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Abstract

Background: Tar DNA binding protein 43 (TDP-43) hyperphosphorylation, caused by Casein kinase 1 (CK-1) protein
isoforms, is associated with the onset and progression of Amyotrophic Lateral Sclerosis (ALS). Among the reported
isoforms and splice variants of CK-1 protein superfamily, CK-16 is known to phosphorylate different serine and
threonine sites on TDP-43 protein in vitro and thus qualifies as a potential target for ALS treatment.

Results: The developed GQSAR (group based quantitative structure activity relationship) model displayed
satisfactory statistical parameters for the dataset of experimentally reported N-Benzothiazolyl-2-Phenyl Acetamide
derivatives. A combinatorial library of molecules was also generated and the activities were predicted using the
statistically sound GQSAR model. Compounds with higher predicted inhibitory activity were screened against CK-156
that resulted in to the potential novel leads for CK-16 inhibition.

Conclusions: In this study, a robust fragment based QSAR model was developed on a congeneric set of

experimentally reported molecules and using combinatorial library approach, a series of molecules were generated
from which we report two top scoring, CK-18 inhibitors i.e,, CHC (6-benzyl-2-cyclopropyl-4-{[(4-cyclopropyl-6-ethyl-
1,3-benzothiazol-2-yl)carbamoyllmethyl}j-3-fluorophenyl hydrogen carbonate) and DHC (6-benzyl-4-{[(4-cyclopropyl-
6-ethyl-1,3-benzothiazol-2-yl)carbamoyl]methyl}-2-(decahydronaphthalen-1-yl)-3-hydroxyphenyl hydrogen carbonate)

with binding energy of —6.11 and —6.01 kcal/mol, respectively.
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Background

Amyotrophic Lateral Sclerosis (ALS) is a progressive
neurodegenerative disease which results in paralysis,
muscle wasting and death. Death of the motor neurons
of the cortex, spinal cord and brain stem is a character-
istic of this disease which eventually leads to death of
the patient usually resulting from respiratory failure,
mostly within 3-5 years from the appearance of
symptoms [1]. The term “Amyotrophic” refers to muscle
atrophy and weakness which are characteristic to the
lower motor neuron disease while “Lateral Sclerosis”
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occurs due to hardness to palpitation of the lateral
columns of spinal cord observed in autopsy specimens
[2]. The prevalence or occurrence of the disease is about
3 per 100,000. The ratio of male:female prevalence of
ALS is 1.8-2.0:1 [3]. ALS is usually classified as familial
(fALS) and sporadic (sALS) where fALS is usually inher-
ited as a dominant trait and is observed in approxi-
mately 10% of the total cases of ALS while SALS occurs
in people who do not have any apparent history of this
disease in their families [4—6].

The first symptoms of ALS include twitching of
muscle, stiffness, cramping and weakness later followed
by difficulty in chewing, swallowing, slurred speech and
difficulty in fast eye movements [7]. Also, there is diffi-
culty in breathing as there is weakening of muscles of
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respiratory system. Many deaths are caused by respira-
tory failure within 2—10 years of onset of disease or are
caused due to pneumonia [8, 9]. ALS can be caused by
mutations in many different genes such as SOD1 (super-
oxide dismutasel), TARDBP (transactive response DNA
binding protein), and C9orf72 amongst many others
[10]. Recently, pathological TDP-43 (transactive re-
sponse DNA binding protein 43kDA) protein, encoded
by TARDBP, has been identified in sALS, which gives
scope for development of therapeutic agents [1]. The
protein binds to both DNA and RNA. By binding to the
former, it regulates the process of transcription and is
also involved in the splicing and maturation of mRNAs
[11]. Neuronal death is known to be caused in mice,
zebrafish, worms, flies and monkeys due to the over
expression of mutant TDP-43. It is believed the phos-
phorylation of TDP-43 may cause toxicity of the protein
[1]. Casein Kinase-1 (CK-1) was the first kinase that has
been reported to cause this pathological phosphorylation
of the TDP-43 protein and its activity has also been
found upregulated in spinal cord tissue in ALS and other
neural disorders [12]. CK-1 is a unique family of serine/
threonine protein kinases that express ubiquitously in
the eukaryotes. Seven CK-1 isoforms, namely «a, B, y1,
Y2, ¥3, 8 and ¢ and various splice variants have been
reported in mammals [13, 14]. CK-1 family member
proteins have a very high (53—98%) identity in the kinase
domain and differ from other kinases by containing S-I-
N sequence instead of an A-P-E in kinase domain num-
ber VIII [15]. CK-1 isoforms are involved in regulation
of circadian rhythms, Wnt signaling, nucleo-cytoplasmic
shuttling of transcription factors, DNA transcription and
DNA repair [16, 17]. They have been found upregulated
and mutated in various forms of cancer [18] and neuro-
degenative diseases. Among the known CK-1 variants
CK-18 has been found upregulated in various neurode-
genrative diseases and known to phosphorylate TDP-43
at various sites [19], so in recent years, its importance as
a leading target has been highlighted through various
studies. CK-18 inhibition was found be beneficial in
cancer inducing the DNA damage and also significant
role in pathological TDP-43 phosphorylation have been
disclosed [20, 21].

