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Abstract

Background: Most of hydrophilic and hydrophobic residues are thought to be exposed and buried in proteins,
respectively. In contrast to the majority of the existing studies on protein folding characteristics using protein
structures, in this study, our aim was to design predictors for estimating relative solvent accessibility (RSA) of amino
acid residues to discover protein folding characteristics from sequences.

Methods: The proposed 20 real-value RSA predictors were designed on the basis of the support vector regression
method with a set of informative physicochemical properties (PCPs) obtained by means of an optimal feature
selection algorithm. Then, molecular dynamics simulations were performed for validating the knowledge discovered

by analysis of the selected PCPs.

Results: The RSA predictors had the mean absolute error of 14.11% and a correlation coefficient of 0.69, better than
the existing predictors. The hydrophilic-residue predictors preferred PCPs of buried amino acid residues to PCPs of
exposed ones as prediction features. A hydrophobic spine composed of exposed hydrophobic residues of an a-helix
was discovered by analyzing the PCPs of RSA predictors corresponding to hydrophobic residues. For example, the
results of a molecular dynamics simulation of wild-type sequences and their mutants showed that proteins TMOF and
2WRP_H16I (Protein Data Bank IDs), which have a perfectly hydrophobic spine, have more stable structures than
TMOF_I54D and 2WRP do (which do not have a perfectly hydrophobic spine).

Conclusions: We identified informative PCPs to design high-performance RSA predictors and to analyze these PCPs for
identification of novel protein folding characteristics. A hydrophobic spine in a protein can help to stabilize exposed a-helices.

Keywords: Hydrophobic spine, Molecular dynamics simulation, Physicochemical properties, Protein folding,
Solvent-accessible surface area, Support vector regression, Knowledge discovery

Background

Prediction of the dominant fold of proteins and discovery
of protein folding characteristics in an aqueous solution
have been challenging problems recently [1, 2] although
many methods, such as molecular dynamics simulations,
folding recognition, and homology modeling, have been
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used to study protein folding in recent years. To elucidate
folding states of proteins, estimation of accessible surface
areas (ASAs) is a simple method to determine whether a
residue is buried or exposed and hence the function of this
residue can be ascertained. Therefore, the ASA is consid-
ered a crucial factor for prediction of protein structure.
Predicting the ASA is an important approach in studies
on the structure and function of proteins.

Hikijata et al [3] predicted three-dimensional (3D)
structures of proteins using alignment results and solv-
ent accessibility of residues. Huang et al. [4] indicated
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that the ASA is useful for identification of DNA-binding
domains in sequences. Zhu and Blundell [5] analyzed
secondary structures of proteins and found amino acid
patterns of solvent-inaccessible faces of «-helices and
solvent-accessible sides of [-strands. Kumar and Bansal
[6] analyzed o-helices in globular proteins and suggested
that Ncap is mostly composed of Ser, Asp, Thr, Asn, Gly,
and Pro. Pascarella et al. [7] and Bartlett et al. [8] used 3D
structure information to study solvent accessibility of resi-
dues and characteristics of catalytic sites, respectively.
Shirota et al. [9] estimated the surface-to-volume ratio of
residues to examine the sequence-structure relation.

Barton502 is a dataset that is used lately to study and
predict secondary structures. Barton502 contains protein
structures that were chosen using strict conditions [10]
and then was used to estimate relative solvent accessibil-
ity (RSA) of proteins in many studies. Table 1 shows
some relevant studies on real-value RSA prediction
using various regression methods, such as support vec-
tor regression (SVR), multilayer regression (MLR),
neural network (NN), and information theory [11-20].
Among these machine learning methods, the NN is the
first method to be tested for predicting protein solvent
accessibility and is still extensively employed in various
studies. SVR is another effective method for the RSA
prediction. Several features were selected to train these
machine learning models, such as local residue compos-
ition, probability profiles, and a position-specific scoring
matrix (PSSM). Although RSAs of residues are known to
be closely linked with protein functions, few researchers
are studying protein folding characteristics using
sequence-based RSA predictors.

Table 1 Relevant studies on real-value RSA prediction

Reference Year Regression method Features

Ahmad [11] 2003 NN Amino acid proportions

Yuan [12] 2004 SVR Amino acid proportions

Adamczak [13] 2004 NN PSSM

Wang [14] 2005 MLR Amino acid proportions,
PSSM, and sequence length

Garg [15] 2005 NN PSSM and secondary
structure

Nguyen [16] 2006 Two-stage SVR PSSM

Chang [17] 2008 Two-stage SVR enhance PSSM and
sequence length

Igbal [18] 2015 Basic exact PSSM, PCPs and disorder

regression probability

Fan [19] 2015 GBRT PSSM, secondary structure,
and native disorder

Zhang [20] 2015 SVR PSSM, PCPs, secondary
structure, disorder
probability

SVR-RSA 2016 SVR PSSM, PCPs, and sequence
length
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Tung and Ho [21] proposed an informative property-
mining algorithm that involves an inheritable biobjective
combinatorial genetic algorithm (IBCGA) [21] to select
informative physicochemical properties (PCPs) to
predict immunogenicity of MHC class I-binding
peptides. In the present study, our aim was to design a
high-performance predictor of RSA using SVR with
informative PCPs obtained by means of IBCGA with
SVR to identify new protein folding characteristics.
These features were combined with informative PCPs,
PSSMs, and sequence length, and the resulting predictor,
named SVR-RSA, turned out to be more accurate on the
Barton502 dataset than the exiting RSA predictors. The
analysis of informative PCPs of residues yielded a special
set of exposed hydrophobic residues of an a-helix,
named a hydrophobic spine. The latter consists of
periodically repeating exposed hydrophobic residues:
every three or four positions.

To characterize the hydrophobic spine, proteins
1IMOF and 2WRP (Protein Data Bank IDs), which have
a perfectly hydrophobic spine and an imperfectly hydro-
phobic spine, respectively, were used as examples to
analyze structural stability by molecular dynamics
simulations of 10 ns at 300, 400, and 500 K [22]. Two
mutants, IMOF_I54D and 2WRP_H16I, which have an
imperfectly hydrophobic spine and a perfectly hydropho-
bic spine, respectively, were also compared with their
wild-type versions. The simulation results revealed that
a hydrophobic spine in a protein can help to stabilize
exposed a-helices, and this result may be helpful in pro-
tein engineering.

