three independent checkpoints
which decides if two clusters can be merged for further
analysis or not.

Checkpoint1 (CHECK1)
In this step, we first discretized the cluster correlation
matrix using our DISCRETIZE function (Step 1). This
gives, for each query cluster, a set of clusters obtained
after discretizing its correlation profile. We then selected
those cluster pairs which are present in the discretized
correlation profile of each other. Say, for an example, we

Fig. 1 Outline of the algorithm. a Flowchart of the algorithm is shown with different steps explained in text. b, c The DISCRETIZE step of the algorithm
is shown on two representative genes. Here, the expression level of two genes at different conditions taken from an experimental data is plotted in
left panels in B and C. In right panels, the sorted absolute normalized values of expression data for the two respective genes are plotted. Arrows
correspond to the point above which the expression values are characterized as expressed by the algorithm and the corresponding expression values
are shown by circled values here and in actual expression data in left panels in B and C. This point is captured by taking the consecutive differences of
sorted absolute normalized expression profile and identifying the index where this difference is maximum
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picked clusters x and y, if cluster y is present in the dis-
cretized correlation profile of cluster x, and vice-versa.
Thus, CHECK 1 filters cluster pairs, as shown in the red
dots in the matrix in Fig. 1a (CHECK1).

Checkpoint2 (CHECK2)
In this step, we multiplied the correlation profile for
each pair of clusters (input cluster pair) and discretize
the product of correlation profiles of the cluster pairs.
Finally, we checked if the cluster(s) obtained are same as
the input cluster pair or not. If yes, then those two clus-
ters are filtered through CHECK2 function, as shown in
red dots in the matrix in Fig. 1a (CHECK2).

Checkpoint3 (CHECK3)
Here, for each pair of clusters, we checked if the average
correlation coefficient between them is greater than the
minimum correlation of each cluster with itself or not
(for details see Section 3.2). If so, then that pair of clus-
ters were filtered through CHECK3, as shown in red
dots in the matrix in Fig. 1a (CHECK3).
The cluster pairs satisfying all these three checks are

termed as CONSENSUS clusters pairs and are merged
using the next step of the algorithm called MERGE
function.

Step 5 (MERGE function)
In this step, we group the clusters pairs found above by
taking the union of the genes and union of the condi-
tions of the paired clusters. This gives us the merged
clusters. This step of the algorithm that groups the clus-
ter pairs is termed as MERGE function.

Step 6 (OVERLAP function)
This step provides the user with a choice to get an over-
lapping bicluster. This step is termed as OVERLAP
function. Here, the user chooses a predefined parameter
(termed as overlap parameter), which gives them the
choice to go for overlapping bicluster (see Section 3.3
for details). If the user selects overlap parameter equal
to 1, then the biclusters are allowed to overlap and we
go to the next step for final selection of cluster. If over-
lap is selected as zero, then we directly go to the next
step for final selection of cluster.

Step 7 (SELECT function)
In a real dataset, due to it complex patterns, normally
we get clusters with different sizes and different correl-
ation coefficients. The clusters with large size and high
correlation coefficient will contain a large number of
genes showing similar pattern and could be relevant in
terms of some biological process. Whereas, the clusters
with small size and/or low correlation coefficient can be
considered as the random clusters with very less or no

functional relevance. So, in this step of the algorithm
which we termed as SELECT function, we separate the
relevant clusters from the random ones by using a cut-
off. To derive the cutoff, we first generated the clusters
by applying our algorithm on randomly generated genes
and checked their cluster size and correlation coefficient
values. We then checked whether, the genes with expres-
sion values generated randomly from a normal distribu-
tion could form a cluster with large size and high
correlation coefficient. For this, we built random data
matrices, each of 1000 × 10 dimension (made with ex-
pression values of 1000 genes under 10 conditions)
where the gene expression values were generated from a
normal distribution with mean zero and standard devi-
ation equal to different noise levels. The same procedure
was followed as given in Section 3.4, except that in this
case no pattern was considered for the genes. We ap-
plied our algorithm on these 1000 × 10 data matrices
with three noise levels (0.01, 0.05, 0.10) and plotted the
size and correlation coefficient of the resultant clusters
in three subplots, see Fig. 2a. In each subplot, results of
the algorithm output for 10 different realizations of the
input matrix were overlaid. We observed that with in-
crease in the size of clusters, there was a decrease in the
correlation coefficient and this pattern was same for all
the input matrices generated with different noise levels,
Fig. 2a. Since a major aim of the present study is to use
minimum parameter(s), in order to filter relevant clus-
ters from random clusters, so we used a straight line
(quantified with one parameter, as derived below) as
shown by green colored line in Fig. 2a. We also used
dataset with different number of genes and conditions to
check how much this parameter is varying with size of
input dataset. When we varied condition values upto 10
fold (keeping genes values fixed), we observed no change
in the cluster size (Additional file 4: Figure S3A), but in-
creasing gene values (again upto 10 fold) and keeping
condition values fixed, we notice increase in the cluster
size (Additional file 4: Figure S3B). This implied that the
parameter depends only on the number of genes in in-
put dataset. Thus, to get the parameters associated with
the straight line to be independent of size of input data-
set, we normalized the cluster sizes with a factor log (N),
where N is the number of genes in the input dataset.
The resulting straight line with normalizing factor is
shown below:

yþ log xð Þ= log Nð Þ ¼ c ð1Þ

where y is the correlation coefficient, x is the size of the
bicluster, N is the number of genes in the input matrix
and c is the parameter that can be obtain using random
matrix data.
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Since a real dataset contains unknown noise level, so we
need to derive a threshold value for c (say c*), which is inde-
pendent of the noise level. For a given random data matrix,
applying the algorithm, we get say K numbers of biclusters,
each having fixed x and y. We then calculated c using
Eq.(1) for each x and y, and defined c ¼ max cið Þ i ¼ 1 : K :
To obtain the value of parameter c* for a given N X C

dimensional real dataset matrix, where N is the number
of genes and C is the number of conditions, we first gen-
erated random data matrix of same dimension for a
fixed noise level (as given in left subplot of Fig. 2a) and
obtained c . We obtained 10 such c ’s after generating 10
such data matrices and took c ¼ max cið Þi ¼ 1 : 10. We
repeated the above exercise for two more noise levels (as
given in middle and right subplot of Fig. 2a) and ob-
tained required c =max(ĉi)i = 1 : 3.
Finally, we need to check that the value of c* is independ-

ent of the number of genes and number of conditions of

the input data matrix. We measured the value of c* using
the input data matrices of different sizes as mentioned
above (resulting biclusters are shown in plots in Additional
file 4: Figure S3). We fitted a straight line to the data of c*
versus C (Fig. 2b) and obtained a fit with equation c* =
1.03-5.04E-4C with R2 = 0.3. This low R2 value implies that
the best fit straight line is the line with zero slope and an
intercept equal to mean of the data. Similarly, fitting a
straight line to the data of c* versus N in Fig. 2c gave a lin-
ear fit with R2 = 0.0290. This low R2 value again implies
that the best fit line is the line with zero slope and an
intercept equal to mean of data. Thus, obtained c* is inde-
pendent of the dimension of input matrix and hence can
be used to filter the resultant biclusters.

Correlation coefficient within and between clusters
Correlation coefficient of a cluster with itself was calcu-
lated by taking pairwise dot product of normalized

Fig. 2 Derivation of score cutoff of clusters. a For an Insilco data with fixed noise level, the size and correlation coefficient of output clusters for
each of the 10 runs from the algorithm are overlaid on each other and are shown in first subplot. Three subplots correspond to three noise levels
in input data matrices. And the cutoff line is shown in green. The clusters sizes and correlation coefficient plot doesn’t change much for different
noise levels. b The value of c* as a function of number of conditions in input matrix is shown showing no significant change with number of
conditions as shown by the fit with R2 = 0.3 suggesting a good fit as straight line with slope zero and intercept as mean. c The value of c* as a
function of number of genes in input matrix is shown showing no significant change of c* with number of genes as shown by the fit with R2 =
0.0290 suggesting a good fit as straight line with slope zero and intercept as mean
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expression profiles of all its constituent genes. Then,
mean of the resultant set was taken. Correlation coeffi-
cient of a cluster with another cluster was defined in
similar way: taking dot product of normalized expression
profiles of all pairwise genes i.e. one gene of the pair was
taken from cluster 1 and the second gene of the pair
from cluster 2 and finally, mean of the resultant was
taken.

Overlap between biclusters
Till now, the algorithm gives different biclusters with no
gene overlapping but samples can be overlapping. If the
user allows the overlapping i.e. taking overlap parameter
equal to 1, we followed the following procedure resulting
in biclusters with gene overlap too. For each query
bicluster, we found bicluster(s) (resulting biclusters) that
contained samples of query bicluster. If the number of
such resulting biclusters were greater than zero, then we
took the union (intersection) of genes (conditions) of
query and resulting biclusters to create an overlapping
bicluster. If we didn’t find any biclusters, we searched
for biclusters (resulting biclusters) whose samples were
subset of samples of this query bicluster. If the union of
samples of resulting biclusters is smaller than that of
query bicluster, we include query bicluster in the list of
overlapping biclusters. This procedure was repeated for
each query bicluster.