Finding brain penetrant inhibitors of CK-18 could
prevent the occurrence of this phenomenon and present
a strategy for the effective treatment of ALS.

Ligand based drug designing is one of the in silico
based methods which aides in establishing a quantitative
relationship between the structures of inhibitors and
their inhibitory activities. The quantitative structure and
activity relationship (QSAR) approach attempts at
identifying and quantifying the relationship between
molecular structures and certain physico-chemical struc-
tures thereby producing a model for the prediction of
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the data [22]. The QSAR approach is also described as
one in which data analysis methods are applied to
develop models for accurate prediction of biological ac-
tivities of molecules on the basis of their structures [23].
A regression equation is obtained which explains the
variation of one or more dependent variables (biological
activity) in terms of independent variables (descriptors)
[24]. This study makes use of fragment-based GQSAR
modeling to correlate the biological activity of the N-
Benzothiazolyl-2-Phenyl Acetamide derivatives with
certain physico-chemical descriptors. These molecules
have been reported to prevent TDP-43 phosphorylation
in the in-vitro studies and have the ability to cross the
blood-brain barrier. Group-based QSAR or GQSAR is a
method which investigates the structure activity relation-
ship based on molecular fragments of the set of mole-
cules [25-32]. GQSAR is an advantageous and more
informative approach than other conventional 2D and 3D
QSAR methods. Conventional QSAR methods do not
make clear exactly which part of the molecules should be
substituted or modified in order to increase the activity.
Unlike conventional QSAR methods, GQSAR is a recent
fragment based approach that provide useful information
about the significant substitution sites, their chemical na-
ture as well as overall interaction that effects the activity
of molecules [33-35]. The GQSAR model instead of ana-
lysing whole molecule, evaluates molecular fragments.
The biological activity of molecular fragments and their
descriptors are correlated, leading to QSAR model(s)
which focuses on important substitution site with their
chemical nature and interactions. The information derived
from the developed model helps in suggesting significant
molecular fragments that can be utilized as the building
blocks while designing novel molecules [36].

The focus of this study was to perform fragment based
QSAR modeling on a congeneric set of N-Benzothiazolyl-
2-Phenyl Acetamide derivatives. This congeneric set of
compounds has been developed by Salado et al. [1]. They
have developed 55 molecules as N-Benzothiazolyl-2-
Phenyl Acetamide derivatives by substituting chemical
moieties and changing the linker that shows a increase or
decrease in the molecule's inhibitory activity. There are
more molecules showing inhibitory effect against CK-18
but we have taken 37 molecules as these show greater
than 60% inhibitory activity as well as have been generated
by replacement at similar number of sites ie., 6 while
other compounds have different linker chain and replace-
ment at 3 sites only. In this study, a GQSAR model based
on N-Benzothiazolyl-2-Phenyl Acetamide derivatives was
built. The model helps in the explanation of the variation
of the biological activity of these derivatives as a function
of their site-specific molecular fragments. The GQSAR
model presented certain important descriptors which were
essential for the compounds to exhibit an enhanced
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inhibitory activity. In this study, using combinatorial
library approach we report novel lead compounds with in-
hibitory properties against CK-18 [37, 38]. Through this
study, it has been attempted to understand how different
substituents at the different positions in the representative
template structure of the ligands affects its inhibitory
properties, in addition to predicting the biological
activities of the designed lead compounds generated in the
combinatorial library.

