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Abstract

Background: Regulation mechanisms between miRNAs and genes are complicated. To accomplish a biological
function, a miRNA may regulate multiple target genes, and similarly a target gene may be regulated by multiple
miRNAs. Wet-lab knowledge of co-regulating miRNAs is limited. This work introduces a computational method to
group miRNAs of similar functions to identify co-regulating miRNAsfrom a similarity matrix of miRNAs.

Results: We define a novel information content of gene ontology (GO) to measure similarity between two sets of GO
graphs corresponding to the two sets of target genes of two miRNAs. This between-graph similarity is then transferred
as a functional similarity between the two miRNAs. Our definition of the information content is based on the size of a
GO term’s descendants, but adjusted by a weight derived from its depth level and the GO relationships at its path to
the root node or to the most informative common ancestor (MICA). Further, a self-tuning technique and the
eigenvalues of the normalized Laplacian matrix are applied to determine the optimal parameters for the spectral
clustering of the similarity matrix of the miRNAs.

Conclusions: Experimental results demonstrate that our method has better clustering performance than the existing
edge-based, node-based or hybrid methods. Our method has also demonstrated a novel usefulness for the function
annotation of new miRNAs, as reported in the detailed case studies.
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Background
MiRNA is a small non-coding RNA molecule highly con-
served in plants and animals. Many investigations have
reported that miRNAs can play important roles in vari-
ous vital biological processes such as gene expression, cell
development, cancer progression, and immune process by
binding to the 3′ untranslated regions of their target genes,
which can result in the translational repression or rapid
degradation of the target transcripts [1]. As miRNA func-
tion is usually carried out by groups of miRNAs rather
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than individually [2], clustering miRNAs for the function
annotation of new miRNAs is a problem of wide inter-
ests, given that the knowledge of co-regulating miRNAs is
limited in wet-labs.
Sequence or structure-based similarity measurements

have been previously proposed to cluster miRNAs for
similar functions. For example, the Rfam [3] and miR-
Base [4] databases use sequence similarities to classify the
functions of miRNAs. The concern is that some miRNAs
having a high sequence similarity may have distinct func-
tions. Also, the structure-function relationships used in
the function annotation of miRNAs have been reported to
show serious limitations in the case of complex substruc-
tures [5].
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Recently, individual target genes of differentially
expressed miRNAs have been explored for clustering
miRNAs into groups of similar functions. However, a
miRNA can regulate multiple target genes. To overcome
this limitation, we explore a novel similarity measurement
between the two sets of target genes corresponding to
two miRNAs. We propose to transfer the function simi-
larity between the two sets of target genes as the function
similarity of the two miRNAs.
The function similarity between two sets of target genes

has been previously investigated and can be derived from
the structure information of gene ontology (GO) trees
of these target genes [6]. The hierarchical structure of a
GO tree is a directed acyclic graph (DAC), containing
structured vocabularies to describe the functions at dif-
ferent levels of the gene products [7]. The nodes of a GO
tree are called terms. An edge in a GO tree represents a
relationship between two terms. The two most common
relationships between two terms are is_a for subclass and
part_of for component [8]. GO terms, their relationships
and the similarity between two GO trees have been con-
sidered in many bioinformatics applications by literature
such as for pathway analysis [9], gene network analysis
[10], and gene expression research [11].
We introduce a novel measurement of information con-

tent, a weighted information content of gene ontology,
to estimate the similarity between two GO trees. The
weighted information content of a term in a GO tree
is determined by three factors: the number of descen-
dants of the term, the depth of the path from the term
to the root node or to the most informative common
ancestor (MICA), and the relationships along the edges
in the path. Every term in a GO tree has its unique
information content. Based on this definition of infor-
mation content, the similarity between two GO trees is
proposed to be measured by the information contents of
all the common terms between the two GO trees, rela-
tive to the information contents of all the unique terms.
Two GO trees are more similar in function than others if
they have more common terms and fewer unique terms.
When we are given two sets of GO trees, the similarity
between the two sets are derived by computing all the
pair-wise similarities of the GO trees from the two sets.
This similarity between the two sets of GO trees is then
transferred as a similarity measurement between the two
miRNAs whose target genes correspond to the two set of
GO trees.
In the literature, node-based [12] and edge-based meth-

ods [13] have been proposed to measure the similarity
between GO trees or subtrees. By their definitions, the
nodes in the same hierarchy are assumed to have an
equal distance to the root, an idea which was criticized
by [14]. Further, the information content of a term in a
GO graph is exactly the same as another’s, even if the

two terms have different depths in the graph [15]—it
ignores important properties of edges such as the depth
and the topology information of the term in the GO graph.
Node-based methods also focus on the most informative
common ancestor like our method, but they neglect the
whole path structures of GO terms. Moreover, the edge-
based methods do not distinguish the weight of terms
at different depths of a GO graph. Our weighted infor-
mation content of gene ontology can overcome these
shortcomings.
For enhancing the performance on clustering the miR-

NAs into subgroups of similar functions, a self-tuning
technique is applied to determine the optimal parame-
ter σ for the spectral clustering method [16]. Further, an
appropriate cluster number is estimated by the eigenval-
ues of the normalized Laplacianmatrix. Our approach has
been used for grouping miRNAs of similar functions asso-
ciated with diseases stored at several databases. Most of
the experimental results showed good accuracy and the
annotation results for new miRNAs can be supported by
evidence found from the other databases or from recently
published literature.