Generation of Insilco data
A matrix of zeros was created with 100 rows and 100
columns denoting 100 genes and 100 samples respect-
ively with 1st 10 genes upregulated at 1st 10 samples i.e.
expression value of these genes at these samples is 1.
Similarly, the next 10 genes are up at next 10 samples.
This was repeated and we get a pattern of 10 × 10 sub
matrix block at the diagonal of the original matrix.
These 10 X 10 sub matrix blocks represent ideal biclus-
ters to be used to calculate recovery and relevance
scores. Then normal distributed random numbers with
mean 0 and standard deviation as per the noise levels
given in text were added to the matrix to generate the
final matrix. Same procedure was followed for the case
where biclusters were overlapping; the expression value
at overlap region remaining 1. For data with zeros noise
and non-zero noise with overlapping clusters, we used a
100 X 100 matrix. For data with non-zero noise and
non-overlapping clusters, we used 100X 50 matrix with
ten 10 X 5 blocks at diagonal of matrix.

Assembling real data
The real data was collected from human gene expres-
sion data series in NCBI GEO database (http://
www.ncbi.nlm.nih.gov/geo/) with GEO accession
GSE2361. It contains expression of all genes of human

across 36 normal tissues. TiGER database [16] was
used to collect the tissue specificity information of
each gene. Only genes unique to a particular tissue
were used resulting in gene tissue relationship and ex-
pression profiles of the genes belonging to Brain,
Colon, Heart, Kidney, Liver, Placenta, and Testis were
used for analysis. The cancer dataset was taken from
GDS3716.

Processing of microarray data
The microarray data were obtained from an experiment
where one group of mice were fed with high fat high su-
crose diet (HFHSD) (treated group) and another group
with normal diet (control group) for certain days before
taking tissue samples from both the groups of mice.
Both groups of mice were fed respective diets in the fol-
lowing days: Day1, Day 6, Day 10, Day 14, Week 0,
Week 3, Week 6, Week 9, Week 12, Week 15 and Week
18. This experiment was repeated for three times. Then,
microarray experiment was performed on tissue samples
and after suitable normalization of the signal intensities
of each probe using Agilent Genespring GX software,
three values of log fold change for the control sample
and the treated sample were obtained for each probe
and at each time for each tissue. Further details of the
experiment are given in [17].
This data for liver tissue was downloaded from the

NCBI repository under GEO accession number
GSE63175. The data also contains information about
data pertaining to mice fed with high fat high sucrose
diet plus an ayurvedic formulation which is out of scope
from our present study. The data of the ayurvedic for-
mulation corresponds to the columns with columns
header “P2_HFx_y “(x: 5,20,75 and y contains time point
and sample number information) and were removed.
The column headers have information of the time point
of the experiment in days as well as weeks. Weeks were
recorded in the experiment as the number of weeks after
Day 14. Thus, 14 days were added while converting
weeks to days. This implies Day 14 and Week 0 would
correspond to same time and thus the information of
the Day 14 and Week 0 was combined in the final
matrix. So, the final time points in the matrix are Day 1,
Day6, Day 10, Day 14, Day 35, Day 56, Day 77, Day 98,
Day 119, and Day 140.
For each probe, the means of the log fold change for

treated samples were calculated and a p-value signifying
difference between three control values and three treated
values by t-test was generated. The data contains 40628
probes corresponding to 29411 gene symbols. Gene
symbol information for each probe was taken from col-
umn with column header “Gene symbol”. There can be
multiple probes corresponding to a gene. We used the
following steps to obtain a single value for each gene:
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Step 1. First, we filtered the data to have only those
genes whose absolute values are changed for at least 2
fold in all three treated samples at a time point i.e.
whose values (log) are lying outside the interval (−1
and 1) and considered them significantly perturbed
genes. In case two probes corresponding to the same
gene satisfy this condition, the probe with minimum p-
value was chosen. We repeated this process for data at
different time points and combined (union) all filtered
genes to form a matrix of filtered genes and time
points. The matrix elements are fold change values of
all filtered genes inserted at respective time points. If a
gene is not significantly perturbed at some time point,
then the matrix element of that gene at that time point
will be empty. For these genes, we used the following
steps to insert values at these time points.
Step 2. For the selected genes with empty matrix
element at some time point, we check its probe’s fold
change value at all three samples. If all these values are
outside the interval (−1 and 1), we select those probes
and go to step 3. If no probe of the selected gene
satisfies the above criteria, we then select the probes
which would have values at all three samples within the
interval (−1 and 1) and go to Step 3.
Step 3. The selected probe’s average over three samples
were taken if in all three cases the value is greater/less
than 0. If multiple probes of a gene satisfied this
condition, probe with minimum p-value was chosen. If
no probe out of selected probes satisfies this condition,
the probe’s average value over two (out of three) sam-
ples with value greater/less than 0 was taken. For mul-
tiple probes satisfying this condition, probe with
minimum p-value was taken. For the probe chosen, if
the average value lied between −0.8 to 0.8, then for
simplicity we inserted a number 0.001 in the matrix,
else the average value was inserted.