Methods

Preparation of the dataset

The structures of the congeneric dataset of 37 N-Ben-
zothiazolyl-2-Phenyl Acetamide derivatives was prepared
using MarvinSketch [1, 39]. The 2D structures were
converted into 3D structures using the VLifeEngine
module of VLifeMDS [40]. Energy minimization of 3D
compounds was performed with the help of force field
batch minimization module of VLifeEngine. This step is
performed to optimize the molecules upto their lowest
stable states of energy. The template was also drawn
using MarvinSketch, keeping a common structural
moiety in congeneric dataset of all N-Benzothiazolyl-2-
Phenyl Acetamide derivatives. The template has 6 substi-
tution sites, marked by dummy atoms and depicted as
R1-R6 (Fig. 1).

Calculation of descriptors for GQSAR modeling

This step is performed using the GQSAR module of
VLifeMDS [40, 41]. The pIC50 values of the compounds
were incorporated into VLifeMDS manually which was
followed by the calculation of various 2-D physico-
chemical descriptors for the different functional groups
present at different substitution sites of the compounds
(Refer Table 1).

Creation of training set and test set
The dataset that was used during the course of this
study consisted of a total of 37 molecules. These
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molecules were manually divided into training and test
set so as to keep a uniform distribution of active as well as
inactive molecules in both the sets. The selected 37 com-
pounds were divided into test set (30% of dataset) and
training set (70% of dataset) to keep a balance ratio as also
studied in different GQSAR studies [25, 35, 42]. Molecules
2, 11, 14, 15, 20, 23, 28, 29 and 33 were taken into the test
set whereas the others were included in the training set.

Building of the GQSAR model

For building the GQSAR model, various Variable Selec-
tion and Model Building methods are used and imple-
mented such as Step-wise Forward/Backward/Forward-
Backward, Simulated Annealing, Genetic Algorithm
methods for Variable Selection and Multiple Regression,
Partial Least Square, Principal Component Regression
methods for Model Building. In this study, Stepwise For-
ward variable selection method was employed in order
to choose from the pool of descriptors, a subset of de-
scriptors. The Step-wise Forward selection method be-
gins with developing a trial model one step at a time
with only one independent variable. At each step, the in-
dependent variables are added one by one and the model
is refitted accordingly. This process is terminated if the
last variable that enters the model has regression coeffi-
cient which is insignificant or if all the variables have
been included in the model [43].

For model building, the Partial Least Square method
was used. This method relates a matrix, say Y, of
dependent variables (like biological activities of the mol-
ecule) to another matrix, say X, of independent variables
(like physico-chemical descriptors). The two principle
objectives of this method are to approximate the two
matrices and to reduce correlation between them. In this
method, matrix X is decomposed into several latent vari-
ables which correlate best with the molecule’s activity
[44]. Variable Selection and Model Building wizard in
VLifeMDS was utilized for this purpose.
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Fig. 1 Structure of template of N-Benzothiazolyl-2-Phenyl Acetamide derived compounds. (Heteroatoms are shown in different colors; as Nitrogen
in blue, oxygen in red and sulfur in green) & (R1, R2, R3, R4, R5 and R6 are potential substitution sites)
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Table 1 Various N-Benzothiazolyl-2-Phenyl Acetamide derived
compounds with substitutions at the six substitution sites,
percentage inhibition showed at a concentration of 10 uM and
their IC50 values

Compound R1 R2 R3 R4 R5 R6 ICs0

1 H Me H cl H H 0.083
2 H CFs H cl H H 0.023
3 H OMe H cl H H 053
4 H OCF; H c H H 0.54
5 H OFt H cl H H 1.21
6 H CFs cl H H H 0.068
7 H OMe H H H 9.71
8 H OFt cl H H H 1743
9 H CFs H cl H 0.065
10 H OMe H cl H 0.75
11 H OFt H cl H 1.1
12 H Br OMe H H H 0.26
13 H cl OMe H H H 032
14 H F OMe H H H 117
15 H Me OMe H H H 029
16 H OMe OMe H H H 222
17 H OCF;  OMe H H H 0.62
18 H OFt OMe H H H 5.76
19 H CFs H OMe H H 0.042
20 H OMe H OMe H H 042
21 H OFt H OMe H H 0.99
22 H CFs H CFs H H 0.087
23 H CFs H H OMe H 0.033
24 H OMe H H OMe H 0.57
25 H OFEt H H OMe H 1.09
26 H H H H H H 033
27 H CFs H H H H 0.047
28 H CF; H cl cl H 0.056
29 H OMe H cl cl H 1.24
30 H OFt H cl cl H 343
31 H OCF; H cl q H 0.59
32 H CFs OMe H H OMe 0.19
33 H OCF; H OMe OMe OMe 0.079
34 H OMe H OMe OMe  OMe 1.12
35 H OFEt H OMe OMe OMe 143
36 H CFs H OMe OMe OMe 0.015
37 H H H c H H 0.85

