
SOFTWARE Open Access

SCIFIO: an extensible framework to support
scientific image formats
Mark C. Hiner1, Curtis T. Rueden1 and Kevin W. Eliceiri1,2*

Abstract

Background: No gold standard exists in the world of scientific image acquisition; a proliferation of instruments
each with its own proprietary data format has made out-of-the-box sharing of that data nearly impossible. In the
field of light microscopy, the Bio-Formats library was designed to translate such proprietary data formats to a
common, open-source schema, enabling sharing and reproduction of scientific results. While Bio-Formats has
proved successful for microscopy images, the greater scientific community was lacking a domain-independent
framework for format translation.

Results: SCIFIO (SCientific Image Format Input and Output) is presented as a freely available, open-source library
unifying the mechanisms of reading and writing image data. The core of SCIFIO is its modular definition of
formats, the design of which clearly outlines the components of image I/O to encourage extensibility, facilitated
by the dynamic discovery of the SciJava plugin framework. SCIFIO is structured to support coexistence of multiple
domain-specific open exchange formats, such as Bio-Formats’ OME-TIFF, within a unified environment.

Conclusions: SCIFIO is a freely available software library developed to standardize the process of reading and
writing scientific image formats.

Keywords: SCIFIO, Image analysis, Open-source, Bio-Formats, ImageJ

Background
Image formats are defined by the logical layout of meta-
data and pixel information across one or more data
sources. Proprietary file formats (PFFs) are created when
an imaging instrument, such as a microscope, records
such data in a structure that is not publicly described.
PFFs are especially problematic in scientific domains, as
each company or even instrument brings the potential
for a new file format, possibly requiring licensed soft-
ware to decode, or the file format changing in structure
without notice or recourse. The scientific method neces-
sitates that data can be analyzed by others to verify and
reproduce results; when said data is stored in a propri-
etary format, by definition, it cannot be freely shared
and inspected.
In response to the proliferation of PFFs in the fields

of life science, the Open Microscopy Environment

(OME) consortium developed the Bio-Formats library
to standardize the reading of microscopy data [1].
Bio-Formats provides an application program interface
(API) for reading and writing images, backed by a
comprehensive collection of extensions to decode format-
specific information and translate it into an open specifi-
cation called the OME data model [2]. A translated image
can then be written as OME-TIFF, an “open-exchange
format” which combines the universal readability of the
TIFF standard with an XML schema representing the
OME data model (OME-XML). These OME-TIFF images
can be freely shared, with pixel data accessible via stand-
ard libraries such as libtiff [3], and the complete metadata
parseable by any standards-compliant XML reader. In this
way, the Bio-Formats project greatly mitigates the PFF
problem in microscopy.
Bio-Formats has become an essential tool for scientists

worldwide; however, its metadata model specifically tar-
gets 5-dimensional images in microscopy and related life
sciences disciplines. PFFs from other scientific domain-
s—e.g., medical imaging, astronomy, industrial x-rays,
materials science and geoscience—each have their own

* Correspondence: eliceiri@wisc.edu
1Laboratory for Optical and Computational Instrumentation, University of
Wisconsin at Madison, 271 Animal Science Building, 1675 Observatory Dr.,
Madison 53706, WI, USA
2Morgridge Institute for Research, 330 N. Orchard, Madison, WI, USA

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Hiner et al. BMC Bioinformatics (2016) 17:521
DOI 10.1186/s12859-016-1383-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1383-0&domain=pdf
mailto:eliceiri@wisc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

unique considerations with respect to the dimensionality
and metadata of their images; as such, it would be in-
feasible for a single “one-size-fits-all” metadata model to
fully address the needs of scientific imaging as a whole.
With this conclusion in mind, we have developed the
SCIFIO (SCientific Image Format Input and Output)
library, generalizing the success of Bio-Formats to create
a domain-independent image I/O framework enabling
seamless and extensible translation between image meta-
data models. The goal of SCIFIO is to provide the archi-
tecture that will equally facilitate: 1) the conversion of
additional formats into supported open-exchange for-
mats such as OME-TIFF and 2) the integration of add-
itional scientific open-exchange formats such as Digital
Imaging and Communications in Medicine (DICOM)
[4], Flexible Image Transport System (FITS) [5] and
netCDF [6] into a common image I/O framework.