The resulting matrix contained log fold change values
at eleven time points. We combined Day 14 and Week 0
information in the following way. If a gene is signifi-
cantly perturbed (in same direction) for both time
points, then we took the average value. If they are per-
turbed in opposite directions, we assigned a small num-
ber (0.001) to that gene. If the gene’s value is perturbed
at only one time point, we used that value in the matrix.
If it is unperturbed at both the time points, we assigned
any one of the non-perturbed value in the matrix. In the
resulting matrix of 10 time points, if a gene is not per-
turbed even at a single time point, it is removed.
The resulting matrix contained log fold change values

at ten time points for 19303 genes. The matrix was clus-
tered using default clustergram function of MATLAB
which uses algorithm of Eisen et al. [5] resulting in heat-
map shown in Fig. 5A.

Results
Benchmarking the algorithm
Here, we have benchmarked our algorithm based on
two scores: recovery and relevance scores. The scores
were compared with best performing algorithms (as
shown in [12]) like ISA [8], Bimax [9], Qubic [11],
SAMBA [10] and CC algorithm [7] algorithm [7].
Though there exist other algorithms in the literature
like Jaisri et al. [18] and Tesson et al. [15], but these
are not considered in the present study as Jaisi et al.
[18] have applied normal clustering algorithm and
Tesson et al. [15] finds differential co-expressed mod-
ules between two conditions only. For this bench-
marking exercise, we used two synthetic datasets and
two real datasets. In the Synthetic Dataset1, instead of
using the SELECT function to filter biclusters, we used
all clusters. SELECT function is more useful in com-
plex datasets to filter off clusters of small size and low
correlation coefficient, for example, in clusters con-
taining noisy genes. Application of this is shown in
section (4.1.2) with Synthetic Dataset2. For the two
real datasets, we used the first as the tissue dataset ob-
tained from GSE2361 and second as the cancer dataset
from GDS3716. BIMAX algorithm was run using BIC-
CLUST R PACKAGE [19]. QUBIC algorithm was run
in R by importing the package [20]. ISA AND CC were
run in BICAT PACKAGE [21] while SAMBA was run
using EXPANDER [22].

Synthetic Dataset 1
We used the same strategy as mentioned in Eren et al.
[12], where biclusters were implanted in a background
noisy matrix and the ability of different algorithms
were evaluated to recover implanted biclusters. Here
also we implanted overlapped biclusters, with different
degree of overlap, in a background noisy matrix (see
Materials and Methods: Generation of Insilco data).
Synthetic datasets are shown in Fig. 3a where actual/
implanted biclusters are clearly visible. We applied
different algorithms (ISA, Bimax, Qubic, SAMBA and
CC) on synthetic datasets and generated the output
biclusters. Comparing the output biclusters with the
actual implanted biclusters, we obtained two scores
quantifying ability of the algorithm to recover known
biclusters and also the relevance of obtained
biclusters.
We used a score S(M1,M2) comparing two bicluster

sets M1 and M2 as given in Eren et al. [12]:

S M1; ;M2ð Þ ¼ 1
M1j j

X

b1∈M1

max s b1; ; b2ð Þ
b2∈M2

where |M1| is the number of biclusters in bicluster set
M1.
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Here, s(b1, b2) is chosen to be the Jaccard coefficient
applied to matrix elements defined by each biclusters as
given in Eren et al. [12]:

s b1; ; b2ð Þ ¼ b1∩b2j j
b1∪b2j j

,

where |b1 ∩ b2| is the number of elements in intersection
of two biclusters i.e. number of intersecting genes X
Number of intersecting conditions common between
two biclusters b1, b2 and |b1 ∪ b2| is the number of ele-
ments in their union. S takes values between 0 and 1,
where 0 means two biclusters are disjoint and 1 means
biclusters are identical. Any score between 0 and 1 is the
fraction of total elements shared by both biclusters.
Let E be the set of actual biclusters and F be the set of

output biclusters from the algorithm. Recovery score is
calculated as S(E, F); its maximum value being 1 implies
E⊆ F i.e. algorithm has captured all the ideal biclusters.
Relevance score is calculated as S(E, F); its maximum

value being 1 implies F⊆ E i.e. all found biclusters were
true biclusters.
For a dataset of fixed noise levels and fixed overlap de-

gree, we generated 10 data matrices, and on each data
matrix we applied different algorithms to capture biclus-
ters. As a control, we first obtained actual biclusters
from the data matrices before adding noise (see Mate-
rials and Methods: Generation of Insilco data). We then
compared the resulting biclusters with the actual biclus-
ters and calculated scores using the above formulas.
Thus, for each fixed noise level and overlap degree, we
obtained 10 recovery and relevance scores for each algo-
rithm. We then took their mean. These mean values ob-
tained for matrices of different noise levels and overlap
degrees were plotted in Fig. 3b. From Fig. 3b, it is clear
that our algorithm (Clustered Groups (CG)) performs
better than other algorithms in all cases except in case
of QUBIC algorithm where it performs equivalent to