Validation and evaluation of the model
Various statistical parameters such as 1, ¢, predicted r*
and F-test were used to analyze goodness of fit of the
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QSAR model developed. Squared correlation coefficient,
r” is the square of the correlation between the response
values and the predicted response values. It can take any
value between 0 and 1. However, a value closer to 1 indi-
cates that a greater proportion of variance is accounted
for by the model. F-test is used for comparing statistical
models which have been fitted to a dataset for identify-
ing a model which is best fitted. A high F-test value indi-
cates statistical significance of the model reducing the
possibility of failure of the model. Low standard errors,
r*_se, q*_se, pred_r*_se hint at lower probability of fail-
ure of the model and show that the quality of the model
is high [25]. The developed model s considered to be ro-
bust it fulfils the following conditions- r*> 0.6, q> > 0.6,
pred_r*> 0.5 [45—47].

Cross-validation of the model

The developed QSAR model can be cross validated by
using internal and external validation methods. The in-
ternal validation of the model was carried out by using
the Leave One Out (LOO) method. The leave one out
cross validated correlation coefficient, ¢, is used as a fit-
ting function for the evaluation of the models. This
method uses a single observation as the validation data
from the sample and the remaining observations are
taken as training set. This procedure is repeated in a
way that every observation is used at least once as valid-
ation data. For calculating q° each compound in the
training set is sequentially removed and the model is re-
fitted using the same descriptors; the biological activity
of the removed molecule being predicted with the help
of the refit model [25].

The formula which calculates q* is-

Z(Yi_?i)z

predr’ = 1- &———"—
Z (Yi _Ymean)

Where,

y, = actual activity of the i'™ molecule in the training
set

9, = predicted activity of the i™ molecule in the training
set

Ymean = average activity of all the molecules in the training

set

The external validation of the model was carried out
by calculating the predicted r” This indicates how well
the calculated model predicts responses for new obser-
vations. Predicted r” is calculated by removing each mol-
ecule/observation from the dataset systematically and
then determining how well the removed observation has
been predicted by the model. An important benefit of
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predicted r? is that it helps in the prevention of overfit-
ting the model.
It is calculated by the following formula-

Z (Yi‘?’i)2
Z (Yi_Ymean) ?

pred r* = 1-

Where,

y, = actual activity of the i™ molecule in the test set
¥, = predicted activity of the i"™ molecule in the test set
= average activity of all the molecules in the test set

Ymean

Generation of combinatorial library

A combinatorial library was created using the LeadGrow
module of VLifeMDS [40]. This was done by substitut-
ing various groups at the six different substitution sites
of the N-Benzothiazolyl-2-Phenyl Acetamide template
which represents the common substructure of the ex-
perimentally reported dataset (Fig. 1). The library thus
created was generated by making different permutations
and combinations of the substituents at the substitution
sites and it was comprised of a total of 10,000 com-
pounds. The GQSAR model was used to predict the ac-
tivity of the compounds generated in the library.

Docking of the ligands with CK-16 protein

The ligands with highest predicted activity were selected
for docking studies and were prepared using the LigPrep
utility of Schrodinger [48, 49]. With the help of this, en-
ergy minimized 3-D structures of the compounds were
generated. The protein CK-16 used in this study was ob-
tained from Protein Data Bank (PDB Id- 3UYS). This
protein was prepared for docking using the Protein
Preparation Wizard of Glide [50]. CK-18 protein prepar-
ation involved capping of termini, removal of water mol-
ecules, treatment of disulfides and addition of explicit
hydrogen. This was followed by the optimization of the
protein after which a grid was generated around the
interacting residues making use of the Receptor Grid
Generation utility of Schrodinger [49]. The ligands pre-
pared with the help of LigPrep were docked with the
protein, CK-18 using the GlideXP module which re-
sulted in their binding affinities [51, 52]. The ligands
were ranked on the basis of their binding affinities. The
one exhibiting the best binding affinity was merged with
the protein and the resulting complex was separately
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analyzed. This step yielded top two compounds with
high binding affinities. With the aim of getting better
insight into the binding mode, the compound exhibiting
the highest activity amongst the N-Benzothiazolyl-2-
Phenyl Acetamide derivatives was also docked with CK-
18 protein and its binding affinity was recorded.

