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Abstract

Background: Performing statistical tests is an important step in analyzing genome-wide datasets for detecting
genomic features differentially expressed between conditions. Each type of statistical test has its own advantages in
characterizing certain aspects of differences between population means and often assumes a relatively simple data
distribution (e.g., Gaussian, Poisson, negative binomial, etc), which may not be well met by the datasets of interest.
Making insufficient distributional assumptions can lead to inferior results when dealing with complex differential
expression patterns.

Results: We propose to capture differential expression information more comprehensively by integrating multiple
test statistics, each of which has relatively limited capacity to summarize the observed differential expression information.
This work addresses a general application scenario, in which users want to detect as many as DEFs while requiring the
false discovery rate (FDR) to be lower than a cut-off. We treat each test statistic as a basic attribute, and model the
detection of differentially expressed genomic features as learning a discriminant boundary in a multi-dimensional space
of basic attributes. We mathematically formulated our goal as a constrained optimization problem aiming to maximize

discoveries satisfying a user-defined FDR. An effective algorithm, Discriminant-Cut, has been developed to solve an
instantiation of this problem. Extensive comparisons of Discriminant-Cut with 13 existing methods were carried out

to demonstrate its robustness and effectiveness.

Conclusions: We have developed a novel machine learning methodology for robust differential expression analysis,
which can be a new avenue to significantly advance research on large-scale differential expression analysis.

Keywords: Differential expression analysis, Discriminant boundary learning, False discovery rate, Discriminant-Cut

Background

High-throughput technologies, such as DNA microarray
[1, 2] and RNA-seq (RNA sequencing) [3], have made it
possible to perform genome-wide profiling of various
genomic features, such as, genes, transcripts, exons,
DNA modifications, and so on. These technologies have
been widely adopted to detect genomic features (referred
to as “features” from now on) that are differentially
expressed between different conditions (e.g., phenotypes,
treatments, etc.). When analyzing genome-wide datasets
to detect differentially expressed features (DEFs), it is
important to control the overall false positive rate
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because thousands of hypotheses are tested simultan-
eously. Controlling the false discovery rate (FDR - the
expected proportion of false positives among all features
called significant) was first introduced by Benjamini and
Hochberg [4] to large-scale testing problems and has
been broadly applied in detecting DEFs since then. The
Benjamini-Hochberg (BH) approach takes the p-values
of all hypothesis tests and uses a sequential method to
estimate the rejection region (i.e., p-value threshold).
More recently, researchers formulated FDR estimation
in a Bayesian fashion [5-7], which assumes the distribu-
tion of the statistic as a density mixed of nulls and alter-
natives. The Bayesian approaches can be implemented
non-parametrically using the test statistics directly rather
than their p-values. The calculation of test statistics (and
their p-values) can be deemed as a mapping from the
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original high-dimensional observations to a single index
value per feature. The ordinary t-test [8] was one of the
most popular mappings for detecting differential expres-
sions measured by DNA microarrays. The ¢-test assumes
normality in the target data and can be prone to outliers.
In addition, its variance estimation is feature specific and
is impacted by great variability when only few samples/
replicates are available in DNA microarray experiments.
To deal with this problem, various versions of moderated
t-statistics [6, 9-16] were developed to utilize information
across features for regularizing variance estimation.

Statistics based on the Poisson distribution [17, 18] or
the negative binomial (NB) distribution [19-22] were
later proposed specifically for detecting DEFs using
RNA-seq data. Different from typical DNA microarray
approaches that rely on hybridization to measure the ex-
pression levels of features as continuous values, RNA-
seq approaches use deep sequencing to produce millions
of short reads corresponding to those features. The reads
are then mapped onto a reference genome, which makes
Poisson a natural representation of read counts. It was
shown that the Poisson distribution was able to effect-
ively characterize technical replicates in RNA-seq experi-
ments [17]. However, the Poisson distribution forced the
mean and variance to be the same and predicts a smaller
variance than what was observed in biological replicates
[23]. To deal with this so-called over-dispersion prob-
lem, PoissonSeq [24] applied a power transformation to
make the data distribution look more like Poisson. Auer
[25] proposed a two-stage Poisson model (TSPM) to
handle features with significant over-dispersion evidence
by a quasi-likelihood approach [26]. In the meantime,
the NB distribution was proposed as an alternative [23]
and has been gaining momentum in analyzing RNA-seq
data. Compared to the Poisson distribution, the NB dis-
tribution allows the modeling of a more general mean-
variance relation by taking another dispersion parameter.
Several NB-based approaches, such as DESeq [20],
DESeq2 [27], edgeR [22], NBPSeq [28], EBSeq [29], bay-
Seq [30], ShrinkSeq [31], and so on, have been devel-
oped, and they mainly differ in their ways of modeling
and estimating the dispersion parameter.

Recently, it was demonstrated that the moderated ¢-stat-
istic, when combined with appropriate data preprocessing
methods, could be powerful for detecting DEFs using
RNA-seq data. For example, voom [32] extended limma
[11], which uses the moderated t-statistic in a pipeline
well-established for analyzing DNA microarray data, for
differential expression analysis using RNA-seq data. Voom
applies a logarithmic transforms to read-counts normal-
ized by the corresponding library size, estimates the
mean-variance relationship non-parametrically from the
transformed data, uses the estimated relationship to gen-
erate a precision weight for each normalized observation,
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and finally enters them into the limma empirical Bayes
analysis pipeline for detecting DEFs. In another example,
vst/limma [33] applied the variance-stabilizing transform-
ation (vst) of DESeq to RNA-seq data before using limma
to calculate the moderated ¢-statistic.