Methods

We used the IBCGA algorithm to select small feature
sets of informative PCPs and to discover knowledge by
analyzing these feature sets. Each model for one of 20
amino acid residues has its own feature set. The analysis
of the informative PCPs deduced the hydrophobic spine,
which was further studied using molecular dynamics
simulations.

The dataset

The Barton502 dataset was used for designing the high-
performance RSA predictor. Barton502 contains 502
nonhomologous sequences collected by Cuff and Barton
[23]. Barton502 was randomly subdivided into a training
set and test set, which contain 336 and 166 sequences,
respectively. According to Chang et al. [17], there are 84
sequences in the training dataset that was randomly
selected, named the Sma dataset, for feature selection.
Every protein was divided into a number of small seg-
ments using a sliding window 11 amino acid residues
long [17], where the central residue of the segment is
the prediction target while the five nearest bilateral
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residues provide additional information. All the seg-
ments were grouped according to their central residues,
and 20 RSA prediction models were built. The real
solvent-accessible surface areas were calculated using
the DSSP software [24]. According to the definition of
Singh and Ahmad [25], the RSA value of a residue was
computed by dividing the real ASA value by the value
observed in the extended Ala-X-Ala conformation of the
residue. In the present study, the ASA value is the main
parameter for evaluating the real-value RSA predictors.

Feature extraction

PCPs

The 544 amino acid indices for describing the PCPs
were directly downloaded from the AAindex database
[26]. The indices containing “N/A” (not available)
elements were excluded, and there were 531 indices left.
Each averaged value of a property for the 11-meric
segment served as a feature value calculated as in a pre-
vious study [21]. Therefore, every segment had 531
features of PCPs. The feature values x were normalized
to [0,1] using the standard logistic function:

, 1

T .

PSSMs

PSSMs of the sequences in the Barton502 dataset were
calculated using the PSI-BLAST software [27]. The set-
tings of PSI-BLAST were as follows: the E-value thresh-
old was 1073, the multipass inclusion E-value threshold
was 2 x 1072, and the iteration number was 4. Each resi-
due of a segment was represented by a 21-dimensional
vector that contains 20 values representing effective fre-
quencies of occurrence at respective positions in a mul-
tiple alignment and an extra value for the terminal flag
as described in the article by Chang et al. [17]. Finally,
the PSSM of a segment was represented by 231 values.
The score values were normalized using equation (1).

IBCGA-SVR

The IBCGA consists of an intelligent genetic algorithm
[28] with an inheritable mechanism. The intelligent gen-
etic algorithm can select r informative features from a
large number # of candidate features with the search
space of C(n,r) while optimizing an objection function
[21]. Tung and Ho [21] proposed an informative
property-mining algorithm that combines IBCGA and
support vector classification to identify a small set of in-
formative PCPs and to predict immunogenicity of MHC
class I-binding peptides. In the present study, we
propose a novel method (named IBCGA-SVR) for selec-
tion of informative PCPs on the basis of a combination
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of IBCGA and &-SVR by minimizing the mean absolute
error (MAE):

1
MAE = ;Z:’:lvi—v/ (2)

where 7 is the number of the predicted segments, and V'
and V’ are the real and predicted RSA values, respect-
ively. The e-SVR was obtained from LIBSVM (version
2.84) [29]; the RBF kernel was used.

The population size, cross-over rate, and mutation rate
of IBCGA were set to 50, 0.8, and 0.05, respectively [30].
The rg and re,q were set to 40 and 10, respectively.
The encoded chromosomes were designed as described
elsewhere [21]. The gene number was 531, plus three
4-bit genes for tuning parameters C, y, and ¢ for e-SVR.
The fitness function involved MAE (detailed in the next
section). To select robust feature sets, 30 independent
runs were performed for each amino acid, and the
feature sets having minimal MAE were selected for
constructing RSA predictors.

SVR-RSA

The proposed method SVR-RSA is designed not only to
predict RSAs of amino acid residues, but also to select
informative PCPs for identification of characteristics of
proteins. The design of SVR-RSA includes two steps:
selecting informative PCPs using IBCGA-SVR and
implementing the RSA predictors based on the inform-
ative PCPs.

After selection of the PCP feature sets using IBCGA-
SVR, these feature sets were combined with PSSMs and
sequence lengths to construct predictors. The
corresponding C, y, and € of the models were optimized
using grid search software available in the LIBSVM
package. The target residues were predicted utilizing the
corresponding model of the 20 different models. To
avoid the overfitting problems and for performance
comparing, Barton502 is divided into the training and
test parts which are respectively utilized for creating the
predicting models and evaluating the predicting power
for comparisons between the predictors in this study
and other RSA predictors built using Barton502.

MAE of the 10-fold cross-validation (10-CV) was cal-
culated both in the IBCGA-SVR and grid search. Pear-
son’s correlation coefficient was also used for estimating
the performance:

comn(5) () 9

where 7 is the total number of residues and X, ¥, X, and
Y, are the predicted, observed RSA values, the average
of the predicted RSA values, and the average of the ob-

served RSA values, respectively.
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Definitions of hydrophobic residues and the a-helix ex-
posure degree
The 20 residues were classified into “hydrophilic” and
“hydrophobic” categories using the Kyte-Doolittle index
[31] with the threshold of 0. Seven residues, Ala, Cys,
Ile, Leu, Met, Phe and Val, were defined as hydrophobic
residues, while the other 13, Asp, Glu, Gly, His, Lys,
Asn, Pro, Gln, Arg, Ser, Thr, Trp, and Tyr as hydrophilic
residues. The residues were also assigned an exposed or
buried status according to the RSA values at the thresh-
old of 25% [32]. Hence, all residues of proteins can be
defined as exposed hydrophilic, exposed hydrophobic,
buried hydrophilic, and buried hydrophobic residues.
The protein secondary structures of Barton502 were
all defined using the DSSP software [24]. The «-helix
exposure degree was defined as follows:

Me
AED = — 4
h @)

where 7, and # denote the number of exposed residues
and the total number of residues in an o-helix,
respectively.