Results and discussions

Descriptors calculation and validation of the data in
training and test set

The VLifeMDS software calculated a total of 1027 descrip-
tors. These descriptors were preprocessed by the removal of
invariable columns which resulted in a total of 373 descrip-
tors. Nine compounds (2, 14, 15, 20, 23, 28, 29 and 33) were
incorporated in the test set whereas the remaining com-
pounds were included in the training set. The test set was
chosen as maximum pIC50 value of the test set compound
was less than or equal to that of the training set and the low-
est pIC50 value of the test compound was more than or
equal to that of the training set. This confirms that the test
set has been derived from the maximum-minimum range of
the train set and is interpolative. Unicolumn statistics of the
training set and the test set were obtained (Table 2).

Analysis of the GQSAR model

Using Stepwise Forward variable selection and Partial
Least Square model building method, a robust GQSAR
model best explaining the biological activity of the N-
Benzothiazolyl-2-Phenyl compounds as a function of
certain site-specific physico-chemical descriptors, was
obtained. The model can be represented as follows-

pIC50 = 0.8709 x (R2-slogp)-1.2447
x (R3-Psil)-0.6798
x (R2-SssCH2Count) + 0.1867
x (R6-HydrogensCount) + 5.9327

with n = 28, degree of freedom = 25, = 0.90, r2_standard
error = 0.24, q2 =0.85, q2_standard error = 0.29, pred_r2 =
0.89, pred_rz_standard error = 0.30, F test = 108.59.

Here,

n = no. of compounds in regression

1 = correlation coefficient (squared)

q” = squared correlation coefficient (cross validated)
Pred_r? = predicted squared correlation coefficient
F-test = denotes that the results are not just based on
chanced correlations

Table 2 Unicolumn statistics of the test and training set data for CK-18 inhibitory activity

Column Name Average Maximum Minimum Standard Deviation Sum
Training Set 6.2470 7.8239 4.7587 0.7148 1749167
Test Set 6.8667 76383 59318 0.6214 61.8006
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This model satisfies all the statistical parameters such
as °>0.6, ¢*> 0.6, pred_r*>0.5. It also exhibits a very
high F-test value and very low standard errors support-
ing the robustness of the model. The GQSAR model also
indicates the influence of the four descriptors namely
R2_slogp, R3_Psil, R2_SssCH2Count and R6_Hydrogen-
sCount on their respective substitution sites.

The descriptor, R2_slogp, belongs to the sub class In-
dividual. It describes the log of octanol/water partition
coefficient and calculates the log p value from the struc-
ture which is given. This indicates the contribution of
the descriptor at the R2 substitution site (Table 3). This
descriptor has a positive contribution of 39.75%, as is
evident from the contribution plot (Fig. 2) suggesting
that the presence of hydrophobic groups at this position
would enhance the inhibitory activity of the compound.
The second descriptor, R3_Psil, is a member of the sub
class Extended Topochemical Atom Based Descriptors
which gives a measure of the tendency of the molecules
for hydrogen bonding or the polar surface area of mole-
cules. It exhibits a negative contribution of 20.65% at the
R3 substitution site indicating that an increase in the
polar surface area of the molecule or the number of
molecules capable of forming hydrogen bond may de-
crease the inhibitory action of the compound. The third
descriptor, R2_SssCH2Count, belongs to the sub class
Estate Numbers. It gives an indication about the total
number of —CH2 groups which are connected with the
help of two single bonds. It is shown to have a negative
contribution of 23.28% at R2 substitution site of the com-
pound hinting that a reduction in such groups would be
better for the inhibitory activity of the compound. The
final descriptor, R6_HydrogensCount, belongs to the sub
class Element Count which is an indicator of the number
of Hydrogens present in a particular compound. At R6
substitution site, this descriptor effects a positive contribu-
tion of 16.32% indicating the importance of hydrogen
atoms at this site for a better inhibitory activity.