Methods
MiRNAs and their target genes were downloaded
from http://mirtarbase.mbc.nctu.edu.tw/php/download.
php (the file hsa_MTI.xls). This file is a relational table
having 39110 lines and 9 columns: miRTarBase ID,
miRNA, Species (miRNA), Target Gene, Target Gene
(Entrez ID), Species (Target Gene), Experiments, Support
Type, and References (PMID). Each line of this table stores
information of one miRNA and the information of one of
its target genes. We note that some multiple lines in this
table actually refer to the same miRNA—researchers have
done many different experiments to confirm the same
miRNA’s target genes. As a result, there are only 289 dis-
tinct miRNAs in this file. We used all of them in this work.
The disease information associated with each of the miR-
NAs was searched at the HMDD database (http://www.
cuilab.cn/hmdd). Out of the 289 miRNAs, 24 did not have
disease information available.
The GO terms of a target gene were searched at

the EMBL-EBI website (http://www.ebi.ac.uk/). The rela-
tionships (i.e., is_a and part_of) of these GO terms
were derived from the AmiGo database (http://amigo.
geneontology.org/amigo). These GO terms and their rela-
tionships were integrated and represented by graphs.

Definition 1. GO graph of a gene. Given a gene g,
its GO terms and the relationships of these GO terms
are represented by a DAC (direct acyclic) graph G(g) =
(Termg ,Edgeg), where Termg represents the set of nodes
each labeled with a GO term, and Edgeg represents the set
of edges each labeled with a relationship (is_a or part_of )
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between a pair of terms of g. Such a graph is also called a
GO graph or GO tree of g.

Definition 2. Root node. The root node of a GO graph
is the term node which has an in-degree only. A GO graph
has one and only one root node.

Definition 3. Leaf nodes. A leaf node of a GO graph is
a term node which has an out-degree only. The GO graph
of a gene may have multiple leaf nodes.

Figure 1a, b and Fig. 2 show three examples of GO
graphs, where root nodes, leaf nodes, and the relation-
ships of some pairs of terms are explained.

Definition 4. Term graph. A term graph is a special
form of GO graph. Given a GO graph, if it has only one leaf
term A, such a GO graph is called A’s term graph, denoted
by TGA = (A,TermA,EdgeA), where TermA and EdgeA
represent the set of GO terms and the set of edges of the GO
graph, respectively.

Given a GO graph G = (Term,Edge), for every term
t ∈ Term, we can construct one term graph TG(t,G) =(
t,Term(t,G),Edge(t,G)

)
, where Term(t,G) is the set of terms

in the path from t to the root node of G, and Edge(t,G)) is
the set of edges in the path from t to the root node of G.
In particular, a leaf node l_node of GO graph G

can form a leaf term graph TG(l_node,G) = (l_node,
Term(l_node,G),Edge(l_node,G)). Leaf term graphs of a GO
graph are used later to define the similarity between two

a b
Fig. 1 a The GO graph of GO:0048513 and b The GO graph of
GO:0072358. Each includes one leaf term only

Fig. 2 A GO tree integrating graphs of GO:0048513 and GO:0072358

GO graphs. The subscript G is sometimes omitted when
it is understood. Figure 1a and b are actually the two leaf
term graphs of Fig. 2.

Definition 5. Depth and level of a node. The depth of
a term node t in a GO graph is the number of edges in the
longest path from t to the root node of the graph. For exam-
ple, the depth of 0048513 is 4 as shown in Fig. 1a. If the
depth of a term is d, the term is also said to be at level d.

Given two term graphs TGA = (A,TermA,EdgeA) and
TGB = (B,TermB,EdgeB). There may exist many common
terms (at least the root node) between TermA and TermB.
For example, term 0048856 is a common term between
TG0048513 (Fig. 1a) and TG0072358 (Fig. 1b). For all other
terms in TermA or TermB, they are called uncommon or
unique terms.