The above test statistics can be viewed as attributes
extracted from data to characterize the observed differ-
ential expression patterns. Most existing attribute ex-
traction methods make specific assumptions about data
distributions (e.g., Gaussian, Poisson, or NB), and then
calculate a statistic (i.e., an attribute in our words) for
each feature. Although those test statistics are efficient
in preserving differential expression information up to
certain levels, they leave plenty of room for further im-
provements. In real applications, the profiles of individ-
ual features in the same dataset can be governed by
complex distributions, and hence may not be well repre-
sented by the assumed distribution [34]. We made a
similar observation that the distributions could indeed
be far more complex than those often assumed (see
Figs. 2 and 11 in the Results section for examples). Indi-
vidual attributes based on relatively simple distribution
assumptions will have limited capacity in characterizing
complex differential expression patterns, and hence can
greatly affect DEF detection results. In theory, we can
explicitly make every differential expression test follow a
common family of distributions by designing a complex
distribution form (e.g., mixture of simple distributions)
to approximate all complex distributions in data. Such a
complex distribution will have unknown parameters
that can be estimated from data by applying the same
procedure to all features. However, it can be challen-
ging to design not only a statistic for testing differen-
tial expressions based on such a complex distribution
but also a parametric DEF detection approach that
uses this test statistic.

There are non-parametric approaches that do not as-
sume data distribution, such as, SAMSeq [34] and NOISeq
[35]. SAMseq utilizes the ranksum test statistic [36] to
characterize differential expressions and uses resampling
to adjust for different library sizes. Although the ranksum
test does not assume any data distribution and is less likely
to be affected by outliers, it can sometimes be considerably
less capable of preserving information. NOISeq uses two
simple attributes (log fold-changes and absolute expression
differences), and estimates the null as the joint distribution
of these two attributes from replicates (or replicates simu-
lated from an empirically determined multinomial distri-
bution), which is then used to calculate the odds of an
observed statistic pair indicating differential expression.
Nevertheless, NOISeq does not directly estimate FDR. In
addition, log fold-changes and absolute expression differ-
ences can be prone to outliers and are not powerful
enough for characterizing complex differential expression
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patterns. However, NOISeq motivated us to investigate
better ways for integrating multiple attributes to detect
DEFs while controlling the FDR.

In this paper, we call the above attributes “basic” be-
cause of their relatively simple forms and limited cap-
acity in preserving differential expression information.
Most of the existing DEF detection methods rely on one
single basic attribute in each analysis run, which can
greatly restrict their detection power. Since different
basic attributes may capture distinct aspects of differen-
tial expression patterns, we anticipate that DEFs can be
better differentiated from non-DEFs using multiple basic
attributes, which may be extracted from data using exist-
ing tools, such as, DESeq2, voom, limma, and so on.
This work addresses a general application scenario, in
which users set a target FDR and ask a method to detect
as many DEFs as possible. This can be formulated as a
constrained optimization problem that tries to learn an
optimal decision boundary in a space of multiple basic
attributes to differentiate DEFs from non-DEFs. An algo-
rithm Discriminant-Cut has been developed to explore
the linear decision boundary family. Extensive tests were
conducted to test Discriminant-Cut and compare it with
several popular DEF detection methods. The results
demonstrate that it is significantly advantageous to com-
bine multiple basic attributes in detecting DEFs.

Methods

DEF detection as learning multi-dimensional decision
boundary

Let G=1{gj}i—1.. mj-1..n contain the values of M fea-
tures in N samples, in which g; is the value of the i-th
feature in j-th sample. Without loss of generality, we
assume that samples are randomly selected from a popu-
lation with two different conditions. Let Y ={y};_1,
where y; be the binary condition label of the j-th sample.
The goal is to detect features that are differentially
expressed between these two conditions. We propose to
treat DEF detection as finding a discriminant function
h(-) that specifies the decision boundary between DEFs
and non-DEFs. Let d;=h(g;1, g --»&ing Y1 V2> - Yn) be
the discriminant value of the i-th feature. The i-th fea-
ture is called a DEF if d;>0. The unknown parameters
of h(-) should be learned from X = <@, Y>. It can be chal-
lenging to design a proper /(-) in a top-down way and
learn such a function. To circumvent this problem, we
can take advantage of previous research achievements in
designing and calculating various statistics for testing
differential expression (e.g., ¢-statistic, moderated ¢-stat-
istic, ranksum statistic, Wald statistic for NB-based dif-
ferential expression tests, etc.). We let h(g;1, gins ..., gins
V1 V25 o0 YN) éﬂsﬁl), s2 ., s%) where s,52, ..., s are
K different basic attributes (i.e., test statistics) of the i-th
feature. This design can be considered as a two-layer
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data summarization mapping with calculating the basic
attributes as the first layer and f{:) as the second layer.
The function f{-) should be much less complex than A(:),
and its unknown parameters can be estimated from X
more easily. Our approach can be geometrically inter-
preted as treating each feature as a point in the multi-
dimensional space of those K basic attributes, and learning
f) from a given dataset to specify a decision boundary
between DEFs and non-DEFs in that space. Each basic
attribute provides a certain point-of-view about being dif-
ferentially expressed, which is then integrated by f(:) to
produce a more comprehensive view. We leave the de-
tailed specification of f{-) to implementation and focus on
explaining the idea for now. It will be shown later in our
experiments that simple instantiations of f{:), such as
linear functions, can deliver superior performance.

As simple as it sounds, it is in fact quite significant and
innovative to explicitly model DEF detection as learning a
decision boundary in a multi-dimensional space. Conven-
tional DEF detection approaches use top-down approaches
to design single attributes to characterize differential ex-
pression information, and then find decision points in
one-dimensional spaces. To accurately deal with complex
differential expression patterns in the traditional way, we
need to design a complex data distribution and a corre-
sponding statistic for testing differential expression, which
can be challenging and often requires performing less
tractable computations. Our approach is much more sim-
ple and practical, and offers a straightforward geometrical
interpretation. Our novel formulation of DEF detection
opens up a new avenue to advance DEF detection re-
search by incorporating decision boundary modeling
and learning techniques developed in Machine Learn-
ing community. Learning f{:) from X is an unsuper-
vised task because no feature is labeled as DEF or
non-DEF in X. As far as we know, this kind of un-
supervised learning problem (i.e., maximizing discov-
eries under a FDR constraint) has not captured major
attentions in Machine Learning research.