Minimal difference between the actual and predicted
values of the compounds is a measure of high quality of the
model [53, 54]. The significance of a model is described by
its various statistical parameters. A high value of the
squared correlation coefficient, 0.90, along with very low
standard error, 0.23, indicates that the model is highly ac-
curate. Good internal predictive power of the model can be
judged by a very high value of cross validated correlation
coefficient. Similarly, the value of predicted squared correl-
ation coefficient, 0.89, indicates that the model has good ex-
ternal predictive ability. Since a high F-test value was
obtained, 108.59, it can be assured that there are very few
chances that the model will fail. Low standard error values
represent the fact that the quality of the model generated is
very high and the model is predictive and reliable. A Fitness
Plot (Fig. 3) and Radar Plots (Fig. 4) were obtained which
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Table 3 Contribution of various physico-chemical descriptors
Compound  plCsg  R2- R2- R6- R3-

No. Value slogp  SssCH2Count HydrogensCount Psil

1 7.0809 06361 0O 2 Nan
2 76382 11785 0 2 Nan

3 62757 -03915 0 2 Nan
4 62676 04985 0O 1 Nan
5 59172 0 0 0 0

6 71674 11785 0 2 05154
7 50127 -03915 0 2 05154
8 47587 —0.0014 1 2 0.5154
9 71870 11785 0 2 Nan
10 6.1249 -03915 0 2 Nan
11 59546 —-0.0014 1 2 Nan
12 6.5850 09581 O 2 0.3846
13 64948 0.802 0 2 0.3846
14 59318 05327 0 2 0.3846
15 6.5376 06361 O 2 0.3846
16 56536 -03915 0 2 0.3846
17 62076 04985 0 2 0.3846
18 52395 -0.0014 1 2 0.3846
19 73767 11785 0 4 Nan
20 63767 -03915 0 4 Nan
21 6.004 -0.0014 1 4 Nan
22 70604 11785 O 1 Nan
23 74814 11785 O 2 Nan
24 62441 -03915 0 2 Nan
25 59625 -0.0014 1 2 Nan
26 64814 0.246 0 2 Nan
27 73279 11785 0O 2 Nan
28 72518 11785 O 1 Nan
29 59065 —-03915 0 1 1.7976
30 54647 -0.0014 1 1 Nan
31 62291 04985 O 1 Nan
32 67212 11785 0 4 0.3846
33 71023 04985 O 4 Nan
34 59507 -03915 0 4 Nan
35 58446 —-00014 1 4 Nan
36 78239 11785 0 4 Nan
37 6.0705 0.246 0 2 Nan

represent and compare the actual and predicted activities
of the molecules of the training set and the test set.

Analysis of the combinatorial library generated using the
GQSAR model

The combinatorial library was created by substituting
the various sites with rings, aromatic rings, alkyl groups
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Fig. 2 Contribution Plot depicting positive and negative contribution of the four descriptors of developed GQSAR model
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and atoms. The inhibitory activities of the compounds
generated were predicted using the GQSAR model gen-
erated previously. Around 10,000 compounds were gen-
erated in the combinatorial library whose predicted
activities ranged from 3.83 to 39.44. Out of these 10,000
compounds, 240 compounds had predicted activity more
than the highest activity of the compounds of the experi-
mentally reported dataset (pIC50 = 7.8). The substituents
in these compounds exhibiting high predictive power
were rings at R1 and R4 positions, alkyl groups at R2
position, electronegative atoms such as fluorine and oxy-
gen at R3 position, carbonic acids and acetate esters at
R5 and aromatic rings at R6 position. The presence of
highly electronegative atoms at R3 plays the most

important role in deciding the activities of compounds.
The compounds with atoms other than fluorine and
oxygen display lower activity values as compared to
those with these two atoms.

Docking analysis of the designed lead compounds with
CK-16
The compounds which exhibited the best predicted in-
hibitory values, more than the highest value of the ex-
perimentally reported dataset, were selected for further
docking analysis. Top two compounds were reported as
potent lead compounds against CK-10.

The first compound, 6-benzyl-2-cyclopropyl-4-{[(4-
cyclopropyl-6-ethyl-1,3-benzothiazol-2-yl)carbamoyl]met

~

Predicted Value (pIC50)
(<]