ClusteringmiRNAs for similar functions
Suppose we are given h number of miRNAs, the first pro-
cess of our method is to construct a h × h similarity
matrix of these miRNAs. For every pair of miRNAs in the
matrix, their similarity is transferred from the similarity
between their two sets of target genes. As every gene can
be represented by a GO tree, the similarity between the
two sets of target genes can be determined by comput-
ing the similarity between the two sets of GO trees. With
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this h × h similarity matrix as input, we use a spectral
clustering method to group miRNAs of similar functions.
We present details for these steps:

1. Compute the weighted information content of every
term in a GO graph to determine the similarity
between two GO trees;

2. Compute the similarity between two sets of GO trees
to determine the similarity between two miRNAs;

3. Construct a similarity matrix of the h miRNAs, and
subgroup them for a similar function in each group
using the similarity matrix as input.

The framework of our method is showed in Fig. 3.

Compute a weighted information content of a term in a GO
graph
The traditionally defined information contents of two
terms in a GO graph can be exactly the same even if the
two terms have different depths in the graph [17]. We pro-
pose a new measurement for the information content to
deal with this issue. It is a descendant-based information
content, adjusted by a weight proportional to the depth
and the relationships of the nodes in the path of the term
to the root node.
For a GO graph G = (Term,Edge), the information

content (IC) of a term t ∈ Term is computed by

IC(t) = − log
1 + ‖descends(t)‖

‖Term‖ (1)

where ‖descends(t)‖ is the number of t’s descendants in
G, and ‖Term‖ is the number of terms of G. This equation
implies that a parent node’s IC is always smaller than its
child node (i.e., a GO term closer to the root node has a
smaller IC value); and that two different leaf terms have
the same IC (because they do not have any descendants).
For example, term 0048731 in Fig. 2 has 3 descendants
(0072359, 0072358, and 0048513). Its IC is − log( 1+3

7 ) =
0.243. The IC values of the other terms in Fig. 2 are listed
in Table 1.

Definition 6. The most informative common ances-
tor. Given a term graph, if a leaf term can reach to a node
by walking through a direct line, this node is called an
ancestor term of the leaf term. A common ancestor term is
such an ancestor term that two input leave terms can both
reach. The most informative common ancestor (MICA) is
the common ancestor term that has the maximum IC value
of two term graphs.

These information contents are then adjusted by a
weight of the path of the term to the root node or to the
MICA node. The weight is named edge weight which is
determined by two factors: the relationships of the edges
in the path and the distance of the path. Let TGA =

Fig. 3 Our method for clustering miRNAs. The raw input to the
method consists of data of miRNAs, the target genes of the miRNAs,
and the GO graphs of the miRNAs’ target genes. Firstly, the similarity
of two GO graphs is computed according to the weighted
information content. Secondly, the similarity of two target genes of
two miRNAs is calculated by using the similarity of their GO graphs.
Thirdly, the similarity between two miRNAs is computed by their
similarity of their target genes. Then the miRNA distance/similarity
matrix is constructed by these similarity scores. Finally, the spectral
clustering method is applied to cluster the miRNAs

{
A,TermA,EdgeA

}
and TGB = {

B,TermB,EdgeB
}
be two

term graphs, G be the merged graph, and mica be the
two term graphs’ MICA. For a term t in the graph G, its
distance weight ωedge(t,G) is defined as

ωedge(t,G) = 2
π

∗ arctan
1

ωdepth(t,G)
(2)

where ωdepth(t,G) is 1 if t is the root node. If t is mica’s
ancestor or mica, ωdepth(t,G) is the product of all the
relationships in the longest path from t to the root node
of TGA or TGB, otherwise it is the product of all the
relationships in the longest path from t to themica.
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Table 1 The IC, length weights, edge weight, and weighted information content of the terms in Fig. 2

Term GO:0008150 GO:0032502 GO:0048856 GO:0048731 GO:0072359 GO:0048513 GO:0072358

IC 0 0.067 0.146 0.243 0.544 0.845 0.845

ωdepth(t,G) 1 0.9 0.81 0.729 0.9 0.9 0.63

ωedge(t,G) 0 0.533 0.567 0.599 0.533 0.533 0.642

ωIC(t,G) 0 0.189 0.288 0.382 0.538 0.671 0.737

The is_a relationship is more important than the part_of
relationship. Thus, we set is_a as Wedge = 0.9 and part_of
is set as Wedge = 0.7. We note that the edge weight of a
term increases when the term is farther to the root node or
to the MICA. The arctan transformation is to standardize
the reciprocal of two length weights as they can be very
large.
For example, ωdepth of term 0008150 in Fig. 2 is 1, since

it is the root node of the GO tree. The ωdepth value of its
child 0032502 is 0.9, as the relationship between these two
terms is is_a. The ωdepth value of GO : 0072359 is 0.9,
because this term isMICA’s descendant term and the rela-
tionship between MICA and this term is is_a. The other
terms’ ωdepth values are listed in Table 1. We note that if a
term hasmultiple longest paths to the root node orMICA,
we choose the one which provides the biggest edge weight
for the term. The edge weights of the terms in Fig. 2 are
also listed in Table 1 (see the second-last row).
By Eq. 2, if an ancestor term of the MICA is near to the