Fig. 3 Application of algorithm to Insilco data and comparison with other algorithms. a A schematic showing different Insilco datasets on which
algorithms are applied. Different datasets had different levels of noise and overlap degree. b Comparison with other algorithms when applied on
Insilco datasets as shown above. Both rows contain different graphs when algorithms are applied on different datasets with increasing noise
levels (column wise graphs). In first row, in each graph recovery of biclusters score is plotted as a function of overlap degree of biclusters in
datasets on which algorithm is applied. Lower row contains graphs where relevance of biclusters score is plotted. CG algorithm performs better
in each scenario. In the recovery graphs, qubic and bimax algorithm overlap completely with CG algorithm and can’t be seen here. Similarly, in
the relevance graphs, qubic algorithm overlap completely with CG algorithm (upto noise = 0.10) and hence can’t be seen here
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QUBIC algorithm. For noise = 0.15, the relevance of CG
algorithm is slightly low. In this case, the extra biclusters
found by the algorithm can be removed by using the SE-
LECT function of the algorithm and the relevance can
be improved as shown in next section.

Synthetic Dataset 2
To show the importance of the SELECT function in im-
proving the relevance of the obtained biclusters, we here
considered a more complex dataset. We used an input
dataset similar to Fig. 3A with different overlap degrees and
a fixed noise level = 0.15 (maximum noise level considered
in our study). We added same number of noisy genes as in
the original matrix and the resulting matrices are shown in
Additional file 5: Figure S4A. For each data matrix of fixed
overlap degree, we applied our CG algorithm with and
without the above SELECT function and compared with
QUBIC algorithm. We then obtained 10 recovery and
relevance scores corresponding to 10 runs and calculated
their mean values. We obtained such mean scores for data
matrices with different overlap degrees and plotted them
in Additional file 5: Figure S4B. The results clearly suggest
that the recovery scores do not change with the SELECT
function but there is an increase in relevance scores after
applying SELECT function and is now much better than
QUBIC algorithm. We want to mention here that we ob-
tained recovery scores is close to 1, even in the presence
of noisy genes. This suggests that we have successfully fil-
tered pure biclusters. Next, we tried to understand why
this is happening. For this, we applied our algorithm on a
matrix containing 1000 genes in 10 conditions with ex-
pression values generated from a normal distribution with
mean zero and standard deviation equal to the noise level
= 0.15. We checked the number of genes present in each
biclusters and plotted them against the number of condi-
tions associated with the corresponding bicluster. We ob-
served that with the increase in the number of conditions
in a bicluster, there is a decrease in the size of that biclus-
ter (Additional file 6: Figure S5). This clearly suggests that
there is a less chance of obtaining a bicluster having more
than 2 genes and 6 conditions. Thus, the chance of pres-
ence of noisy genes in a well-defined bicluster is very less,
which is also observed in the high recovery scores we ob-
tained in Additional file 5: Figure S4B.

Real Dataset 1
For real datasets, we followed the methodology mentioned
in Oghabian et al. [13]. Here, we considered predefined
biclusters and then evaluated the ability of different algo-
rithms to recover these predefined biclusters. We used the
TiGER database [16] which contains tissue specific gene
list. Therefore, here, our actual biclusters are defined by
TiGER database. We also downloaded the expression
levels of all human genes across all tissues as profiled by

Microarray (see Materials and Methods: Assembling Real
Data). From this matrix of expression values, we selected
only those genes whose tissue specificity is mentioned in
TiGER database. Therefore, we have a matrix of expres-
sion levels of these genes specific to different tissues. The
resulting matrix of genes versus tissues is shown as heat-
map in Fig. 4a where we can visually identify the biclusters
(biclusters are presented as diagonal blocks in Fig. 4b).
Here also we followed the same procedure as done for
Synthetic Dataset. Figure 4c shows the individual recovery
scores for each algorithm and here also we can observe
that CG algorithm performs the best.