4
4 4.5 5 5.5

> # Training set
# Test Set
6 6.5 7 7.5 8

Actual Value (pIC50)
Fig. 3 Graph of observed/actual vs. predicted activity of the test and training set data
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Fig. 4 Radar Plots representing predicted and observed/actual activity values of (a) test set and (b) training set
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hyl}j-3-fluorophenyl hydrogen carbonate (CHC) (Fig. 5a)
consisted cyclopropane at R1, ethyl at R2, fluorine at R3,
another cyclopropane at R4, carbonic at R5 and a benzyl
group at R6. This compound displayed a binding score
of -6.11 Kcal/mol. The other compound, 6-benzyl-4-
{[(4-cyclopropyl-6-ethyl-1,3-benzothiazol-2-yl)carbamoyl
]methyl}-2-(decahydronaphthalen-1-yl)-3-hydroxyphenyl
hydrogen carbonate (DHC) (Fig. 5b) had cyclopropane
at R1, ethyl at R2, hydroxyl at R3, cyclobutane at R4, car-
bonic at R5 and naphthalene moiety at R6. This

compound possessed a binding score of —6.01 Kcal/mol.
The various components of the Glide score of these two
compounds are provided in Table 4. The compound
N-[6-(trifluoromethyl)-1,3-benzothiazol-2-yl]-2-(3,4,5-
trimethoxyphenyl)Acetamide (BTA), which exhibited
the highest inhibitory activity in the experimental dataset
with a pIC50 value of 7.8, was also docked with CK-18 for
a comparative analysis. The GlideXP score of this particu-
lar compound was -3.78 Kcal/mol, suggesting that the
compounds designed (CHC and DHC) had better binding
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Fig. 5 Structures of the two highly active compounds (a) CHC
(6-benzyl-2-cyclopropyl-4-{[(4-cyclopropyl-6-ethyl-1,3-benzothiazol-2-
ylcarbamoyllmethyllj-3-fluorophenyl hydrogen carbonate) and (b) DHC
(6-benzyl-4-[(4-cyclopropyl-6-ethyl-1,3-benzothiazol-2-yl)carbamoyl]
methyl}-2-(decahydronaphthalen-1-yl)-3-hydroxyphenyl hydrogen
carbonate). (Heteroatoms are shown in different colors; as Nitrogen in
blue, oxygen in red and sulfur in green)

affinities for CK-18 protein than the experimentally re-
ported compounds. Structure analysis of the novel leads
make it clear that both the compounds have cyclopropane
ring at R1, ethyl at R2 and carbonic group at R5 in com-
mon. CHC is more active displaying higher binding
score, having another cyclopropane ring at R4, a

Table 4 Glide score XP and its components

Complex CHC-CK-16 DHC-CK-16 BTA-CK-16
Glide Score XP —6.11 —6.01 -3.78
Glide Hydrogen Bond -0.13 -0.36 -0.20
Glide Evdw —-36.68 —42.51 —3593
Glide Ecoul —17.69 -13.02 -5.10
Glide Emodel -61.95 -79.92 -38.17
Glide Energy —52.37 —55.53 —41.03
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fluorine at R3 and another single six membered (ben-
zene) ring at R6 in comparison to DHC that contain
butane ring, hydroxyl group and a fused pair of six
membered rings (naphthalene) at the respective
positions.

Interactions of CHC, BHC with CK-16 protein

Docking analysis of the top scoring compounds provided
insights into the mode of interactions of the designed
compounds with the protein Casein Kinase-18. Molecular
binding is a phenomenon that relies on the entropy-
enthalpy compensation and contain both entropic and en-
thalpy components. The binding may be entropy driven in
case of the hydrophobic effect or enthalpy driven in case
of the dominant non-covalent attractive forces. Funda-
mentally, both the entropic and enthalpy component must
result into a negative Gibbs’ free energy for effective bind-
ing. In our study the reported lead molecules show high
negative binding free energy in comparison to the in-vitro
reported compound which displays a significant binding
capability of the lead molecules. The hydrophobic interac-
tions are the most important forces in stabilizing bio-
logical structures ranging from native conformations of
proteins to cellular membranes. In our study, high nega-
tive value of van der Waal energy represents the massive
hydrophobic interaction (Table 4) and hydrogen bonds as
the non-covalent attractive forces.

The first compound, CHC displayed four hydrogen
bond interactions with three residues of CK-18-
Glu52, Tyr56 and Lys38. The bond with a length of
3.31 A was formed with Glutamic acid. The second
hydrogen bond of bond length 2.49 A was formed be-
tween the same atom of CHC with Tyrosine. Third
and the fourth hydrogen bonds were formed between
the fourth oxygen of carbonic group of CHC and Ly-
sine (bond length=2.74 A) and the second oxygen
atom of carbonic group of CHC and Lysine (bond
length =2.88 A). CHC also exhibited hydrophobic in-
teractions with several residues such as Aspl49,
Asp91, Leul35, Ile148, Gly86, Leu84, Leu85, Pro87,
Ile23 and Met82 (Fig. 6).