root, this term contributes less similarity to the two term’s
trees as it is more general. For a descendant term of the
MICA, which is near to MICA, contributes less dissimi-
larity. Unlike traditional edge-based methods [18] which
set all the edges as the same weight, our method considers
both the distance of the terms to the root or MICA node
and the difference between is_a and part_of to measure
the distance weight of a term.
We combine the initial information content (i.e., Eqn. 1)

of a term t in a merged GO graph G and its edge weight
(i.e., Eqn. 2) to derive a weighted information content for
the term. It is denoted by ωIC(t,G), defined as

ωIC(t,G) =
√
IC(t) ∗ ωedge(t,G) (3)

The weighted information contents of all the terms in
Fig. 2 are shown in the last row of Table 1.
By this definition, only the root node has a weighted

information content of 0. It is understandable because a
root node does not contribute to the weight—it has no
parent node and it is the ancestor of all other terms. As
some terms (e.g., the leaf nodes of a graph) having the
same IC can occur at different levels of the graph, the
IC value alone cannot reflect the different importance of
these terms. This is the main reason why edge weights are
used to resolve this issue.

Determine the similarity of two genes based on weighted
information content
As the GO graph of a gene may contain multiple leaf term
graphs, we first define the similarity between two term
graphs, and then define the similarity between two GO
graphs.
Given two term graphs TGA = (

A,TermA,EdgeA
)
and

TGB = (
B,TermB,EdgeB

)
, the similarity of these two

graphs is measured through the weighted information
contents of their common terms as well as their uncom-
mon terms. We use Fig. 4 to illustrate this definition.
The common terms between the two leaf term graphs
TG0048513 and TG0072358 are shown in the dashed square
box. The terms outside the square box are the uncommon
terms of these two leaf term graphs. The MICA of these
two term graphs is GO : 0048731. The ancestry terms of
the MICA are all in the square box, and all the descendant
terms of MICA are outside the box.
The similarity of the two term graphs TGA and TGB,

denoted by sim(TGA,TGB), is defined as

sim(TGA,TGB)=
∑

t∈common
ωIC(t,G)

∑

t∈common
ωIC(t,G)+ ∑

t∈uncommon
ωIC(t,G)

(4)

Fig. 4 A schematic illustration of the similarity between two graphs
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where, common is the set of common terms between TGA
and TGB, uncommon is the set of their uncommon terms,
and G is the merged graph of TGA and TGB.
The similarity sim(TGA,TGB) ranges its values between

0 and 1. When the MICA of the two term graphs is the
root node, the similarity between these two graphs is 0. If
the two term graphs are the same, their similarity is 1.
As mentioned, the GO graph of a gene may contain

multiple leaf nodes which correspond to multiple term
graphs. Use G1 to denote the GO graph of gene g1 and G2
as the GO graph of gene g2. The similarity betweenG1 and
G2 is measured by averaging the similarities of every leaf
term graph of one GO graph (G1 orG2) with the other GO
graph (G2 or G1). Assume G1 has n1 number of leaf terms
LeafTerms1 = {

l_node11, l_node21, . . . , l_node
n1
1

}
, and

their leaf term graphs are denoted by TG(LeafTerms1) ={
TG(

l_node11,G1
),TG(

l_node21,G1
), . . . ,TG(

l_noden11 ,G1
)
}
.

Also assume G2 has n2 number of leaf terms
LeafTerms2 = {

l_node12, l_node22, · · · , l_noden22
}
, and

their leaf term graphs are denoted by TG(LeafTerms2) ={
TG(

l_node12,G2
),TG(

l_node22,G2
), · · · ,TG(

l_noden22 ,G2
)
}
.

The similarity between G1 and G2, denoted by
sim(G1,G2), is given by

sim(G1,G2) =

∑

tg∈TG(LeafTerms1)
sim(tg,G2)+ ∑

tg∈TG(LeafTerms2)
sim(tg,G1)

n1 + n2
(5)

where, sim(tg,G2) = max
1≤i≤n2

sim(tg,TG(l_nodei2,G2)
); and

sim(tg,G1) is similarly defined. We note that the maximal
similarity of leaf-leaf term graph pairs is applied to mea-
sure the similarity between one leaf term graph and one
GO graph.