Maximizing DEF detection by constrained optimization

Let D(X,f) = {di :f(s51>,552),...,s§1()) } iy be the
discriminant value set including the discriminant values
of all M features in X. We want to learn f{-) from data so
that the number of the detected DEFs is maximized
while the FDR is under controlled by a user-defined
threshold V. Given a dataset X and a fixed discriminant
function f{-), the DEF set is indicated as

I(X,f) ={ild; >0, dieD(X.f)} (1)

Let FDR(X, f) denote the corresponding FDR of I'(X, f).
This problem of learning f{) from X to maximize
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the size of I'(X,f) subject to the FDR constraint can
be mathematically written as:

max f()|T(X,f)| Satisfy FDR(X,f) < ¥ (2)

Our approach is different from the optimal discovery
procedure (ODP) [37] that tries to optimally capture
common differential expression patterns shared among
detected DEFs by rigorously exploring the relevant infor-
mation across features to rank their significance of being
differentially expressed. The current setup of ODP only
allows one kind of hypothesis test for all features in each
analysis run. Our approach tries to capture differential
expression information of individual features as much as
possible by scrutinizing their expression profiles from
multiple “view angles” (i.e., using multiple basic attri-
butes). We aim to maximize the number of detected
DEFs at a given FDR level. It is possible that different
numbers of DEFs can have the same FDR. It can be
beneficial to treat up- and down-regulation asymmetric-
ally (i.e., using different discriminant functions) because
the induced and suppressed features may exhibit differ-
ent up- and down-tail characteristics in the joint distri-
bution of basic attributes (Fig. 1). Equation (2) and the
following derivations are general and can be applied to
detect both up- and down-regulated features. Before we
introduce the algorithm to find the parameters of f{:) by
trying to solve Eq. (2), we explain how to estimate
FDR(X, f) in the following.

FDR estimation

In practice, FDR(X, f) in Eq. (2) is unknown. To estimate
the FDR of an arbitrary f{-), we implemented the Storey
framework [5] in a non-parametric fashion [10], which
we briefly explain below for completeness. Let the NULL
hypothesis of a feature be that it is not a DEF. Assuming
there are M independent features. Table 1 lists the pos-
sible results when simultaneously testing M features for
calling DEFs using f{-), among which R(f) is an observ-
able variable indicating the number of DEFs detected by
A¢) and VAf) is a hidden variable indicating the number
of false DEFs detected by f{:). Let D, be the variable
representing discriminant value calculated by f{:). We
can write down the FDR according to [38] as a function

of f-):

EDR(f) = E [1‘%) ‘R(f) > o} P(R(f) > 0)

= P(NULL|Dy; > 0,R(f) > 0)-P(R(f) > 0)

(3)

Equation (3) can be rewritten using the Bayes rule as
the following:
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Fig. 1 The up- and down-regulation tails may show different
characteristics in the joint distribution of two basic attributes. Two
typical examples are shown here. a A RNA-seq dataset GSE49114
(control vs. Schisto-PH): Y-axis — the moderated t-statistic from
voom; X-axis — the Wald statistic of the NB-based differential expression
test from DESeq2. b A DNA methylation dataset GSE34099 (Rett
syndrome vs. control): Y-axis — the moderated t-statistic from limma;
X-axis — the moderated t-statistic from voom. GSE49114 and
GSE34099 were downloaded from the Gene Expression Omnibus
database (http://www.ncbi.nlm.nih.gov/geo/)

P(NULL)-P(Dy > O[NULL, R(f) > 0)

FDR(f) = p(D; > O|R(f) > 0) PR()>0)
P(NULL)-P(Dy > O|NULL, R(f) = 0) B
P(Dy > O[R(f) > 0) PR() =0)
 P(NULL)-P(Dy > O|NULL)
~ P(Dy > OR(f) > 0)
(4)

Equation (4) utilizes the fact that P(Ds>O|NULL,
R(f) =0) =0 because no hypothesis is rejected when
R(f)=0. Below we explain non-parametric methods
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Table 1 Outcomes when applying f() to classifying M features into DEFs or non-DEFs
Outcomes Called non-significant Called significant Total
ota
Ground-truth (i.e., Accept Null Hypothesis) (i.e., Reject Null Hypothesis)
Non-significant (i.e., Null) | U(f) = Number of True Negatives | F{(f) = Number of False Positives | U(f) + V(f)
Significant (i.e., Not null) | 7(f) = Number of False Negatives | S(f) =Number of True Positives | 7(f) + S(f)
Total W(f) = U + T() R() =1 + S(H M
for estimating P(D,>O|NULL), P(NULL), and P(D,> R ({d;|di<d,, d:cD(X,f)}]
0|R(f) > 0) given a dataset X and a fixed f{-). P(NULL) = Z l (6)

Estimate P(D,> O|NULL). The term P(D;> O|NULL) is
the probability of D;>0 when NULL is true. The distribu-
tion of Dy under NULL condition, depending on both the
distributions of basic attributes and f{:), can be extremely
complex. Hence it may not feasible to determine this term
in an analytical form. We therefore estimate P(D>
O|NULL) by adopting the non-parametric method devel-
oped in [10], which allows us to better explore the struc-
ture of data distribution in a data-dependent manner. This
method randomly permutes the original dataset B times to
generate the null control, and estimates P(D,> O|NULL) as:

Eb(t{d;ib > o|d;bem(x;;,f)}D
M

P(Dy > O|NULL) =
(5)

where dzb is the discriminant value of the i-th feature in
the b-th (1 <b<B) permutation X,. The function Eb(~)
uses all B permutated datasets to estimate the expected
number of non-DEFs that are incorrectly classified as
DEFs. A reasonable choice of Fy(+) is the median/mean
function.