Thermal stability analysis

Molecular dynamics simulations were carried out in
GROMACS v4.5.5 [33]. The OPLS force field [34] was
applied in this study. 2WRP and 1MOF were retrieved
from the Protein Data Bank (PDB) and the mutant
structures, 2WRP_H15I and 1MOF_I54D, were con-
structed using the PS* web server [35]. The templates
were set up using the wild-type 2WRP and 1MOF,
respectively, and other parameters were set to default
values. These four proteins were supplemented with
missing hydrogen atoms and were protonated by consid-
ering the protonation state corresponding to pH 7. The
periodic boundary conditions were obtained using the
dodecahedron box and the minimum distances of a
nonhydrogen protein atom to the box wall of at least
1 nm. By means of the single point charge model, water
molecules were soaked into the box around the proteins
and the counterions were added to neutralize the net
charge of the whole simulation system. To ensure that
the solvent distribution was kept at the minimum
energy, the atoms of proteins were first fixed and sub-
jected to 50,000 iterations of the steepest descent energy
minimization, and then 200-ps molecular dynamics [22]
simulations were performed for solvation. Next, the pro-
tein and solvent molecules were unconstrained and opti-
mized using the steepest descent energy minimization
for 50,000 iterations followed by 10-ns molecular
dynamics simulations. In the simulation system, the
particle-mesh Ewald (PME) method was used for calcu-
lating the long-range electrostatics, and all bonds were
constrained using the LINCS algorithm. Time steps were
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set to 2 fs for 5,000,000 iterations for 10-ns simulations.
Three simulation temperatures, 300, 400, and 500 K,
were applied to the constant temperature and pressure
(NPT)-simulated environments using a weak coupling
algorithm that had the pressure of 1 atm and pressure
coupling time of 1 ps. The temperature coupling was
also applied, with 0.1 ps as coupling time. The trajector-
ies were recorded every 2 ps for the analysis.

Results and discussion

Several real-value RSA predictors using Barton502 were
compared in terms of performance. The results showed
that the performance of the predictors proposed in this
study is better than that of the predictors using Barton502.
The informative PCPs were also analyzed. These PCPs
indicated that a hydrophobic spine can help to stabilize a
protein structure. Two proteins that have a perfectly and
imperfectly hydrophobic spine, respectively, and their
mutants that show the reverse situation (imperfectly
hydrophobic spine and perfectly hydrophobic spine,
respectively) were used to conduct several molecular dy-
namics simulations to validate the hydrophobic spine.

Performance comparisons among the real-value RSA
predictors

The Sma dataset was used for selection of informative
PCPs. Hence, the 20 amino acid residues had their PCP
feature sets from which we created their own predictors
(for each residue). The sequences were first split into
small fragments with the length of 11 amino acid resi-
dues each. Each fragment was predicted using the corre-
sponding RSA predictors according to the central
residue. The PCP numbers selected by means of
IBCGA-SVR are listed in Table 2. The range of PCP
numbers was from 10 to 31. Among the 20 amino acid
residues, the predictive model for Cys appears to have
the best MAE (8.59), while the predictive model for Gly has

Table 2 The PCP feature number of the predictor of RSA for
each amino acid residue and MAE of each predictor

Residue Feature MAE Residue Feature MAE
number (%)* number (%)*
A 30 18.93 L 22 11.74
R 23 18.87 K 32 16.82
N 31 23.28 M 31 12.24
D 21 22.71 F 29 11.95
C 19 8.59 p 29 19.99
Q 32 19.51 S 32 2317
E 29 20.90 T 12 21.25
G 25 2519 W 10 1217
H 14 18.82 Y 30 14.20
| 30 10.86 \% 31 12.83

°The MAE for 10-CV of the Sma dataset
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the lowest MAE: 25.19. These results are similar to the
those reported elsewhere [19] where the researchers used
gradient-boosted regression trees to build the predictive
models. Except for Ala, the hydrophobic residues including
Cys, Ile, Leu, Met, Phe, and Val have better predictive
models, with MAE from 8.59 to 12.83, than most of hydro-
philic residues do. These results are in good agreement with
the findings of other researchers [19] who supposed that
Gly often constitutes the flexible regions of proteins and
that other hydrophilic residues play similar roles.

These PCPs were then combined with PSSMs and
sequence length to build the final RSA-predicting
models, and the test results are provided in Table 3. In
other studies [11-20], several predictive methods were
used, including the NN, multilayer regression, SVR, and
two-stage SVR. Those predictors involve six features
including PSSM, AAindex, sequence length, amino acid
proportions, disorder probability, and secondary struc-
ture information. Among the RSA predictors, AAindex
was first tested in our study. The real-value RSA predic-
tors based on Barton502 as the dataset are also listed for
comparison in Table 3. In this study, the test MAE and
correlation coefficient of 14.11 and 0.69, respectively, are
slightly better than those of the other RSA predictors
(which are based on Barton502).

To compare the predictive models of amino acid resi-
dues, the test dataset was also processed using several RSA
predictors, including SPINE X [36], SABLE [37], RVP-net
[38], and SARpred [15]. The test results are presented in
Table 4. RSA predictors for Ala, Asp, Asn, Glu, Gln, Gly,
Ile, Leu, Ser, and Tyr showed better performance than the
predictors corresponding to the other amino acid residues.
The Pearson correlation coefficient of the overall test data-
set in this study is also comparable to that of SPINE X, but
MAE is slightly better than MAE of SPINE X.