Real Dataset 2
As a final benchmarking of our algorithm, we used a real
dataset from the breast tumor dataset GDS3716 and
compared our algorithm’s performance with perform-
ance of other algorithms. The dataset and the compari-
son strategy is similar to one used in Oghabian et al.
[13]. The dataset contains 42 samples where 24 samples
are normal and the rest are breast tumor samples. The
data was log2 transformed before the application of al-
gorithms. The comparison strategy briefly consists of
calculating the ability of different algorithms to differen-
tiate the two sets of samples. This was done by calculat-
ing, for each algorithm, the individual recovery scores as
given in section 3.2.1, except here term implies the num-
ber of conditions common to both biclusters and term
implies the number of conditions in their union. Here,
the two actual biclusters are: first bicluster contains all
genes with first 24 conditions corresponding to normal
samples and the second bicluster contains all genes from
25th to 42nd conditions. The output biclusters are
biclusters obtained from respective algorithms. The indi-
vidual recovery scores are plotted for each algorithm in
Fig. 4d. Here also, we observed high recovery scores for
the CG algorithm in comparison to other algorithms
proving its better performance in differentiating the
samples.

Application of the algorithm on a mouse liver microarray
data
After benchmarking our algorithm against predefined
biclusters in both synthetic and real datasets, here we will
show its application on a real microarray dataset obtained
from liver of a mouse fed with high fat high sucrose diet
(HFHSD) for different times (hence conditions are time
points in this case) (detailed description of data processing
and description of data can be obtained in Materials and
Methods: Processing of Microarray Data). The microarray
data matrix contains log fold change gene expression values
for mice under HFHSD fed condition in compared to nor-
mal diet condition at different time points. Heatmap of the
microarray data matrix is shown in Fig. 5a with genes
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clustered using clustering algorithm [5]. Some groups of
co-expressed genes are clearly visible along with relevant
time points, for example, group of genes going up at 8th
time point. One can expect metabolic related processes to
be perturbed in the data which can be extracted from
biclusters as significant processes represented by genes be-
longing to the biclusters. To filter noisy biclusters that
might be present in the data, we used the SELECT function
of the algorithm on the resultant biclusters. We calculated
the value of c* (used by SELECT function) for N = 19303
genes and 10 conditions. The obtained value of c* of 1.093
(Additional file 7: Figure S6A, B), which is very near to the
predicted value of c* =1.0887 (obtained as the mean of c* in
Fig. 2c). This proves our claim (in section 3.1) that the mean
value of c* = 1.0887 can be used for any new dataset without
explicitly using random matrix data. Using this c*, we
filtered 529 clusters from a total of 5299 clusters obtained
from the algorithm (filtered clusters are shown as red dots
in Fig. 5b). As an example, we have shown time profiles of
genes from two specific clusters (Fig. 5b). The biological
processes significantly represented by topmost clusters
(Table 1) clearly show that metabolic related processes con-
firming the result as expected on the basis of the experi-
ment. Finally, to check whether the clusters found by the

algorithm are not random, we checked the distribution of
the cluster sizes. We observed that the cumulative distribu-
tion of cluster sizes follows power law (Fig. 5c), i.e., few clus-
ters with large sizes and large number of clusters with small
size. This distribution remains same for the selected clusters
too, see Additional file 8: Figure S7. This result is well
accordance with other studies, which also observed power
law in cluster size distribution [23, 24]. When we plotted
distribution for randomly formed clusters (keeping number
of clusters (5299) and total cluster size (19303) constant),
we observed that it doesn’t follow power law (Fig. 5c). So,
the power law distribution confirms that the grouping done
by the algorithm is biologically relevant and not random.

Discussion
Biclusters play an important role in extracting information
from the microarray data, particularly in case if it contains
temporal dimension. This can help in elucidating processes
perturbed during the experiment under different conditions
and can give us mechanistic insights. To extract such
biclusters from a microarray data using an algorithm whose
input parameters are data independent is a challenging task.
In this work, we have developed an algorithm which uses
just one user input for generating biclusters. For this, we

Fig. 4 Application of algorithm to real data and comparison with other algorithms. a A heatmap showing expression levels of genes across
tissues. b Actual biclusters according to classification from TiGER database are shown as gray rectangles along diagonal of matrix. c For each
algorithm, 7 dots are shown which correspond to 7 actual biclusters. Dots represent the maximum similarity of each actual bicluster when
compared with biclusters found by algorithms i.e. individual recovery scores. Average of these 7 scores gives net recovery score. d Plot same as
in (c) except the input dataset used is the cancer dataset as explained in text and recovery scores to recover cancer samples are calculated