Estimate P(NULL). 1t is expected that P(NULL) - M
features are non-DEFs (i.e., true NULL hypotheses).
Below we use the p-value concept to explain how to esti-
mate P(NULL) from data although we do not need to
estimate p-values. Assuming that all features are inde-
pendent, the p-values of the discriminant values of these
P(NULL) - M features should be uniformly distributed
between 0 and 1. Therefore, for some chosen p-value
cutoff A € (0, 1), we should expect that there are (1 - 1) -
P(NULL) - M non-DEFs whose p-values are greater than
A. Let d) denote the discriminant value whose p-value is
A. Since it is possible for some true DEFs to have p-
values greater than J, it is expected that (1-1)-P(NULL)
-M<|{d;|di<d),dcD(X,f)}| when M is large enough
and A is well-chosen. In practice, d; can be estimated as
the value smaller than A percentile of elements in the
permutation set {ID(X}.f)},_, g
conservative estimation of P(NULL) as:

We can hence have a

1-A)-M

We conservatively set 1 =50% and truncate P(NULL)
at 1 because a probability should never exceed 1.

Estimate P(D,>O|R(f)>0). The probability P(D>
0|R(f) > 0) can be naturally estimated as:

|{dl|dl > Oa dl€D<X7f)}|V1

P(Dy > O|R(f) > 0) =
_ (X, f)vl
o )
where r(X.f) = [{di|d; > 0,d;cD(X,f)}| is an observed
value of the variable R(f) given the dataset X, and r(X,
Hvi=rXf) if r(X,f)>0, otherwise 1. The term r(X,
f)v1 prevents the estimated FDR from being undefined
due to having 0 as the denominator. Plugging Egs. (5-7)
into Eq. (4), we have the estimated FDR as:

[{ldisd, dieD X, )} Bo ([{ i, > 01d;,eD(X.1) )

FDRy(X,f) = (1N {r(X f)vi}-M

(8)

If the number of permutation is large enough, n(X, f) v 1
will effectively set the estimated FDR as 0 when (X, f) =0
because, on expectation, the discriminant values of the
permuted data are less significant than those of the ori-

ginal data. Thus we have Eb(’{dzb > 0|dzbeD(Xz,f)}‘)
IM<|{dld; > 0,deD(X f)}|/M = r(X.f) /M =0,
which makes FDR) (X, f) = 0.

Discriminant-Cut algorithm
As a simple start to implement Eq. (2), we chose the

discriminant function f{-) from the linear function family f

K
> w
i=1

{w} and 7 are the unknown parameters of f{) to be
learned from X. We further require w; > 0 when detecting
up-regulated DEFs and w;<0 when detecting down-

K
(81, 00y, 8K) = Zwis,-—r, subject to =1, where
=1

12
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regulated DEFs, which effectively make

K K

Wi| = Z|Wi|
=1 =1
=1 a L; regularization that tends to yield sparse models.
A simple algorithm, Discriminant-Cut (DC), was designed
and implemented to search for the “ideal” f*(-). DC
performs an exhaustive search at an empirically decided
resolution (Additional file 1: Algorithm S1). The algorithm
first populates a set of {w;} candidates, and for each of
them, tunes 7 to detect as many DEFs as possible while
keeping the estimated FDRs under controlled by a user-
desired threshold V. Since both finding f*(-) and estimating
FDR using the same permutation set, it is possible that the
final estimated FDR is biased. To address this, we referred the
idea in [39]. After choosing f*(-), we calibrate its cutoff r using
another large independent permutation set, and then apply
the recalibrated f*(-) to identify DEFs. The efficiency of the
search was greatly improved by sorting intermediate results
to facilitate quick search, binary search, and avoiding un-
necessary exploration (details in Additional file 1: Section 1.1).
The algorithm runs fast in practice. In our experiments, most
of the runtime was spent on computing basic attributes, and
the remaining computations took almost negligible time.

There are approaches for linearly combining multiple at-
tributes (or statistics) from either dependent or independ-
ent datasets [39-41] (and the references therein). Some of
them mainly explore the covariance between attributes.
Some aim to minimize the p-values of individual features
by allowing each feature to has its own combination set-
ting. Our approach does not make any assumption about
the joint distribution of the attributes. We try to maximally
explore differential expression information in one dataset,
and force all features to share the same {w;}. In addition,
our objective function explicitly models the overall goal —
maximize detections constrained by a target FDR. In the
future, it may worth exploring how minimizing the p-
values of individual features can benefit our goal.

Results

RNA-seq simulation test

We firstly carried out a series simulation tests, in which the
ground truths were known to ensure proper comparison, to
assess the advantages of combining multiple basic attributes
by DC. We let DC use up to three representative basic attri-
butes: (1) s7 — the moderated #-statistic from voom, (2) s* —
the corrected ranksum statistic from SAM (this is different
from SAMseq’s ranksum statistic that is adjusted for differ-
ent library sizes by resampling), and (3) B _ the Wald stat-
istic for NB-based differential expression test from DESeq?2.
This produced seven DC configurations: DC* (DC using
s7), DC® (DC using s°), DC? (DC using s"F), DC™** (DC
using s’ and s5), DC*™? (DC using s® and %), DCT*E
(DC using s” and s"%), and DCT***8 (DC using s7, s* and
s"). We also compared DC with 13 other RNA-seq
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differential expression analysis methods including baySeq,
DESeq, EBSeq, edgeR, NBPSeq, SAMseq, ShrinkSeq, TSPM,
voom, vst/limma, PoissonSeq, DESeq2, and ODP.