Knowledge retrieval from informative PCPs

The amino acid residues were defined as hydrophobic and
hydrophilic using the Kyte-Doolittle index [31]. This def-
inition, which specifies Ala, Cys, Ile, Leu, Met, Phe, and
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Table 4 Performance comparison among real-value RSA predictors

amino acid ours Chang [17] SPINE X SABLE RVP-net SARpred
A 12.22*% 1330 12.52 4698 1893 16.10
R 16.81 17.00 16.15 2661 2031 18.98
N 18.50 1960 1863 3200 2470 2205
D 18.08 19.20 18.21 2897 2381 21.99
C 8.87 890 8.11 5233 890 1197
Q 16.24 1720 16.34 2707 2229 19.66
E 1593 17.80 16.73 2711 2228 21.74
G 18.03 1950 1853 3576 2448 21.23
H 1587 15.10 14.26 3387 1937 16.64
| 8.09 8.70 8.51 6134 10.56 1247
L 9.79 9.80 9.80 5784 1211 13.40
K 15.77 15.80 14.64 2211 1831 18.39
M 11.32 11.30 1146 5358 1422 14.25
F 10.05 10.20 10.03 5535 11.72 1312
p 16.69 17.40 16.10 29.19 2151 19.01
S 16.08 1830 16.78 3519 2305 19.78
T 15.87 16.00 15.05 3543 2158 17.86
W 1217 11.80 12.31 5221 1343 14.97
Y 11.51  13.00 12.06 4767 1442 14.07
vV 9.89 9.60 9.65 5867 1243 12.00
win 10 3 7 0 0 0

cC 069 068 0.69 05 051 0.59
MAE 14.11 148 14.89 3922 1945 18.07

*The bolds means the best results

Val as hydrophobic residues, was used in another thermo-
dynamic study on peptides [39]. In the present study, the
PCPs that were used to predict RSA of hydrophobic and
hydrophilic residues were compared and analyzed.

Lesk et al. [40] suggested that surface exposure of
hydrophilic residues and burying of hydrophobic residues
minimize the free energy of a protein. This concept has
been successfully applied in most protein folding studies
and protein engineering methods. Nonetheless, there are

Table 3 The feature usage and a performance summary from other studies that used Barton502 as a dataset

features Ours Chang, Nguyen, Garg, Wang, Yuan, Ahmad,

et al. (2008)° et al. (2006)° et al. (2005)* et al. (20057 et al. (2004)° et al. (2003)
PSSM Yes Yes Yes Yes Yes No No
AAindex (PCPs) Yes No No No No No No
sequence length Yes Yes No No Yes No No
amino acid composition No No No No No Yes Yes
secondary structure No No No Yes No No No
regression tool one-stage SVR two-stage SVR two-stage SVR NN MLR one-stage SVR NN
MAE (%) 14.11 14.80 15.70 15.90 16.20 18.50 18.80
CcC 0.69 0.68 0.66 0.65 0.64 052 048

®MAE and CC are from the original paper
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still some protein folding cases not conforming to this
principle. For example, Reidhaar-Olson and Sauer [41]
used the A-repressor to analyze the acceptable substitu-
tions of residues. The results revealed that among most
positions on the surface, many positions tolerate substitu-
tion of hydrophilic residues with hydrophobic ones and
vice versa. Some positions have a strong preference for
hydrophilic residues. There are still some results indicat-
ing that positions containing exposed hydrophobic resi-
dues show a strong preference for hydrophobic residues.
Leul2, one of the two exposed hydrophobic residues, in
helix 1 of the A-repressor can be substituted with one of
10 amino acids including six hydrophobic ones. Two of
the five exposed positions in a-helix 5 can contain only a
hydrophobic residue. At these two positions, Ile84 cannot
be substituted and Met87 can be changed only to Leu.
This phenomenon indicates that there are some protein
folding principles that are unknown to science.

To retrieve more knowledge from our RSA predictors,
all the feature sets were compiled according to the bin-
ary property: hydrophobic or hydrophilic residues. The
RSA predictors were analyzed according to the PCPs
used in hydrophobic-residue predictions, hydrophilic-
residues predictions, or PCPs used in predictions related
to hydrophobic and hydrophilic residues. The results are
listed in Additional file 1.

Among the PCPs appearing both in hydrophilic-residue
and hydrophobic-residue RSA predictors, BIOV880101 and
BIOV880102 were generated from globular proteins. These
features—which can be described as “Information value for
accessibility; average fraction 35%” and “Information value
for accessibility; average fraction 23%”—are the accessibility
scales with a different average fraction for different amino
acid residues. Because these PCPs are statistical results of
RSA, combining these two PCPs within the RSA predictor
improved the performance. The other PCPs including the
hydrophobicity properties (e.g, GUODS860101, CIDH9
20103, and MITS02101) and secondary-structure proper-
ties (e.g, CHOP780211, MAXF760104, and PALJ810113)
suggest that the peptide conformation properties are
important for prediction of RSA. Secondary-structure infor-
mation contributing to prediction of RSA is in agreement
with the results of other researchers [11-20], who predicted
hydrophilic and hydrophobic residues using single models
directly using the secondary structure probability from
other secondary structure predictors.

Among the PCPs that appear only in hydrophilic predic-
tors, the PCPs containing 29 parameters were categorized
into three types. In the first type, the PCPs correlate with
hydrophobicity, such as CORJ870105, JANJ790102, and
GEIM800109. This type of PCP constitutes 37% (11/29) of
the parameters of all the PCPs appearing only in hydro-
philic predictors. The second type is the feature correlating
with maintenance of protein structures, such as salt bridge
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formation and hydrogen-bounding properties. There are
three parameters of this type: FAUJ880109, RACS770103,
and RACS770103. One study [9] showed that a salt bridge
and hydrogen bonding from the side chain are mediated by
hydrophilic residues. On the other hand, those residues
forming the hydrogen bonds and salt bridges will be buried
in the interior of proteins. The PCPs of the third type are
the features corresponding to active sites, such as the orien-
tation and electrostatic properties. Those PCPs include
FAUJ880102, FAUJ880103, JANJ790102, SIMZ760101,
RACS770103, RACS820109, RACS820110, and RADA
880103. Although the active-site residues interact with solv-
ent and substrate molecules, these residues are buried.
Bartlett et al. [8] analyzed 178 active sites of enzymes. In
the solvent accessibility analysis, 89% of the catalytic
residues showed the RSA less than 30%. Moreover, approxi-
mately 50% and 25% of catalytic residues had RSA of
0-10% and 10-20%, respectively; 5% of all catalytic residues
had 0% RSA.

According to the PCP analysis of the hydrophilic-
residue RSA predictors, except for the first type, which
is related to residue hydrophobicity, the other two
types are the properties related to characteristics of
buried residues. We assumed that the hydrophilic-
residue RSA predictors need to use some characteris-
tics of buried residues to estimate the buried status of
hydrophilic residues that favor exposure on the
protein surface.