Implementation
SCIFIO is implemented as a plugin suite for the SciJava
plugin framework. Its core is written under the permis-
sive BSD license to maximize freedom of inclusion in
both open and closed source applications. The SciJava
framework collects Plugins in an application Context
which are typically accessed via Services. As such, SCI-
FIO defines a collection of Plugins and Services facilitat-
ing image I/O. Developers will typically start with the

SCIFIO class itself: a Gateway to the SciJava Context
providing convenient accessor methods for functional
components of the SCIFIO framework.
The SciJava framework sorts Plugins by “type,” repre-

senting the role of a given Plugin. Extensibility and
flexibility is achieved by providing a public Service API
which organizes and delegates to available Plugins of
each type. Thus, SCIFIO development is primarily
concerned with adding new Plugin implementations to
achieve a desired result. The following sections de-
scribe the key Plugin types in SCIFIO, and the behavior
they control.
First and foremost is the Format. Formats are a collec-

tion of interface-driven components (Fig. 1) defining the
steps for decoding an image source to its metadata and
pixel values. In SCIFIO, the ImageJ Common data model
is used to describe pixels; this data model is built on
ImgLib2 [7] due to its type and algorithmic flexibility,
ensuring images opened with SCIFIO are universally
recognized within the ImageJ ecosystem [8]. A Format
must always include a Metadata component defining its
unique fields and structures, such as acquisition instru-
ment details, dimensional axis types, or detector emis-
sion wavelengths. Each Metadata implementation must
also be able to express itself as a standard format-
independent ImageMetadata object, establishing a com-
mon baseline for use within the framework.

Fig. 1 Components of a Format plugin and their role in image I/O

Hiner et al. BMC Bioinformatics (2016) 17:521 Page 2 of 5

The Checker component contains the logic for match-
ing a given Format with a potential image source, while
the Parser component performs the actual creation of
Metadata from that source. The Reader and Writer
components use Metadata to read or write pixel data,
respectively. Given the goal of freely shareable image
data, Writers are optional components and should not
be implemented for proprietary formats.
A second essential Plugin type is the Translator, which

encodes logic for conversion from one Metadata type to
another. Translators enable the standardization of propri-
etary formats to common Metadata structures such as
OME, and hence play a key role in converting images
between Formats. Translators are typically created to ac-
company Writers, ensuring Format-specific metadata is
properly populated. Additionally, the Translator framework
enables the integration of new open-exchange formats via
Translator-only libraries, converting supported Metadata
types to the new standard. An example of this model can
be seen in the SCIFIO-OME-XML component (Fig. 2).
While Formats and Translators add new behavior to the

base framework, SCIFIO also has Plugin types to control
existing behavior. For example, Filter plugins provide a
Format-agnostic mechanism for modifying Reader behav-
ior. Filters create an ordered chain of delegation, each
operating on the data of its parent, and can be individually
toggled ‘on’ or ‘off ’ on a per-Reader basis. Sample Filter
stacking behavior is illustrated in a ChannelFiller for
converting “indexed color” pixels to RGB values and a
FileStitcher for unifying multiple files on disk to form
one dataset (Fig. 3).
With all SciJava Plugins, a numeric priority value at-

tached to each class creates an implicit relative ordering
for operations—e.g., order of Checker querying, Translator

querying, or Filter application. Priorities are automat-
ically considered when using the SCIFIO Services:
from the FormatService polling Checker components
to the TranslatorService finding the correct Translator
for a given request, priorities allow querying the most
specific solutions first, before moving to more general
options. These pieces together provide a robust and
flexible library for reading and writing image data.

Results and discussion
As the fundamental goal of SCIFIO is to establish an
extensible framework for image support, the SciJava
framework is a logical choice for implementation. SciJava
provides extensible solutions to common software prob-
lems, which implicitly benefit SCIFIO. A core example is
the extensible script language framework (http://imagej.
net/Scripting) which effectively allows SCIFIO to be used
from any number of programming languages without re-
quiring language-specific considerations in SCIFIO itself.
ImageJ [9] presents the flagship use case for SCIFIO,

allowing an established community to vet and refine the
library. Although users do not directly interact with SCI-
FIO API, all image I/O operations in ImageJ ultimately
rely on SCIFIO. As developers contribute new Format
plugins for image types relevant to their work, any appli-
cation using SCIFIO can immediately benefit from the
new plugin. Looking beyond ImageJ, projects like KNIME
Image Processing (KNIP), built on the KNIME Analytics
Platform [10], have already adopted SCIFIO for their
image I/O mechanism. This sort of code sharing leads to a
form of mutualistic collaboration: a new Format plugin
developed for KNIP will automatically work in ImageJ,
with the converse true as well. Equally importantly, both
ImageJ and KNIP can implicitly operate on image data