Simulation design

To make the simulation tests as realistic as possible, we
simulated the test datasets based on a real RNA-seq
dataset — the Montgomery dataset (downloaded from
http://bioinf.wehi.edu.au/PublicDatasets/ as of Apr.15™,
2015) [42], which contains the transcriptome of 25,702
genes in 60 extended HapMap individuals of European
descent. Large number of samples in this dataset allows
us to reveal that the distributions in real datasets can be
indeed much more complex than often assumed. Never-
theless, the number of replicates in each simulated data-
set is much smaller and is within the range of common
practice. We first removed genes with extremely low ex-
pression profiles (read counts below 10 in more than
half of the replicates). For each of the remaining 11,573
genes, we decided whether its read counts could be bet-
ter modeled by a NB distribution or a Gaussian mixture
model (GMM) in the following way. The NB and GMM
distributions were estimated by using DESeq2 imple-
mented in R and the statistics toolbox of MATLAB
R2013a, respectively. The most proper number of com-
ponents in a GMM was decided based on the Bayesian
Information Criterion. The GMMs of ~44, ~50, and ~6%
genes contained 1, 2, and 3 components, respectively. Fig-
ure 2a—c show a few typical examples. Then, for each gene,
we calculated the correlation between the histograms of its
read-counts and the corresponding fitted NB/GMM to de-
cide which distribution was a better fit. The GMMs were
truncated at zero because read counts should be non-
negative. The distributions of about 63.5 and 36.5% of
genes can be better represented by GMM and NB (Fig. 2d),
respectively. A simple experiment presented in Fig. 2d cap-
tion validates that the distributions of many genes in this
dataset are more complex than what assumed convention-
ally (e.g., NB or Gaussian). Our choice of examining correl-
ation between the histogram of data and its fits was based
on two considerations: (a) histogram is commonly used in
practice to approximate distributions, and (b) correlation is
a widely adopted distance metric. This method is mainly
used to show that features have complex patterns of
distributions rather than as a rigorous model selection
method for determining the exact ratio of GMM to
NB, such as the one (63.5 vs. 36.5%) shown above.
We consider it sufficient for choosing distributions,
which roughly approximate the original ones, for gen-
erating data in the following simulation test.

In each simulation test run for comparing the chosen
RNA-seq differential expression analysis methods, we
simulated N read-counts for every gene using the distri-
bution (either NB or GMM) decided to be better in the
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original data. The number of Gaussian mixtures are 1, 2, and 3 in (a), (b), and (c), respectively. GMM is better than NB at representing distributions
with multiple modes. (d Compare correlation coefficients) Y-axis: the correlation coefficients between the read-count distributions and the corresponding
fitted GMM distribution. X-axis: the correlation coefficients between the read-count distributions and the corresponding fitted NB distribution. Each dot
represents a gene. The distribution of a gene's read-counts is approximated by a histogram of 20 equal-size bins spanning the read-count value range.
The colors of dots indicate the most proper numbers of components in a fitted GMM according to the Bayesian Information Criterion: green (~44%), blue
(~50%), and red (~6%) correspond to 1, 2 and 3 components, respectively. About 63.5% of genes are above the diagonal line indicating their distributions
are more GMM:-like. The distributions of the remaining ~36.5% genes are more NB-like. To further investigate this observation, we calculated N{x™ as the
number of genes whose advantages of their GMM fits over their NB fits are significant (p-value < 0.05) if the distributions of all genes are NBs. If all genes
are indeed governed by NBs, NG&™ should be close to the expected number that is 11,573 x 0.05 = 579. We sampled 2000 datasets from the NB fit of
each gene, each of which contain 60 samples. For each dataset, we fit a GMM and a NB, and calculated the difference between their fitting scores (ie,
GMM fit score — NB fit score). The score differences across all datasets were collected to approximate the NULL distribution and calculate the p-value of
the score difference between the GMM and NB fits to the original samples. We got N%W = 2442 (> > 579), 1830 of which have 2+ components in their
GMM:s. Hence we can deduce that the distributions of a substantial number of genes are not NB-like. In a similar way, we calculated N\, as the number
of genes whose advantages of their NB fits over their GMM fits are significant (p-value < 0.05) if the distributions of all genes are GMM. We
obtained N, = 2431 (>>579) indicating that the distributions of a substantial number of genes are not GMM-like. Putting the above

together, we conclude that neither NB nor GMM dominates the distributions of genes in the Montgomery dataset

above way, and randomly divided the simulated read-
counts into two equal-size groups to obtain true non-
DEFs. The simulation of a gene was repeated until its
logarithmic fold-change was not larger than 4.50y, where
on is the standard deviation of the logarithmic fold-
change between two N-sample groups randomly chosen
from the Montgomery dataset. The 4.505 fold-change
threshold was chosen because we observed in the Mont-
gomery dataset that the expected number of fold-changes
higher than 4.50) is below 0.05. Then we randomly made
G} genes (a and b are the numbers of up- and down-
regulated genes, respectively) as true DEFs in the

following way. For each of the chosen genes, we multi-
plied or divided one of its groups by a factor uniformly
sampled between 1.5 and 3.0 to provide a reasonable wide
range of differences in expression. Finally, all simulated
values were rounded to their nearest integers.

A series of simulation test runs were conducted under 20
different settings: 5 different sample sizes (N =8 [4 vs. 4],
10 [5 vs. 5], 12 [6 vs. 6], 16 [8 vs. 8], and 20 [10 vs. 10]) x 4
different true DEF configurations (G390 G230 G890 and
G2, At each of the 20 simulation settings, we ran the
test 100 times and recorded the results. Our comparisons
focus on two key performance factors: (1) the effectiveness
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of FDR control, namely whether the real FDR is effectively
bounded by the target FDR; and (2) the detection power,
namely the ability to detect as many true DEFs as possible
without violating (1).