Among the 55 PCPs that were used only in
hydrophobic-residue RSA predictors, the secondary-
structure features constituted 36% (20/55), while the
hydrophobicity properties and conformation properties
constituted 53% (29/55) and 11% (6/55), respectively.
Among the secondary-structure features, the properties
related to an a-helix (17 member parameters) repre-
sented the majority of the 20 secondary-structure
features, while other secondary-structure characteristics
(related to P-sheets, y-turns, and random-coils) repre-
sented only 15%. The effects of residue hydrophobicity
on protein folding are well studied [42—44], but retrieval
of more information from secondary-structure charac-
teristics would be helpful.

According to a study on o-helical structure [45], an
a-helix can be exposed on the surface or buried in a pro-
tein. Among the a-helix structure features in our study, the
position of a residue in the a-helix represents the majority.
Those features include URR980103, AURR980113,
AURR980117, CHOP780207, MAXF760106, QIAN880108,
QIANS80111, RICJ880101, RICJ880111, RIC]J880112, and
RICJ880115, whereas ROBB760102, ROBB760103, ROBB
760104, and ROBB760107 are the characteristics of the
a-helix position in a protein. The fact that the residue
position characteristics are in the majority indicates that
the position of the a-helix is important.
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The hydrophobic spine in a-helices

Because the residue position in an a-helix is important
for prediction of the RSA for hydrophobic residues, the
influence of a hydrophobic residue position on an a-
helix was evaluated. In hydrophilic-residue RSA predic-
tors, we used buried-status characteristics of hydrophilic
residues that favor exposure on the surface of proteins.
Therefore, we hypothesized that the residue position in
an a-helix is related to surface exposure-related charac-
teristics that may also be important for prediction of
RSA for hydrophobic residues.

To test how the residue position in an a-helix influ-
ences the protein, all secondary structures of
Barton502 were defined using the DSSP software [24].
All a-helical structures were then sampled, and then
we determined their exposure degree. All the residues
of a-helices can be classified as exposed hydrophilic
residues, buried hydrophilic residues, exposed hydro-
phobic residues, and buried hydrophobic residues. The
exposed hydrophobic residues and their exposed
neighbors were predicted by calculations. The exposed
hydrophobic/hydrophilic neighbor ratios of exposed
hydrophobic residues at various exposure degrees of
a-helices are shown in Fig. 1. The neighbors at posi-
tions i+ 1 to i + 6 were analyzed according to the study
by Qian et al. [46], who also used two features,
QIAN880108 and QIAN880111, in the hydrophobic-
residue RSA predictors. The results showed that the
ratios remain stable at the a-helix exposure degree less
than 50. The i+ 2 positions, which are the positions
farthest from position i, as shown in Fig. 2a, have the
ratio of ~0.6, while the other positions are in the range
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0.2-0.4. This finding suggests that an exposed hydro-
phobic residue favors having exposed hydrophilic resi-
dues as neighbors when the a-helix exposure degree is
less than 50. This pattern changes when the exposure
degree is greater than 60. Positions i+ 1, i+ 3, and i+ 4
show dramatically increasing exposure degree; this
finding suggests that the exposed hydrophobic residues
prefer to have exposed hydrophobic residues as neigh-
bors when the exposure degree is greater than 60. This
result indicates that when exposed hydrophobic
residues are located in a highly exposed a-helix, their
neighbors are likely to be exposed hydrophobic resi-
dues. As shown in Fig. 2b, these hydrophobic residues
are arranged on one side of the a-helix. According to
the pattern published in reference [47], an a-helix
forms a hydrophobic face for contact with interior
hydrophobic residues but forms a hydrophilic face for
interaction with a solvent. The arrangement of hydro-
phobic residues observed in the present study is
consistent with direct exposure to a solvent. For further
evaluation of this effect, we named the set of hydropho-
bic residues arranged in an a-helix a hydrophobic spine.

Hydrophobic spines are different from hydrophobic
cores which are packing of hydrophobic residues exist-
ing in proteins [48]. Hydrophobic spine taking place on
a single a-helix is composed of the adjacent hydrophobic
residue contacting. The hydrophobic spine is hypothe-
sized to play two roles. One is to drive the protein-
protein or protein-ligand interaction, such as that in the
leucine zipper [49]. In the present study, the dataset was
collected for analysis of protein folding; therefore, a
hydrophobic spine appears to stabilize protein structure.
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Fig. 1 The exposed hydrophobic/hydrophilic neighbor ratios of exposed hydrophobic residues as a function of the exposure degree of an a-helix
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chain atoms

Fig. 2 lllustrations of a hydrophobic spine. a. The helical wheel of an a-helix. b. The hydrophobic spine of an a-helix. The green ribbon means
the a-helix. The green sticks are the side chains of the residues constituting the a-helix. Black dots outline the sphere surface of the side

Estimating the hydrophobic-spine stability using molecu-
lar dynamics simulations
To test the above-mentioned hydrophobic spine hypoth-
esis, whole PDB files of CB513 were scanned, and we
chose the proteins that have a perfectly hydrophobic
spine and an imperfectly hydrophobic spine. After scan-
ning CB513, 571 a-helices are sampled and 13 hydro-
phobic spines which contain 4 perfectly and 9
imperfectly hydrophobic spines appear. Among those a-
helices having hydrophobic spines, the exposed degrees
over than 90% are considered. There are four candidates,
1HUP, 1IMOF, 2WRP and 1RPO. The shortest sequences
were selected to reduce the simulation computing.
1MOF and 2WRP, which are an extraviral segment of a
retrovirus envelope protein and Trp repressor, respect-
ively, were tested here. These two proteins and their mu-
tants are shown using Pymol software (Version:1.8
education) [50]. The secondary structures are shown in
“Ribbon” and the residues of hydrophobic spines are em-
phasis using “Sphere”. The perfect hydrophobic spine
appears to extend from L47 to L69 in IMOF as shown
in Fig. 3a. According to the Kyte-Doolittle index, Asp
and Glu having the same index, -3.5, were analyzed ra-
ther than Lys because the —CH,- group is thought to be
the hydrophobic interaction contributor [51]. Eisenberg
[52] showed that Asp is more hydrophobic than Glu,
and Asp was therefore used to mutate 154 which has the
highest hydrophobic index in the hydrophobic spine.
2WRP has an imperfectly hydrophobic spine from Ala8
to Leu25. The His residue that is located at position 16
interrupts the continuous hydrophobic spine as shown
in Fig. 3b, and an Ile was used to change this His to
make this hydrophobic spine perfect. These four pro-
teins were then subjected to molecular dynamics simula-
tions at the temperatures of 300, 400, and 500 K.
Secondary structures were used to estimate the stabil-
ity of the proteins as shown in Fig. 4. At 300 and 400 K,
1MOE, 1MOF 154D, 2WRP, and 2WRP_H15I were not
in an unfolding state. Sethuraman et al. [53] say that an