Clustering miRNAs for similar functions based on their
target genes’ similarity/distance matrix
A miRNA usually has several target genes. In this work,
the similarity between two miRNAs is measured by the
similarity between the two sets of their target genes. We
first introduce the similarity between a set of genes and a
gene. Given a set of genesGS = {g1, g2, . . . , gm} and a gene
g′, the similarity between GS and g′ is given by

sim(GS, g′) = max
1≤i≤m

sim(G(gi),G(g′)) (6)

where G(gi) is the GO graph of gi, and G(g′) is the GO
graph of g′.
An alternative method for measuring the similarity

between a gene set and a gene is to take the average of the
individual GO terms’ similarities. However, the average of
the individual GO terms’ similarities can underestimate
the true similarity between a gene set and a gene [15], as

we use the similarity between a gene set and a gene to
compute the similarity between two gene sets. This under-
estimated value will lower down the similarity between
two gene sets.
Suppose we are given two miRNAs denoted by R1 and

R2. Assume R1 has s number of target genes GS1 =
{g11 , g21 , . . . , gs1} and R2 has k number of target genesGS2 =
{g12 , g22 , . . . , gk2 }. The similarity of these two miRNAs R1
and R2 is defined as

sim(R1,R2) =

∑

1≤i≤k
sim(GS1, gi2) + ∑

1≤j≤s
sim(GS2, g

j
1)

s + k
(7)

The distance dsim, or dissimilarity, between two miR-
NAs R1 and R2 is computed by

dsim(R1,R2) = 1 − sim(R1,R2) (8)

The dissimilarity between two miRNAs can be viewed
as their distance, and thus it can be applied for clustering
a group of miRNAs.
For a number h of miRNAs R1,R2, . . . ,Rh, a spec-

tral clustering method [19] is applied to the dissimilarity
matrix of these miRNAs to detect subsets of miRNAs
which each have a similar function. The spectral cluster-
ing method is described as follows:

• For a set of data points X = {x1, x2, . . . , xn}, construct
a complete graph SPG in which the data point of X is
the node of SPG. The weight ω(xi,xj) of each edge that
connects with nodes xi and xj, is defined as:

ω(xi,xj) = e−
‖xi−xj‖2

2σ2 (9)

Let Wam denotes denote the weighted adjacency
matrix of the graph SPG.

• Calculate the normalized Laplacian L fromWam and
compute the first k eigenvectors of L. The k is the
number of clusters. Then, the k eigenvectors can be
used to construct a n ∗ k matrix U.

• The matrix U can be seen as a set of n data points
under k features. Apply the k-means clustering
algorithm to divide these data points.

For the h number of miRNAs R1,R2, . . . ,Rh, the
weighted adjacency matrix Wam for the spectral cluster-
ing is determined by

ω(Ri,Rj) = e−
dsim(Ri ,Rj)2

2σ2 (10)

where, 1 ≤ i, j ≤ h.
The source code of spectral clustering is available at

website http://sourceforge.net/projects/spectralcluster/?
source=typ_redirect. Our source code of computing

http://sourceforge.net/projects/spectralcluster/?source=typ_redirect
http://sourceforge.net/projects/spectralcluster/?source=typ_redirect
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the weighted information contents can be downloaded
from http://bioinformatics.gxu.edu.cn/bio/data/CWLan/
spectralcode.tar.gz. Our results on clustering are available
at http://bioinformatics.gxu.edu.cn/bio/data/CWLan/
spectralresult.tar.gz.
There are two vital parameters in the spectral cluster-

ing method. The first one is σ in Eq. 10 and the other
is the number of clusters. These two parameters have
heavy influence to the clustering result. Traditional meth-
ods usually use several different choices of σ to test and
choose the best σ by comparing the results. However, such
approaches are time consuming. The selection of a good
cluster number has been a challenging issue. In general,
the cluster number relies on the user’s experience. In this
paper, a self-tuning method is applied to decide an opti-
mal value of σ and we also employ the eigenvalues of
the normalized Laplacian matrix to determine an optimal
number for the clusters.
Self-tuning for the selection of σ . Equation 10 uses

the square of σ . The concern is that σ will be the same
even though for computing two different data points. The
self-tuning method employs two different σ values to cal-
culate the weight of an edge. For the set of miRNAs R =
{R1,R2, . . . ,Rh}, the weight of its adjacency matrix by our
self-tuning method is:

ωself (Ri,Rj) = e
− dsim(Ri ,Rj)2

2σi∗σj i, j = 1, 2 . . . , h (11)

where σi is the average distance of Ri to all other miRNAs,
given by

σi =
∑h

j=1 dsim(Ri,Rj)

h − 1
(12)

Select the optimal cluster number. An optimal num-
ber of clusters of the miRNAs is determined from
the trend of the eigenvalues of the normalized Lapla-
cian matrix L. Suppose these eigenvalues are Eig =
{λ1, λ2, . . . , λh} sorted in a descending order. If the eigen-
value λk+1 (1 ≤ k < h) is very small and the trend of
the subsequent eigenvalues goes stable, then the number
of clusters can be set as k. If the differences between two
consecutive eigenvalues are very small, we said that the
trend of the consecutive eigenvalues goes stable. Figure 5
presents the first 50 largest eigenvalues of the normal-
ized Laplacian matrix L of the miRNA data set used in
the second section of “Data Sets and Definitions Related
to GO Graphs". Therefore, the cluster number 13 is
selected.