Fig. 2 SCIFIO-OME-XML Translator suite, for converting metadata to the OME-TIFF open-exchange format

Hiner et al. BMC Bioinformatics (2016) 17:521 Page 3 of 5

http://imagej.net/Scripting
http://imagej.net/Scripting

produced by the other program, laying the foundation for
algorithmic interoperability.
Collaborations like this would not be possible with a

focused library like Bio-Formats. KNIME is a platform
for extensible workflows, thus its handling of image
data demands flexibility beyond the fixed 5D micros-
copy schema of OME. Additionally, Bio-Formats’
mechanism of format extension requires either modifi-
cation of a text-based configuration file to define for-
mat priority, which can lead to conflicts if multiple
libraries provide differing versions of this file, or run-
time modification by API calls, which may not be re-
producible without a central mechanism controlling
these calls. Conversely, the dynamic discovery of the
SciJava plugin framework allows SCIFIO developers to
provide their Formats completely independently—e.g.,
on an ImageJ, KNIME or Eclipse update site, while SCI-
FIO’s backing by the ImageJ Common data model en-
sures adaptation to any future requirements in imaging
dimensionality and data types.
Bio-Formats readers and writers and SCIFIO Format

components define similar high level logic, but in Bio-
Formats several I/O steps are conflated in a single
monolithic interface with many protected methods as
potential extension points. SCIFIO encapsulates each I/
O step into its own dedicated component, to minimize
the effort required in format development. Whether a
format is added to Bio-Formats or SCIFIO libraries; the
SCIFIO-BF-Compat and SCIFIO-OME-XML compo-
nents offer bidirectional compatibility between SCIFIO
and Bio-Formats.
Bio-Formats has demonstrated the feasibility of stand-

ardizing a broad field of PFFs into a common open-
exchange format. SCIFIO provides a natural generalization
of thinking, allowing extension to new domains, through
the integration of their Metadata standards and open-
exchange formats via Translators, and clear paths for
contributing to existing domains by encapsulating the
logic of Format components. Given the added immediate

power of the Bio-Formats integration layers, we see the
SCIFIO framework as a potential unifying solution to PFFs
in scientific image data.

Conclusions
SCIFIO is an open-source library generalizing the suc-
cessful structure of Bio-Formats to create a domain-
independent framework for the reading, writing, and
translation of images. The extensible design of SCIFIO
facilitates community contribution, the establishment of
domain-specific metadata standards, and integration into
a unified system capable of adapting to the demands of
scientific imaging analysis.

Abbreviations
API: Application program interface; I/O: Input and/or output; KNIME: Konstanz
Information Miner; KNIP: KNIME Image Processing; OME: Open Microscopy
Environment; PFF: Proprietary file formats; SCIFIO: SCientific Image Format
Input and Output

Acknowledgements
Many people have contributed to the development of SCIFIO on both
technical and leadership levels. In particular, the authors gratefully thank and
acknowledge the efforts of (in alphabetical order): Ellen T. Arena, Anne
Carpenter, Christian Dietz, Gabriel Einsdorf, Melissa Linkert, Josh Moore, Tobias
Pietzsch, Stephan Preibisch, Stephan Saalfeld, Jason Swedlow, and Pavel
Tomancak. We also thank the entire ImageJ community, especially those who
contributed patch submissions, use cases, feature requests and bug reports.

Funding
Research reported in this publication was supported by ACI Division of
Advanced Cyberinfrastructure of the National Science Foundation under
award number 1148362 and additional internal funding from the Laboratory
for Optical and Computational Instrumentation.