a-helix-rich protein adopts an alternate structure rich in
B-sheets during the unfolding process. This -sheet-rich
structure is a molten-globule-like structure. 1MOF,
2WRP, and their mutants have stable a-helical structures
at the temperature of 300 K. Although the B-sheet struc-
tures appear in the simulations of these four proteins at
the temperature of 400 K, those temporary [-sheet
structures are not stable, suggesting that these proteins
are still at the unfolding initiation stage [53].

In the 500-K simulation of 1MOF, the native struc-
tures (which are not refolded structures) during the
unfolding process are stable at 0.5 ns, while most of na-
tive helical structures of 1MOF_I54D were found to be
disrupted at 0.25 ns. Stable {-sheet structures appear at
3 ns of IMOF_I54D suggesting that this mutant assumes
molten-globular structure faster than the wild type does.
These results indicate that the protein structure be-
comes unstable if the hydrophobic spine is disrupted.
2WRP lost its native structures after 0.25 ns, and the
molten-globular structures that have stable -sheets ap-
peared in the molecular dynamics simulation at 6 ns and
500 K. 2WRP_H151 kept the native structure at 1 ns,
and there were no emerging [-sheet structures. These
results suggest that 2WRP_H15I has a perfectly hydro-
phobic spine and has more stable structures than 2WRP
does.

The average a-helix content analysis for whole protein
structures and hydrophobic spines of IMOF, 1IMOF_I54D,
2WRP, and 2WRP_H161 at different temperatures are
also carried out by the means of DSSP as shown in
Table 5. The other secondary structure information is
provided in Additional file 2. Anderson-Darling two
sample test applied for determining the difference be-
tween the wild-type and mutant protein at the same simu-
lating temperature is calculated using R (version:3.2.5)
with kSamples package. The results show the a-helix con-
tents have significant differences except 2WRP and
2WRP_H16l at 500 K. Since the final average «-helix
contents of 2WRP and 2WRP_H16I are less than 1.3%,
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Fig. 3 The structures of proteins TMOF (a), 2WRP (b), TMOF_I54D (c), and 2WRP_H15I (d). The yellow spheres denote the residues constituting
the hydrophobic spine. The red spheres are the side chains of hydrophilic residues that interrupt the hydrophobic spine (resulting in an
imperfectly hydrophobic spine)
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Fig. 4 The secondary structure components (shown in different colors) of proteins 1MOF, TMOF_I54D, 2WRP, and 2WRP_H15I from 10-ns molecular
dynamics simulations at the temperatures of 300, 400, and 500 K
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Table 5 Average a-helix contents (%) from DSSP analysis for
Tmof, Tmof-154D, 2wrp, and 2wrp-H16l at different temperatures

whole protein

300K p-value 400K  p-value 500K  p-value
Tmof 5127  >0.001 2246  >0.001 480 >0.001
Tmof-154D  43.38 21.81 542
2wrp 6544  >0.001 4803  >0.001 462 >0.001
2wrp-H16l 6151 4241 13.86
hydrophobic spine regions
Tmof 3085  >0.001 1161 >0.001 364 >0.001
Tmof-154D 2995 1020 161
2wrp 13.71 >0.001 11.52 >0.001 1.30 0.84
2wrp-H16l 13.26 12.29 112

The boldface indicates the significant difference after Bonferroni correction

this result is postulated that the a-helices are disrupted at
the initial stage of the simulations.

We assumed that a hydrophobic spine can prevent a
solvent molecule from attacking. A study on human
lysozyme [54] revealed that when the hydrophilic residue
is exposed on the surface, this residue can interact with
the solvent molecules and initiate the two-stage unfold-
ing process. The solvent molecules first disrupt the
backbone hydrogen bounds, and then this disruption
will attract more attacks by solvent molecules [54, 55].
The hydrophobic-spine characteristics can be applied to
protein engineering or may explain why in existing stud-
ies the exposed hydrophobic residues make the protein
stable. For example, Arc repressor research [56] revealed
that Ile84 and Met87 are exposed but cannot be mutated
to hydrophilic residues. This may be because these
hydrophobic residues are located in the hydrophobic
spine.

Conclusions

RSA and protein folding correlate strongly. Hence, in
this study, the aim was to discover knowledge on protein
folding using high-performance RSA predictors. Com-
paring to most existing protein folding characteristic
studies which supposed hypotheses and then provided
the statistical evidences, this study interpreted the
optimal feature sets of the models and discovered hydro-
phobic spines on a-helices which would be helpful to
protein engineering enhancing the thermal stability of
proteins. Twenty models for different amino acid
residues were built here using PSSM, sequence length
information, and PCPs which were selected using
IBCGA-SVR. The MAE and correlation coefficient of
the predictors are 14.11 and 0.69, respectively. Those
PCPs were analyzed according to the models. In the
hydrophilic-residue models, the buried-status-related
characteristics including active-site parameters, hydrogen-
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bonding characteristics, and salt bridge properties were
used. In the hydrophobic-residue models, the second-
ary structure characteristics are in the majority. After
further analysis of these secondary-structure character-
istics, the effect of the hydrophobic spine manifests it-
self. To validate the hydrophobic spine stability, IMOF
and 2WRP, which have a perfectly and imperfectly
hydrophobic spine, respectively, were used in molecu-
lar dynamics simulations to estimate the structure
stability. 1IMOF_I54D and 2WRP_H16I that have a
disrupted hydrophobic spine and a repaired perfectly
hydrophobic spine, respectively, were also simulated
for comparison. In the simulations at 300 or 400 K, all
these four proteins did not show significant
secondary-structure disruption. In the simulations at
500 K, 1IMOF and 2WRP_H16I (which have a perfectly
hydrophobic spine) were found to have more stable
structures than 1MOF_I54D and 2WRP do, which
have an imperfectly hydrophobic spine. These results
indicate that a hydrophobic spine can help to stabilize
protein structure.