Anand et al. BMC Bioinformatics  (2016) 17:486 Page 10 of 14



primarily used the whole time profile of a gene to find the
conditions where a gene is expressed. This is similar in con-
cept where the whole time profile of a gene is used to find
whether the gene is perturbed or not [14].
In the present study, we have introduced an algorithm

to find groups of co-expressed genes and conditions of
co-expression. The first advantage of our algorithm is
that it is general enough to be used on any kind of high
throughput data matrix. It can give output biclusters as
overlapping set or as non-overlapping set depending on
the choice of the user. Default mode is selecting all
biclusters and overlap is allowed. This default mode was
used everywhere in our study except in section using
Synthetic Dataset 2 and in section with liver and cancer
data. In these cases complicated biclusters could come
and so it is easier to analyze them as non-overlapping
sets. Second advantage is that CG algorithm also doesn’t
use any parameter like score cutoff etc., as used by other
algorithms. This we could attain by combining the
discretization step with the grouping step and hence a
single parameter can be used to filter biclusters rather

Fig. 5 Application of algorithm on a real dataset. a A heatmap showing expression levels of genes across time is shown where some cluster of genes
up at specific time points can be clearly observed. b Correlation coefficient and size of each cluster is shown with two specific clusters’ time profile
shown as illustration in below insets. c Power law observed in cluster size distribution with slope of −1 with s between 9 to 91 with r2 of .99.
Randomly formed clusters behave very differently from the original distribution and thus suggests biologically relevant clustering by the algorithm

Table 1 Significant biological processes enriched in some
representative clusters. Supporting file is provided separately

Cluster number
(size)

Perturbed Time
points with sign of
up/downreg
ulation(+/−)

Biological process p-value

1 (2179) 8 synaptic
transmission
(GO:0007268)

3.57E-43

2 (710) −8 small molecule
catabolic process
(GO:0044282)

8.97E-06

3 (616) −5 gene expression
(GO:0010467)

6.35E-07

4 (562) 1 embryonic organ
development
(GO:0048568)

0.0001046

5 (449) 5 transcription from
RNA polymerase II
promoter
(GO:0006366)

1.543E-05

6 (285) [−8,-5] translation
(GO:00064 12)

1.13E-12
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than two parameters usually required for these steps. Fi-
nally, applying our novel method of using random
matrix data, we have even removed the dependency on
this single parameter making our algorithm parameter
independent for filtering biclusters.
Our algorithm discretizes the data without any thresh-

old parameter and gives better results than other algo-
rithms in both synthetic and real datasets as shown by
our recovery and relevance analysis. We wanted to ex-
plore if we can enhance the performance of our algo-
rithm by applying fixed cutoffs like 2 fold log change or
Z-score cutoff [25] in our discretization function. For
this, we took a real liver microarray data used in our
study and applied a 2 fold cutoff to discretize the data.
On plotting the normalized distribution of discretized
and non-discretized data, we observed better separation
of values in our method as compared to 2 fold cutoff
method (statistic using ttest, tstat(CG) > tstat(cutoff ))
(Fig. 6a). We further generated clusters using both the
methods to see which one is giving more correlated
clusters. We found that the clusters obtained using 2
fold cutoff method had significantly less correlation coef-
ficient (p value from ttest < 10−5) as compared to clusters

generated using the DISCRETIZE function of our algo-
rithm (Fig. 6b). Next, we compared with Z-score cutoff
discretization method. For this, we calculated the mean
and standard deviation of the expression value of a given
gene under different conditions and took the Z-score
cutoff of + −1.5 to discretize the data and generated clus-
ters. Here also we found that the clusters obtained using
Z-score cutoff method had less correlation coefficient as
compared to clusters generated using the DISCRETIZE
function of our algorithm (p value from ttest < 10−5)
(Fig. 6c). Thus, our threshold free discretization method
shows better performance than existing fixed cutoff
methods.
Here, we derived the score cutoff for the clusters from

a matrix by comparing it with randomly generated
matrices of same dimension. This means we are deriving
score cutoff of clusters assuming all the genes in the ori-
ginal matrix are behaving randomly. This is a very con-
servative estimate, since in a normal data matrix, all
genes won’t be behaving randomly and there would be
genes with some definite pattern that would be captured
by our algorithm. So, we can safely say that the selected
biclusters from the algorithm are not random and are

Fig. 6 Comparison with other discretization approaches a The actual fold change and normalized distribution of discretized and nondiscretized
values obtained by applying a 2 fold cutoff and our DISCRETIZE function on the real liver microarray data b Correlation coefficient and size of
clusters obtained by applying our algorithm on discretized data obtained by using 2 fold cutoff method and our DISCRETIZE function. The
distribution of correlation coefficients of clusters is also shown. c Correlation coefficient and size of clusters obtained by applying our algorithm
on discretized data using our discretization method and zscore cutoff method. The distribution of correlation coefficients of clusters is also shown
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biologically relevant. The algorithm can be applied to
any microarray data or other high throughput data like
proteomics data to find biclusters.
Since, we have shown that our proposed algorithm

performs better in comparison to other algorithms on
the dataset with unknown noise levels, so it is expected
that the present algorithm will definitely perform better
on a dataset with known noise level. Biclusters generated
from the algorithm, when integrated with transcriptional
networks can help finding transcription factors driving
such expression patterns. Also, the selected clusters
from two or more microarray datasets can be compared
to reveal similarities/differences among the patterns
followed by genes of two datasets.