Results
Our method was applied to the data set of 289 Human
miRNAs downloaded from http://mirtarbase.mbc.nctu.
edu.tw/ to cluster their function groups. (The details of
the data set have been described in the second Section.)
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Fig. 5 The first 50 largest eigenvalues

265 of these miRNAs are associated with a disease. The
disease information of the remaining 24 miRNAs are not
available from the database at the time of this work.
Instead their functions were predicted by our clustering
method. We report four parts of computational results
in this section. The first part shows the importance of
our edge weights to the information contents of term
nodes in GO graphs. The second part selects a good
edge relationship weight and discusses the effect of the
edge relationship weight on the cluster number. The third
part compares our method with three existing methods
to understand our superior clustering performance. The
forth part reports the function annotation results for new
miRNAs by our clustering method.

The effect of edge weights on the information contents of
term nodes
The results in this section explain why we introduce the
edge weight of a term to adjust the information content of
the term (using our Eqn. 1). Figure 6 presents the numbers
of leaf terms of the GO trees when the term level varies.
The majority of these leaf terms are at level 5. By the tra-
ditional definition of information content, all these leaf
terms have the same IC value, although they are at differ-
ent levels of the trees. This is why we use an edge weight
to adjust the information content of a leaf term and make
it proportional to the distance of the path from the leaf
node to the MICA. Namely, a leaf term having a far dis-
tance to the MICA should contain more information than
a leaf term closer to the MICA.
Figure 7 shows the numbers of different IC values for

the terms at the same levels of the GO trees, where the
IC values are computed according to our definition of
information content. For example at level 4 of these GO
trees, there are many terms having different IC values.

http://bioinformatics.gxu.edu.cn/bio/data/CWLan/spectralcode.tar.gz
http://bioinformatics.gxu.edu.cn/bio/data/CWLan/spectralcode.tar.gz
http://bioinformatics.gxu.edu.cn/bio/data/CWLan/spectralresult.tar.gz
http://bioinformatics.gxu.edu.cn/bio/data/CWLan/spectralresult.tar.gz
http://mirtarbase.mbc.nctu.edu.tw/
http://mirtarbase.mbc.nctu.edu.tw/
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These terms should have different IC values, as they con-
tain different numbers of descendants. The traditional
edge-based method [18] assigns the same weights to the
terms at the same level. The combination of IC value
and the edge weight by our Eqn. 3 overcomes this weak
point of the node-base method [12] and the edge-based
method [18].

Effect of edge relationship weights on the number of
clusters
We have proposed to use edge relationships in GO trees
to define an edge weight. As this work focuses on the pre-
diction and annotation of miRNA functions, we use the
molecular functions of GO terms which only have rela-
tionship is_a betweenGO terms.We tested and compared
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Fig. 7 The numbers of different IC values at the same levels of the GO
trees

the effectiveness of 9 different weights of the is_a rela-
tionship from 0.1 to 0.9 with step increase of 0.1 on the
function prediction performance for the 265 miRNAs.
An accuracy rate is used to measure the quality of the

clustering results. It is defined as the proportion of miR-
NAs in a cluster which are associated with the same
disease:

accr(disease,C) = nm(disease)
‖C‖ (13)

where nm(disease) is the number of miRNAs associated
with the disease, and ‖C‖ is the total number of miRNA
in the cluster C. Usually, a cluster of miRNAs formed by
computational methods can have diverse proportions of
miRNAs each sharing a different disease. We used the
accuracy of the prevailing disease to represent the accu-
racy rate of the cluster. A high accuracy of a cluster means
that many miRNAs associated with the same disease are
clustered into the same group, implying the weight of
the is_a relationship is properly assigned for the function
prediction of new miRNAs.
The breast cancer, stomach cancer, and hepatocellular

carcinoma were three diseases which are most prevailing
in three clusters for all of the situations of the relation-
ship weight from 0.1 to 0.9. The detailed accuracy rates
are presented in Table 2. We found that 0.8 was a good
relationship weight.
Figure 8 shows that the eigenvalues from the 10th to

the 20th become very stable (i.e., the difference between
two consecutive eigenvalues becomes close to 0) under all
situations of the relationship weight from 0.1 to 0.9. As
discussed above, cluster number 13 was chosen to group
miRNAs of similar functions. It can be seen that the effect
of the edge relationship weights on the cluster number is
very small.