Integrating multiple basic attributes helps substantially

Comparing the results of different DC configurations
shows that the advantage of integrating multiple basic
attributes in detecting DEFs is significant. Figure 3 shows
that DCT***NB consistently outperformed the three single-
attribute DC configurations under all 20 simulation test
settings (5 sample sizes x4 DEF configurations), and
single-attribute DC methods (DC’, DC%, DC?) signifi-
cantly underperformed the multi-attribute ones. Here we
use the results of a typical simulation test setting (6 vs. 6
and G200) as an example. Even though some individual
attributes alone may be inferior to other attributes in de-
tecting DEFs, they can indeed provide substantial enhance-
ments to other attributes. For example, in Table 2, DC*
detected no DEFs at FDR < 0.01 or FDR < 0.05. Adding s”
to 5™ significantly improved the results by 16.35% (paired
t-test p-value =8.87e-30) at FDR<0.01 and by 9.62%
(paired t-test p-value =2.32e-35) at FDR <0.05. Results
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across different sample sizes (Table 3) confirm the advan-
tages of integrating multiple basic attributes. Grouping the
DEFs detected by DC’, DCV?, and DC"***"? accordingly
to their distribution categories (Table 4), we observe that
integrating multiple basic attributes helps to detect DEFs
across the whole distribution spectrum. Interestingly, DC”
on average detected more DEFs governed by NB distribu-
tions than DC™?, which to some extent resonates with the
idea of voom, i.e,, it is sometimes more important to model
the mean-variance relationship correctly than to design the
exact distribution of read-counts.

No single basic attribute dominates

We also observed that none of the basic attributes con-
sistently performed better than other basic attributes in
our simulation tests, which resonates the idea of utilizing
multiple attributes. For example in Table 3, under the
simulation test setting 10 vs. 10 and G290 DCT on aver-
age detected more true DEFs than DC™® (370.79 vs.
359.01) at FDR < 0.01, but performed worse than DC®
(527.27 vs. 547.70) at FDR < 0.05. Moreover, at FDR <
0.05, DC” outperformed DC® on datasets when the
sample size was relatively small (e.g., 4 vs. 4, 5 vs. 5 and
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Fig. 3 Compares the true DEFs detected by different DC configurations. Four DC configurations (DC’, DC*, DY and DC™*M8) are compared
under different sample sizes (x-axis) and different true DEF configurations: (a) 999, (b) G238, (€) GE99, and (d) GH°°. The target FDR cutoff is 0.05.
The y-axis indicates the relative differences (in parentage) of the average true DEFs detected by different DC configurations with respect to those
detected by DC™**™ The plots only display up to 20% relative difference. This figure clearly shows that DC™**" outperformed the remaining
DC configurations
J
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500)

Table 2 Compares the results of different DC configurations in a typical simulation test (6 vs. 6; G2gg
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Baseline Target FDR Add s” Add s* Add '8 Use ST sf and M

Use s alone 0.01 - +4.62% (1.84e-08) +2.84% (8.74e-06) +5.52% (2.18e-12)
0.05 - +2.32% (2.04e-14) +3.71% (1.06e-23) +5.31% (3.18e-35)

Use s alone 0.01 +24.48% (1.98e-41) +16.35% (8.87e-30) - +27.72% (8.76e-44)
0.05 +14.71% (1.23e-51) +9.62% (2.32e-35) - +16.48% (8.96e-56)

The 1% column lists the single-attribute DC configurations. DC? was not displayed because it failed to detect any true DEFs under both FDR targets. The 2"
column lists the target FDR levels (0.01 or 0.05) at which performances are compared. Cells in the 3™~6™ columns show the improvements in percentage

of multi-attribute DC configurations (indicated by the column headers) over single-attribute DC configurations (indicated by the

15t

cells in the corresponding rows). The

numbers in parentheses are the paired t-test p-values showing the significance of the improvement. For example, the cell at the 3™ column and 4™ row shows that
DC™*ME outperformed DCV® by 24.48% with a paired t-test p-value of 1.98e-41 at FDR < 0.01. Although DCF as a single attribute failed detect any DEFs, adding
s® to the other two attributes (s” and s"?) significantly improved the performance, as indicated by the 4™ column

6 vs. 6) while DC™* outperformed DC” when the sample
size was larger (e.g., 10 vs. 10). Interestingly, although
DC® underperformed DC” under most test settings,
DC* outperformed DC” under the setting of 10 vs. 10,
Go™® and target FDR < 0.05 (true DEFs: 555.63 by DCX
vs. 542.29 by DC7).

Compare DC™***NB with other DEF detection approaches

We compared DC"**** and 13 other RNA-seq differ-
ential expression analysis methods including baySeq,
DESeq, EBSeq, edgeR, NBPSeq, SAMseq, ShrinkSeq,
TSPM, voom, vst/limma, PoissonSeq, DESeq2, and
ODP. Figure 4 shows the average numbers of the de-
tected true DEFs at two typical target FDR levels (0.01
and 0.05) under a typical simulation test setting 6 vs. 6
and G239 (the results of the rest test settings are pro-
vided in Additional file 1: Figures S1-S20). Among those
able to effectively control the FDR, DC"***"* in general
performed the best. At target FDR < 0.01, DCT***N8 op
average detected 99.44 true DEFs, which is significantly
better (paired f-test p-value = 1.79e-66) than the 31.59
true DEFs detected by the best non-DC method (vst/
limma). At target FDR < 0.05, DC"***N? detected 266.22
true DEFs, which is significantly better (paired t-test p-
value = 1.32e-71) than the 204.59 true DEFs detected by
the best non-DC method (vst/limma). Figure 5 compares
the average number of true positives detected by

different approaches at different target FDR cutoffs
(from 0.01 to 0.1 with a step of 0.01) under a typical
simulation test setting of 6 vs. 6 and G299 (the results of
other test settings are provided in Additional file 1: Fig-
ures S21-40). Figure 5 and Additional file 1: Figures
S21-40 show that DC in general performed the best
among those effectively controlled FDR.