Availability of data and materials
Project name: SCIFIO
Project home page: http://scif.io/
Archived version: 0.28.2 http://maven.imagej.net/service/local/repositories/
releases/content/io/scif/scifio/0.28.2/scifio-0.28.2.jar
Source code: https://github.com/scifio/scifio
Operating system(s): Platform independent
Programming language: Java
Other requirements: Java 1.8 or higher runtime, io.scif:scifio-jai-imageio,
net.imagej:imagej-common, net.imglib2:imglib2, org.scijava:scijava-common,
org.mapdb:mapdb
License: BSD

Fig. 3 Behavior of ChannelFiller and FileStitcher Filter plugins

Hiner et al. BMC Bioinformatics (2016) 17:521 Page 4 of 5

http://scif.io/
http://maven.imagej.net/service/local/repositories/releases/content/io/scif/scifio/0.28.2/scifio-0.28.2.jar
http://maven.imagej.net/service/local/repositories/releases/content/io/scif/scifio/0.28.2/scifio-0.28.2.jar
https://github.com/scifio/scifio

Authors’ contributions
MCH was the lead implementer of the software. CTR architected the
underlying SciJava foundation and guided SCIFIO development. As the
primary principal investigator of SCIFIO, KWE directed and advised on all
aspects of the project including development directions and priorities. All
authors contributed to, read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Maven artifacts
SCIFIO can be added as a dependency to any project capable of
consuming Maven dependencies. As SCIFIO is a project in the SciJava
domain, we recommend using dependency management from the
latest pom-scijava release (http://maven.imagej.net/index.html#nexus-
search;gav~org.scijava~pom-scijava).
The following are example sections for adding a SCIFIO dependency to
a pom.xml:

Received: 17 June 2016 Accepted: 26 November 2016

References
1. Linkert M, Rueden CT, Allan C, Burel J-M, Moore W, Patterson A,

Loranger B, Moore J, Neves C, Macdonald D, Tarkowska A, Sticco C, Hill
E, Rossner M, Eliceiri KW, Swedlow JR. Metadata matters: access to
image data in the real world. J Cell Biol. 2010;189:777–82.

2. Goldberg IG, Allan C, Burel J-M, Creager D, Falconi A, Hochheiser
H, Johnston J, Mellen J, Sorger PK, Swedlow JR. The open
microscopy environment (OME) data model and XML file: open
tools for informatics and quantitative analysis in biological
imaging. Genome Biol. 2005;6:R47.

3. LibTIFF - TIFF Library and Utilities. http://www.libtiff.org. Accessed
29 Nov 2016.

4. Bidgood Jr WD, Horii SC, Prior FW, Van Syckle DE. Understanding and
using DICOM, the data interchange standard for biomedical imaging. J
Am Med Inform Assoc. 1997;4:199–212.

5. Pence WD, Chiappetti L, Page CG, Shaw RA, Stobie E. Definition of the
flexible image transport system (FITS), version 3.0. Astron. Astrophys.
2010;524(Suppl Ser):A42.

6. Unidata | NetCDF. http://doi.org/10.5065/D6H70CW6. Accessed
29 Nov 2016.

7. Pietzsch T, Preibisch S, Tomancák P, Saalfeld S. ImgLib2–generic image
processing in java. Bioinformatics. 2012;28:3009–11.

8. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an
open platform for biomedical image analysis. Mol Reprod Dev. 2015;82:
518–29.

9. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years
of image analysis. Nat Methods. 2012;9:671–5.

10. Berthold MR, Nicolas C, Fabian D, Gabriel TR, Tobias K, Thorsten M, Peter
O, Christoph S, Kilian T, Bernd W. KNIME: The Konstanz Information
Miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R, editors.
Studies in Classification, Data Analysis, and Knowledge Organization.
Berlin Heidelberg: Springer-Verlag; 2008. p. 319–326. doi:10.1007/978-3-
540-78246-9.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Hiner et al. BMC Bioinformatics (2016) 17:521 Page 5 of 5

http://maven.imagej.net/index.html#nexus-search;gav~org.scijava~pom-scijava
http://maven.imagej.net/index.html#nexus-search;gav~org.scijava~pom-scijava
http://www.libtiff.org
http://doi.org/10.5065/D6H70CW6
http://dx.doi.org/10.1007/978-3-540-78246-9
http://dx.doi.org/10.1007/978-3-540-78246-9

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results and discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Maven artifacts
	References