Conclusions
Biclusters present in a high throughput data is important
information to be extracted to find the underlying pat-
terns present in the data. Available biclustering algo-
rithms use many input parameters to find biclusters.
Since, on a real dataset, it is difficult to know apriori
about the values of these parameters and hence, an algo-
rithm which uses minimum input parameters is highly
desirable. We proposed here an algorithm clustered
groups, which find groups of co-expressed genes and
conditions of co-expression. Despite requiring only a
single input parameter, we have shown that our algo-
rithm still works better than other existing algorithms.
The algorithm can be used to find such groups in differ-
ent data types such as microarray (as shown in this
study), proteomics, metabolomics etc.

Additional files

Additional file 1: The matlab code of the algorithm made in the study.
Contains the input example small dataset and the output resultant
biclusters obtained by application of algorithm on the given small
dataset. (XLSX 197 kb)

Additional file 2: Figure S1. Shows the heatmap of the small dataset
example and output of each step of our algorithm when applied on this
dataset. (PDF 2220 kb)

Additional file 3: Figure S1. Representative examples of gene
expression profiles of 8 genes and their discretization. (A-H) The
DISCRETIZE step of the algorithm is shown for eight representative
genes. Here, the expression level of genes at different conditions taken
from an experimental data is plotted in left panels. In right panels, the
sorted absolute normalized values of expression data for the respective
genes are plotted. Arrows shows the jump above which the expression
values are characterized as expressed by the algorithm and the
corresponding expression values are shown by circled values here and in
actual expression data in left panels in A. This jump is captured by taking
the consecutive differences (current minus preceding) of sorted absolute
normalized expression profile and identifying the index where this
difference is maximum i.e. where jump occurs. (PDF 961 kb)

Additional file 4: Figure S3. Simulations with varying number of genes
and conditions. In each of the plot, results for all noise levels and all runs
of a fixed dimension input matrix are shown in one plot (A) Each plot
depicts the clusters obtained for three noise levels for input matrices of

number of genes = 1000 and number of condi-tions equals as given on
top of each plot. The value of c* is also shown on the top of each plot.
The cluster distribution doesn’t change much with different conditions.
(B) Each plot depicts the clusters obtained for three noise levels for input
matrices of number of number of conditions = 10 and number of genes
equals as given on top of each plot. The value of c* is also shown on the
top of each plot. The cluster distribution change and goes towards high
cluster size as number of genes in input matrix increases. (PDF 1533 kb)

Additional file 5: Figure S4. Ability of SELECT function to improve
relevance of output biclusters (A) Data matrices of size 200 × 100 to 216
× 108 are made corresponding to over-lap degree of 0 to 8 same as in
Fig. 3. Here, highest noise level of 0.15 is used. (B) Average recovery
scores and average relevance scores for a data matrix of fixed overlap
degree corresponding to 10 runs are calculated and mean scores are
plotted in figures for QUBIC algorithm and our algorithm with/without
SELECT function. No change in recovery scores can be observed and an
in-crease in relevance scores are obtained for algorithm with SELELCT
function as compared to without SELECT function. (PDF 1431 kb)

Additional file 6: Figure S5. For a matrix with 1000 genes and 10
conditions with expression values of all genes across conditions obtained
from normal distribution with mean zero and standard deviation = 0.15,
CG algorithm was applied and number of genes of each bicluster(size) is
plotted against number of conditions of the corresponding bicluster. As
the number of conditions in a bicluster increases, its size decreases. This
suggests very less probability of obtaining a large size bi-cluster with
large number of conditions. (PDF 298 kb)

Additional file 7: Figure S6. The value of c* as a function of number
of genes in the input data matrix. The value of c* for number of genes =
19303 (number of genes present in liver data) predicted using the mean
values is 1.0887 which matches with that ob-tained using actual simula-
tion (1.093). (B) Cluster distribution shown using simulation gives value of
c* = 1.093. Here, cluster’s correlation coefficient and size obtained for 10
runs of input data matrix of a fixed noise level are overlaid on top of
each other. The cluster’s correlation coefficient and size obtained for
input data matrices of two other noise levels are also overlaid here. (PDF
704 kb)

Additional file 8: Figure S7. Power law observed in cluster size
distribution using only selected clusters shows slope of −1.15 of s
between 5 to 74 with r2 of .99. (PDF 506 kb)
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