Clustering performance comparison with existing methods
We compared our method with three literature meth-
ods to understand the grouping performance for miRNAs
of similar functions. The three literature methods are a
node-based approach by Lin [12], edge-based approach by
Viktor [20], and hybrid approach by Wang [21].
The performance by each clustering method is reported

in Table 3.
For the Breast Neoplasms Cluster, all the four meth-

ods have very close and competitive accuracy. For the
Hepatocellular Carcinoma Cluster, Lin’s method has the
largest number of miRNAs and the highest accuracy.
Our method has the second largest number of miRNAs
on the hepatocellular carcinoma cluster and the second
highest accuracy. For the Stomach Neoplasms cluster,
our method yields the largest number of miRNAs and
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Table 2 Accuracy rates of three different clusters by setting 9 different edge relationship weights

Relationship Weight group 0.1 group 0.2 group 0.3 group 0.4 group 0.5 group

Breast Neoplasms Cluster 35/43 = 0.814 35/42 = 0.833 35/42 = 0.833 37/44 = 0.841 30/35 = 0.857

Hepatocellular Carcinoma Cluster 14/25 = 0.56 10/19 = 0.526 16/27 = 0.593 14/24 = 0.583 12/23 = 0.522

Stomach Neoplasms Cluster 15/27 = 0.55 13/24 = 0.542 13/26 = 0.500 15/25 = 0.600 14/26 = 0.538

Relationship Weight group 0.6 group 0.7 group 0.8 group 0.9 group

Breast Neoplasms Cluster 33/40 = 0.825 36/43 = 0.837 36/43 = 0.837 36/43 = 0.837

Hepatocellular Carcinoma Cluster 12/27 = 0.444 17/23 = 0.739 18/24 = 0.750 11/26 = 0.423

Stomach Neoplasms Cluster 11/24 = 0.458 17/28 = 0.607 17/27 = 0.630 14/26 = 0.538

the highest accuracy rate. Overall, our method gener-
ates the best accuracy for the union of the three clus-
ters, and has the largest coverage of the miRNAs (the
total number of miRNAs in the clusters). Wang’s method
has the same coverage of 94 miRNAs as ours, but its
accuracy is about 30% lower. Lin’s method has a similar
overall accuracy as ours, but its coverage is about 20%
smaller.

Co-regulating miRNAs and function annotations for new
miRNAs
As suggested, miRNAs clustered into the same group
should have similar functions. Some of our experi-
ments have verified this point. For example, the pair
of miRNA-519d and miRNA-216a in the Hepatocellular
Carcinoma cluster have a similar function. In factmiRNA-
519d [22] and miRNA-216a [23] had been both found
to up-regulate PTEN in hepatocellular carcinoma cells.
Another example is from the Breast Cancer cluster about
the pair of miRNA-205 and miRNA-145. miRNA-205 is
involved in the regulation of breast cancer [24], while
miRNA-145 also plays a vital role in regulating breast
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Fig. 8 The consecutive differences of the first 20 largest eigenvalues
(i.e., the differences between the kth and (k + 1)th eigenvalue) under
the setting of different edge relationship weights

cancer [25]. In the Stomach Cancer cluster, it can be
confirmed that miRNA-150 is related to stomach caner
[26] and miRNA-106a is also related to this cancer [27].
Many previous studies have indicated that multiple miR-
NAs can work together to effect cancer formation [28].
Our method to identify these miRNA clusters can assist
in investigating this mechanism [29].
The functions/disease information of some miRNAs

(24) of our 289-miRNA data set are still un-annotated in
the HMDD database. However these un-annotated miR-
NAs can be clustered into some groups by our method,
and their functions can be annotated according to the
prevailing functions of the groups:

• 5 of the 24 un-annotated miRNAs are grouped into
the breast cancer cluster (miRNA-129, miRNA-135a,
miRNA-196a, miRNA-5787, and miRNA-9),

• 4 are grouped in the stomach cancer cluster
(miRNA-103a, miRNA-181a, miRNA-19b, and
miRNA-519a),

• 2 are in the Hepatocellular Carcinoma cluster
(miRNA-515 and miRNA-639),

• 8 are classified into the Ovarian cancer cluster
(miRNA-512, miRNA-518a, miRNA-521,
miRNA-644a, miRNA-876, miRNA-886,
miRNA-892b, miRNA-153),

• 2 are clustered in the Prostatic cancer cluster (let-7f
and miRNA-219a), and

• 3 are in the Colorectal cancer cluster (miRNA-30c,
miRNA-181b, and miRNA-513a).