Additional files

Additional file 1: Table S1. The physicochemical properties mined
using IBCGA-SVR and used for knowledge discovery. (DOCX 15 kb)
Additional file 2: Table S2. Average secondary structure contents from
DSSP analysis for Tmof, Tmof-154D, 2wrp, and 2wrp-H16l at different
temperatures. (XLSX 12 kb)

Declarations

This article has been published as part of BMC Bioinformatics Volume 17
Supplement 19, 2016. 15th International Conference On Bioinformatics
(INCOB 2016): bioinformatics. The full contents of the supplement are
available online https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-17-supplement-19.

Funding

Publication charges for this article have been funded by the Ministry of
Science and Technology under the contract numbers MOST 105-2627-M-
009-008-, MOST 105-2221-E-009-138-MY2-, and by the Center for Bioinformat-
ics Research supported by the Top University Program of the National Chiao
Tung University and Ministry of Education, Taiwan, RO.C. for project
104W962. The funders had no role in study design, data collection or ana-
lysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
Not applicable (only simulated data and public datasets were used in the study).

Authors’ contributions

HLH, SYH, and YFL participated in manuscript preparation. YFL analyzed the
PCPs and conducted protein visualization. HLH implemented the software.
HLH and SYH participated in the system design, supervised and coordinated
the whole project, and helped to write the manuscript. All the coauthors
have read and approved the final version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.


dx.doi.org/10.1186/s12859-016-1368-z
dx.doi.org/10.1186/s12859-016-1368-z
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-19
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-19

The Author(s) BMC Bioinformatics 2016, 17(Suppl 19):503

Ethics approval and consent to participate
Not applicable.

Published: 22 December 2016

References

1.

20.

21.

22.

23.

24.

Anfinsen CB. Principles that govern the folding of protein chains. Science.
1973;181(4096):223-30.

Eichenberger AP, van Gunsteren WF, Riniker S, von Ziegler L, Hansen N. The
key to predicting the stability of protein mutants lies in an accurate
description and proper configurational sampling of the folded and
denatured states. Biochim Biophys Acta. 2015;1850(5):983-95.

Hijikata A, Yura K, Noguti T, Go M. Revisiting gap locations in amino acid
sequence alignments and a proposal for a method to improve them by
introducing solvent accessibility. Proteins. 2011;79(6):1868-77.

Huang HL, Lin IC, Liou YF, Tsai CT, Hsu KT, Huang WL, Ho SJ, Ho SY.
Predicting and analyzing DNA-binding domains using a systematic
approach to identifying a set of informative physicochemical and
biochemical properties. BMC Bioinformatics. 2011;12(51):547.

Blundell TL, Zhu ZY. The Alpha-helix as seen from the protein tertiary
structure - a 3-D structural classification. Biophys Chem. 1995,55(1-2):167-84.
Kumar S, Bansal M. Dissecting alpha-helices: Position-specific analysis of alpha-
helices in globular proteins. Proteins Struct Funct Genet. 1998;31(4):460-76.
Pascarella S, De Persio R, Bossa F, Argos P. Easy method to predict solvent
accessibility from multiple protein sequence alignments. Proteins Struct
Funct Genet. 1998;32(2):190-9.

Bartlett GJ, Porter CT, Borkakoti N, Thornton JM. Analysis of catalytic residues
in enzyme active sites. J Mol Biol. 2002;324(1):105-21.

Shirota M, Ishida T, Kinoshita K. Effects of surface-to-volume ratio of proteins
on hydrophilic residues: Decrease in occurrence and increase in buried
fraction. Protein Sci. 2008;17(9):1596-602.

Cuff JA, Barton GJ. Evaluation and improvement of multiple sequence methods
for protein secondary structure prediction. Proteins. 1999;34(4):508-19.

Ahmad S, Gromiha MM, Sarai A. Real value prediction of solvent accessibility
from amino acid sequence. Proteins. 2003;50(4):629-35.

Yuan Z, Huang B. Prediction of protein accessible surface areas by support
vector regression. Proteins. 2004;57(3):558-64.

Adamczak R, Porollo A, Meller J. Accurate prediction of solvent accessibility
using neural networks-based regression. Proteins. 2004;56(4):753-67.

Wang JY, Lee HM, Ahmad S. Prediction and evolutionary information
analysis of protein solvent accessibility using multiple linear regression.
Proteins. 2005;61(3):481-91.

Garg A, Kaur H, Raghava GP. Real value prediction of solvent accessibility in
proteins using multiple sequence alignment and secondary structure.
Proteins. 2005,61(2):318-24.

Nguyen MN, Rajapakse JC. Two-stage support vector regression approach for
predicting accessible surface areas of amino acids. Proteins. 2006,63(3):542-50.
Chang DT, Huang HY, Syu YT, Wu CP. Real value prediction of protein
solvent accessibility using enhanced PSSM features. BMC Bioinformatics.
20089 Suppl 12:512.

Igbal S, Mishra A, Hoque MT. Improved prediction of accessible surface area
results in efficient energy function application. J Theor Biol. 2015;380:380-91.
Fan C, Liu D, Huang R, Chen Z, Deng L. PredRSA: a gradient boosted
regression trees approach for predicting protein solvent accessibility. BMC
Bioinformatics. 2016;17 Suppl 1:8.

Zhang J, Chen W, Sun P, Zhao X, Ma Z. Prediction of protein solvent
accessibility using PSO-SVR with multiple sequence-derived features and
weighted sliding window scheme. BioData Min. 2015;8:3.

Tung CW, Ho SY. POPI: predicting immunogenicity of MHC class | binding
peptides by mining informative physicochemical properties. Bioinformatics.
2007,23(8):942-9.

Chimenti MS, Khangulov VS, Robinson AC, Heroux A, Majumdar A,
Schlessman JL, Garcia-Moreno B. Structural Reorganization Triggered by
Charging of Lys Residues in the Hydrophobic Interior of a Protein. Structure.
2012;20(6):1071-85.

Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to
improve protein secondary structure prediction. Proteins. 2000;40(3):502-11.
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers.
1983;22(12):2577-637.

25.

26.

27.

28.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

52.

53.

Page 181 of 295

Singh H, Ahmad S. Context dependent reference states of solvent
accessibility derived from native protein structures and assessed by
predictability analysis. BMC Struct Biol. 2009;9:25.

Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa
M. AAindex: amino acid index database, progress report 2008. Nucleic Acids
Res. 2008;36:D0202-05.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 1997,25(17):3389-402.

Ho SY, Shu LS, Chen JH. Intelligent evolutionary algorithms for large
parameter optimization problems. IEEE T Evolut Comput. 2004;8(6):522-41.
Chang C-C, Lin C-J. LIBSVM: A library for support vector machines. ACM
Trans Intell Syst Technol. 2011,2(3):1-27.

Tung CW, Ho SY. Computational identification of ubiquitylation sites from
protein sequences. BMC Bioinformatics. 2008;9:310.

Kyte J, Doolittle RF. A simple method for displaying the hydropathic
character of a protein. J Mol Biol. 1982;157(1):105-32.

Pollastri G, Baldi P, Fariselli P, Casadio R. Prediction of coordination number
and relative solvent accessibility in proteins. Proteins. 2002;47(2):142-53.
Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC.
GROMACS: Fast, flexible, and free. J Comput Chem. 2005;26(16):1701-18.
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and
reparametrization of the OPLS-AA force field for proteins via comparison
with accurate quantum chemical calculations on peptides. J Phys Chem B.
2001;105(28):6474-87.

Chen CC, Hwang JK, Yang JM. (PS)2: protein structure prediction server.
Nucleic Acids Res. 2006;34(Web Server issue):W152-7.

Faraggi E, Zhang T, Yang Y, Kurgan L, Zhou Y. SPINE X: improving protein
secondary structure prediction by multistep learning coupled with
prediction of solvent accessible surface area and backbone torsion angles. J
Comput Chem. 2012;33(3):259-67.

Adamczak R, Porollo A, Meller J. Combining prediction of secondary
structure and solvent accessibility in proteins. Proteins. 2005;59(3):467-75.
Ahmad S, Gromiha MM, Sarai A. RVP-net: online prediction of real valued
accessible surface area of proteins from single sequences. Bioinformatics.
2003;19(14):1849-51.

Cheng Y, Liu GR, Li ZR, Lu C, Mi D. A thermodynamic study of peptides
binding to carbon nanotubes based on a hydrophobic-polar lattice model
using Monte Carlo simulations. J Phys D Appl Phys. 2008;41(5):1-7.

Lesk AM, Chothia C, Ramsay W, Foster R, Ingold C. Solvent Accessibility,
Protein Surfaces, and Protein Folding. Biophys J. 1980;32(1):35-47.
Reidhaar-Olson JF, Sauer RT. Functionally acceptable substitutions in two
alpha-helical regions of lambda repressor. Proteins. 1990;7(4):306-16.
Onuchic JN, Luthey-Schulten Z, Wolynes PG. Theory of protein folding: the
energy landscape perspective. Annu Rev Phys Chem. 1997;48:545-600.
Shaytan AK, Shaitan KV, Khokhlov AR. Solvent accessible surface area of
amino acid residues in globular proteins: correlation of apparent transfer
free energies with experimental hydrophobicity scales. Biomacromolecules.
2009;10(5):1224-37.

Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH. Hydrophobicity of
amino acid residues in globular proteins. Science. 1985;229(4716):834-38.
Zhu ZY, Blundell TL. The use of amino acid patterns of classified helices and
strands in secondary structure prediction. J Mol Biol. 1996;260(2):261-76.
Qian N, Sejnowski TJ. Predicting the secondary structure of globular
proteins using neural network models. J Mol Biol. 1988;202(4):865-84.

Biou V, Gibrat JF, Levin JM, Robson B, Garnier J. Secondary structure prediction:
combination of three different methods. Protein Eng. 1988,2(3):185-91.
Munson M, Balasubramanian S, Fleming KG, Nagi AD, O'Brien R, Sturtevant
JM, Regan L. What makes a protein a protein? Hydrophobic core designs
that specify stability and structural properties. Protein Sci. 1996;5(8):1584-93.
Landschulz WH, Johnson PF, Mcknight SL. The Leucine Zipper - a
Hypothetical Structure Common to a New Class of DNA-Binding Proteins.
Science. 1988;240(4860):1759-64.

Schrédinger L. The PyMOL molecular graphics system, Version 1.8. 2015.
Pace CN. Polar group burial contributes more to protein stability than
nonpolar group burial. Biochemistry-Us. 2001;40(2):310-13.

Eisenberg D. Three-dimensional structure of membrane and surface
proteins. Annu Rev Biochem. 1984;53:595-623.

Sethuraman A, Vedantham G, Imoto T, Przybycien T, Belfort G. Protein
unfolding at interfaces: Slow dynamics of alpha-helix to beta-sheet
transition. Proteins. 2004;56(4).669-78.



The Author(s) BMC Bioinformatics 2016, 17(Suppl 19):503

54.

55.

56.

Hua L, Zhou RH, Thirumalai D, Berne BJ. Urea denaturation by stronger

dispersion interactions with proteins than water implies a 2-stage unfolding.

P Natl Acad Sci USA. 2008;105(44):16928-33.

Bennion BJ, Daggett V. The molecular basis for the chemical denaturation
of proteins by urea. P Natl Acad Sci USA. 2003;100(9):5142-147.

Cordes MHJ, Sauer RT. Tolerance of a protein to multiple polar-to-
hydrophobic surface substitutions. Protein Sci. 1999,8(2):318-25.

Page 182 of 295

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at .
www.biomedcentral.com/submit () BiolVled Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	The dataset
	Feature extraction
	PCPs
	PSSMs

	IBCGA-SVR
	SVR-RSA
	Definitions of hydrophobic residues and the α-helix exposure degree
	Thermal stability analysis

	Results and discussion
	Performance comparisons among the real-value RSA predictors
	Knowledge retrieval from informative PCPs
	The hydrophobic spine in α-helices
	Estimating the hydrophobic-spine stability using molecular dynamics simulations

	Conclusions
	Additional files
	Declarations
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