The second lead compound DHC exhibited two
hydrogen bonds with CK-18. The first one was formed
between the nitrogen of DHC and Asp91 (bond length
=3.04 A). The second hydrogen bond was formed be-
tween the fifth oxygen of DHC and Lys38 (bond length
=2.74 A). DHC also exhibited hydrophobic interactions
with various residues like Phe95, Lys130, Asn133, Gly21,
Ile148, Aspl49, Ile23, Met82, Leu85, Leul35, Pro87,
Gly86 and Ala36 (Fig. 7). A summary of these interac-
tions is provided in Table 5.

The interacting residues in case of both the lead mole-
cules lie in common to the reported ATP binding site
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Fig. 6 Molecular interactions of CK-16 with CHC; different colors are used for distinct visualization of interaction and do not relate to nature of
molecules or functional difference (a) representation of hydrophobic interactions (CHC in blue and CK-16 protein in green) and (b) hydrogen
bonds (CHC in green and CK-16 residues Lys, Glu and Tyr in blue, red and magenta, respectively

Leu 84

Leu 85

Gly 86
‘ Leu 135
/ \}\\ Pro87
Asp 91

residues of the CK-18 protein. This confirms the structural
reasons for inhibitory activity of the lead molecules [1].

Conclusions

In this study, an attempt was made at creating a novel
GQSAR model for the derivatives of N-Benzothiazolyl-2-
Phenyl Acetamide which act as inhibitors of Casein
Kinase-18 protein. This protein causes the phosphoryl-
ation of TAR DNA Binding Protein-43 (TDP-43), a
phenomenon which is associated with the onset and
progression of a neurodegenerative disorder, Amyotrophic
Lateral Sclerosis (ALS). A QSAR equation was obtained
which constituted four descriptors namely, R2-slogp, R3-
Psil, R2-SssCH2count and R6-HydrogensCount. The first

descriptor displayed a positive contribution at the substi-
tution site R2 whereas the second one displayed negative
contribution at R3. The third descriptor exhibited a nega-
tive contribution at R2 and the last descriptor was shown
to contribute positively to R6 substitution site. GQSAR
model was analysed on various statistical parameters and
found to be robust. Internal validation of the model was
carried out by the leave one out method and external val-
idation was carried out by predicting the activity of the
test set molecules.

A combinatorial library was prepared and the activities
of the compounds were predicted using the developed
QSAR model. An analysis of the compounds generated
from this library revealed that the presence of cyclic
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Fig. 7 Molecular interactions of CK-16 with DHC; different colors are used for distinct visualization of interaction and do not relate to nature of
molecules or functional difference (a) representation of hydrophobic interactions (DHC in purple and CK-16 protein in green) and (b) hydrogen

rings at R1 and R4, alkyl groups at R2, electronegative
atoms such as fluorine and oxygen at R3 acetate esters
at R4 and aromatic rings at R6 were beneficial in enhan-
cing the inhibitory activity of the compounds. This was
followed by docking, resulting in the top scoring com-
pounds, CHC and DHC, with highest binding affinities

with the protein CK-18. This study provides substantial
amount of evidence that these compounds can be con-
sidered as potential leads against the CK-18 protein,
inhibiting the phosphorylation of TDP-43 and thus pre-
venting ALS. These molecules have been developed on
the basis of a highly accurate and validated GQSAR
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Table 5 Various CK-16 residues involved in different kinds of
interactions with CHC and DHC

Complex  Residues involved in Residues involved in
hydrophobic interactions hydrogen bonding

CK-16-CHC  lle23, Met82, Leu84, Leu85,  Lys38, Glu52, Tyr56
Gly86, Pro87, Asp91, Leu135,
11e148, Asp149

CK-16-DHC  Gly21, lle23, Ala36, Met82, Lys38, Asp91

Leu85, Gly86, Pro87, Phe9s,
Lys130, Asn133, Leu135,
11e148, Asp149

model and have also proved to have high binding affinity
towards CK-18 as displayed through the docking ana-
lysis. CHC and DHC can be the good leads for further
in-vitro testing as CK-18 inhibitors and have the poten-
tial to be include in the drug development pipeline as
CK-18 antagonists.
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