We have found evidence to support our annota-
tion for some of these miRNAs, for example, miRNA-
9 which is asigned into the breast cancer cluster. In
fact, recent research shows that miRNA-9 is a poten-
tial biomarker for breast cancer [30]. The miRNA-129
is also predicted as a regulator in breast cancer by
our method. A recent study can support this predic-
tion: miRNA-129 is down-regulated in breast cancer
and has effect on breast cancer migration and motil-
ity [31]. It has also been claimed that miRNA-135a is
very critical in regulating breast cancer — miRNA-135a
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Table 3 Accuracy rates on the three clusters by different methods

Method Our method Lin’s method Viktor’s method Wang’s method

Breast Neoplasms Cluster 36/43 = 0.837 24/29 = 0.829 26/31 = 0.839 36/43 = 0.837

Hepatocellular Carcinoma Cluster 18/24 = 0.750 20/24 = 0.833 15/22 = 0.682 13/21 = 0.619

Stomach Neoplasms Cluster 17/27 = 0.630 12/23 = 0.522 15/29 = 0.517 14/30 = 0.467

can bind to gene ESRR1 which is related with the breast
cancer [32].
For the un-annotated miRNAs in the Stomach cancer

cluster, it has been found that miRNA-181a is up-
regulated in stomach cancer and has effects on cell pro-
liferation in stomach cancer [33]. Literature work also
supports that miRNA-19b and miRNA-519a are associ-
ated with stomach cancer [34, 35]
In the ovarian cancer cluster, two studies have shown

that miRNA-521 and miRNA-153 are indeed associated
with the ovarian cancer [36, 37]. In the Colorectal Can-
cer cluster, three un-annotated miRNAs miRNA-30c,
miRNA-181b, and miRNA-513a can be verified that they
are related with this cancer [38–40].

Discussion and conclusion
A variety of methods have been developed to study the
functional roles of miRNAs by dividing them into func-
tional groups. For example, Kaczkowski applies the miR-
NAs’ sequence and their secondary structure to cluster
miRNAs [41]. However, themiRNAswith a high similarity
in sequence/structure cannot guarantee similar functions.
Thus, the target genes of miRNAs have been taken as
an alternative information source to investigate miRNAs
functions.
One of the most prevalent comparative methods for the

similarity of target genes is GO graph. The approaches
can be classified into two categories: (1) those node-based
methods and edge-based methods using GO terms, and
(2) pairwise methods and groupwise methods using gene
products. Typical node-based methods include Resnik’s
[42], Lin’s [12], and Jiang and Conrath’s algorithm [43].
This kind of method applies the IC for measuring the
similarity of two GO graphs.
The Resnik’s method uses only the MICA to measure

the similarity between two terms. However, this kind of
method neglects the dissimilarity of two terms. Other
node-based methods consider both the IC value of terms
as well as the MICA of two GO graphs, such as Lin’s
method and Jiang and Conrath’s method. Although node-
basedmethods are useful inmeasuring similarity of terms,
the original IC value relies on a specific corpus and the
structure of the GO graph is largely ignored.
The edge-based methods utilize the length between

root nodes and terms. The edge-based method applies
the length between root node to the MICA and the

distances between the MICA and the leaf terms. The
edge method reflects the structure of the GO graph.
It assumes all edges have equal weight. However, edges
in GO graphs can describe two different relationships
(is_a and part_of ), which should be assigned with dif-
ferent weights. In addition, the edge-based methods
view the weight of all GO terms as the same. How-
ever, it is reasonable that a term should have lower
weight if it is closer to the root node of the GO
graph.
Both edge-based methods and node-based methods

have their own advantages. Thus, some methods com-
bine the weight of the term and the distance between two
terms to measure the similarity of two GO graphs. This
kind of method is called hybrid methods. For example,
Sevilla applies the edge and the IC to measure the similar-
ity of two nodes [44].While this kind of themethod always
ignores the relationship of the edge. Wang’s method [21]
is a typical hybrid method that takes the relationship of
the edge into consideration. However, if two term pairs
have the same structure, they will have the same similarity
value.
This work has introduced a new GO-based method to

cluster miRNAs for similar functions. A weighted infor-
mation content is proposed to measure the importance
of a term in a GO graph. Its key idea is to integrate the
descendant-based information content, the depth of the
term, and the relationships of the edges in the path from
the term to the root node. Our weighted information con-
tent can overcome some limitations of the conventional
node-based and edge-based approaches. The similarity
between two GO graphs is based on the weighted infor-
mation contents of the common terms relative to the
information contents of the uncommon terms. These sim-
ilarities are transferred to estimate the similarities of miR-
NAs. A spectral clustering method has been applied to
the similarity/distance matrix of a set of 289 miRNAs for
function grouping. Compared with three state-of-the-art
clustering methods, our method show better performance
in accuracy to measure the similarity/distance between
miRNAs. Our method is also useful for the discovery
of co-regulating miRNAs and the function annotation of
new miRNAs.
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