In some application scenarios other than ours, users
may want to choose a fixed number of top DEFs. To
serve this purpose, Fig. 6 compares the results using
EDC (false discovery curve: true FDR vs number of de-
tected DEFs). The FDCs of other test settings are pro-
vided in Additional file 1: Figures S41-60. Figure 6 and
Additional file 1: Figures S41-60 show that DC is among
the best performers including voom, vst/limma, DESeq2,
edgeR, and ShrinkSeq. Here we do not show ROC (false
positive rate vs. true positive rate), which is also popular
for evaluating machine learning techniques and statis-
tical analysis methods, because FDC and ROC deliver
the same information from different viewpoints. Since
true FDR can be estimated but usually unknown, FDC
and ROC should be used with caution in our application
scenario because they do not consider whether a method
is able to estimate FDR well. FDC and ROC only depend
on the ranks of features’ significance scores regardless of
their actual values. Therefore, it is possible that two DEF
detection methods can produce the same ROC/FDC

Table 3 Compares the results of different DC configurations across different sample sizes (FDR < 0.05, G239) in simulation tests
Sample size N=20 N=16 N=12 N=10 N=8
Methods (10 vs. 10) 8vs. 8) (6 vs. 6) (S vs. 5) [CRYAE))
pcT 527.27 (2.33e-62) | 414.36 (3.58¢-39) | 252.79 (3.18¢-35) | 139.72 (8.69¢-17) | 34.53 (4.54e-02)
DCR 465.26 (4.02e-93) | 297.47 (4.83e-94) - - —
DC? 547.70 (1.27e-35) | 413.40 (6.54e-45) | 228.55 (8.96e-56) | 104.53 (1.46e-48) | 15.73 (4.27¢-32)
DCTRAB 561.54 436.23 266.22 149.92 36.04
Compares DC™**NE with three single-attribute DC configurations on simulated datasets of various sample sizes at FDR < 0.05 and Gzgg. Each cell shows the average

number of true DEFs detected by a DC configuration under a sample size indicated by the column header. The numbers in parentheses are the paired t-test p-values
indicating how significant DC"**& outperformed the corresponding single-attribute DC configurations under the same simulation test settings. DC® detected no DEFs

when N< 16.



Bei and Hong BMC Bioinformatics (2016) 17:541

Page 10 of 19

Table 4 Compares the average numbers of true DEFs identified in different distribution categories

Detected by Total NB

Gaussian GMM (2 or 3 components)

DC” 252.79 (3.18e-35) 11560 (3.16e-27)
DC® 228,55 (8.96e-56) 104.16 (7.39¢-55)
DCTHHNE 266.22 121.88

55.83 (8.12e-10)
48.33 (7.87e-39)
57.54

81.36 (2.24e-21)
76.06 (7.01e-35)
86.80

Compares the average numbers of true DEFs detected by DC’, DC?, and D

CT+R+NB

in different distribution categories under the simulation test setting: 6 vs. 6,

G233, and the target FDR < 0.05. DC* is not displayed because it detected no DEFs. The numbers in the parentheses are the paired t-test p-values indicating how
significant DC™***"8 outperformed the corresponding single-attribute DC configurations.

although they have quite different capabilities in estimat-
ing FDR. Imagining there are two DEF detection methods.
The 1% method is biased towards high p-values (i.e., it
tends to generate very high p-values for all features) be-
cause it imposes some assumptions. Calling one single sig-
nificant feature using the 1% method will lead to an

extraordinarily high estimated FDR. On the contrary, the
2"4 method is biased towards small p-values (ie., it tends
to generate very low p-values for all features) because it
imposes other assumptions. Given a target FDR, the ond
method will dramatically underestimate its true FDR and
call too many false positives. Nevertheless, if the features
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Fig. 4 Evaluates RNA-seq differential expression analysis methods using simulated data (6 vs. 6; Geod). Methods are listed along the x-axis. The red bars

indicate the average true FDRs (refer to the left y-axis). The horizontal dashed line across the figure marks the target FDR. The blue bars indicate the
average number of the detected true DEFs (refer to the right y-axis). The 90% confidence intervals of the detected DEFs are marked except for those
whose true FDRs exceed the target FDR by 10%. a target FDR < 0.01. b target FDR < 0.05. The true FDRs of DC"***™ do not exceed the corresponding
target FDRs. DC""8 was the most powerful among those able to effectively control the FDR (see main text for more discussions)
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Fig. 5 Compare the curves of the true positives vs. the target FDR (6 vs. 6 and G299). The x- and y- axes indicate the target FDR cutoff and the

average number of true positives, respectively. The solid curve with blue circle markers represents DC™#*8 and other curves represent non-DC
methods. The result of a method at a particular target FDR is shown in this plot if (1) its average true FDR does not exceed the target FDR by
10%; and (2) its average number of true DEFs is 20.5 (rounds up to 1). DC was able to meet all target FDR cutoffs. The results of voom and
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are ranked in the same order by both methods, they will
produce exactly the same ROC/FDC.

Effects of sample size and DEF configuration

Figure 7 summarizes the effects of “sample sizes + DEF
configurations” on DEF detection results at target FDR
<0.05. The result of a method under a particular setting
is included if its true FDR does not exceed the target
FDR by 10% and it detects on average at least 0.5 true
DEFs (rounds up to 1). Under most settings, DC* %5
was able to effectively control FDR and detect more
DEFs. However, when the sample size is small (4 vs. 4),
the average true FDRs of DCT***™¥ were 0.053 and
0.058 for G199 and G299, respectively; and ODP was the
only method able to detect true DEFs (1.11 under G99
and 2.57 under G259) while meeting the FDR target.
When the sample size was decreased, all methods de-
tected less DEFs, and it was more difficult to control the
EDR, especially when a more stringent target FDR was
imposed. For example, when N=8 (4 vs. 4), Gao9, and
the target FDR <0.01, DC™***N? on average detected
less than 20 DEFs, and one single false positive alone
would increase its true FDR by 0.05, which is much
higher than the target FDR. Smaller sample sizes (2 vs. 2
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and 3 vs. 3) were also tested. However, no method was
able to control FDR well (i.e., their true FDRs > 110% x
the target FDR) or detect at least 0.5 DEFs on average.
Hence, the results of 2 vs. 2 and 3 vs. 3 are not shown in
Fig. 7. This indicates that it remains challenging to
detect DEFs governed by complex distributions when
the sample size is small.

Evaluation using the SEQC/MAQC-III dataset

The US Food and Drug Administration has coordinated
a large-scale community effort, the Sequencing Quality
Control project (SEQC/MAQC-III), to assess the per-
formance of RNA-seq across laboratories and to test dif-
ferent sequencing platforms and data analysis pipelines
[43]. The consortium has generated a RNA-seq datasets
(Gene Expression Omnibus accession code: GSE47792)
from two reference RNA samples, the Strategene Univer-
sal Human Reference RNA (sample A) and the Ambion
Human Brain Reference RNA (sample B). This dataset
contains two reference feature subsets: (1) 92 synthetic
RNAs from the External RNA Control Consortium (i.e.,
ERCC spike-ins) with four different sample A/sample B
ratios (1/2, 2/3, 1 and 4); and (2) ~1000 genes whose
sample A/sample B fold-changes were validated using
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Fig. 7 Compares DEF detection results under different test settings at target FDR < 0.05. The x- and y- axes indicate the sample size and the
number of detected true DEFs, respectively. Plots (a Gaag), (b G2gd), (€ Ga39), and (d G2°™) are the results of DEF configurations G4a9, Gagg, Gagg and
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average detected less than 0.5 true DEF
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TagMan qRT-PCR [44]. In the following comparison, we
used log2 expression change threshold of 0.5 to select true
DEFs from the ~1000 TagMan gRT-PCR validated genes,
and obtained 693 genes denoted as the positive TagMan
genes below. However, due to the extreme difference be-
tween samples A and B [45], the positive TagMan genes
only represent a small fraction of those differentially
expressed between samples A and B. If we let different
DEF detection methods compare the replicates of samples
A and those of samples B, their results on the positive
ERCC spike-ins and the positive TagMan genes cannot ac-
curately reflect their overall performances. In addition, all
DEF detection methods will detect too many DEFs that
dwarf the differences between their detection results. Thus
we designed the following procedure to make the positive
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ERCC spike-ins and the positive TagMan genes together
as a proper reference feature set for evaluating DEF
detection methods.

We focused on the SEQC/MAQC-III RNA-seq subset
sequenced at the Australian Genome Research Facility
using the Illumina HiSeq200, in which each RNA sample
has 64 technical replicates (4 libraries per sample and 8-
lanes of 2-flow cells per library). First, the low-count
genes (5+ reads in less than 10 replicates) were removed.
After this step, 14 negative ERCC spike-ins (ratio = 1)
and 45 positive ERCC spike-ins (ratio =1/2, 2/3 or 4)
were retained. Then we used the state-of-the-art RNA-
seq normalization tool, RUVSeq [45], to normalize all
128 replicates using the negative ERCC spike-ins and
1000 least differentially expressed genes (ranked by
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edgeR p-values) as the in silico empirical negative con-
trol genes. In particularly, we used RUVg (Remove Un-
wanted Variation Using Control Genes) and followed the
practice of RUVg authors described in the online
methods of [45] by dropping the first unwanted factor
and retained the next 6 factors. After normalizing the
replicates, we randomly chose 12 replicates from one
library from the sample A and divide them into two
equal-size groups to form the base of non-DEFs (the
results using different number of replicates are provided
in Additional file 1: Figures S61-72). Occasionally we
obtained two very distinct groups because the above
normalization procedure could not get rid of all un-
wanted variations. To avoid this problem, we applied
PoissonSeq to calculate the p-values of the true non-
DEFs being differentially expressed between the chosen
groups, and redid grouping if the p-value distribution of
the true non-DEFs was not closed to uniform between 0
and 1. PoissonSeq was used because the Poisson distribu-
tion was reported to be effective for modelling technical
replicates [17]. Finally, we replaced the values of the posi-
tive ERCC spike-ins and the positive TagMan genes in one
of the chosen groups by their values in 6 randomly se-
lected replicates of sample B. This arrangement should
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make the positive TagMan genes as the true DEFs and the
remaining genes as the true non-DEFs.

The data obtained above was then used to benchmark
different DEF detection methods. We repeated the above
procedure 100 times. The results are summarized in
Fig. 8. All DC configurations and most non-DC methods
were able to effectively control the FDR at both target
FDR levels (0.01 and 0.05). Among those able to effect-
ively control the FDR, DC™***N® was the most powerful.
At target FDR<0.01, DCT™**N8 on average detected
565.10 true DEFs, which is significantly better (paired
t-test p-value = 1.58e-25) than the 554.85 true DEFs
detected by the best non-DC method (SAMSeq). At
target FDR<0.05, DCT***N8 on average detected
577.15 true DEFs, which is significantly better (paired
t-test p-value = 5.58e-27) than the 569.63 true DEFs de-
tected by the best non-DC method (SAMSeq). The
leads of DC"***N® over non-DC methods are not as large
as those in the simulation test because we used technical
replicates in this experiment. Figures 9 and 10 compare
the curves of “the true positives vs. the target FDR”
and FDCs, respectively. The supreme performance of
DC™***NB can be explained by Fig. 11, which shows that
the normalized-count distributions of some positive
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TagMan genes are complex even within the chosen tech-
nical replicate subset.

Analyze a methylation dataset

To demonstrate the general applicability of DC, we ap-
plied it to analyze a DNA methylation dataset generated
by Aldinger et al. [46] using the Illumina HumanMethyla-
tion27 BeadChip, which can be downloaded as GSE34099
from GEO. This data set contains global DNA methyla-
tion of 18 Rett syndrome samples and 19 control samples.
Since the nature of this dataset is quite different from
typical RNA-seq count data, we did not include methods
developed specifically for RNA-seq in this comparison. In-
stead, we focused on the applicability of DC and assessing
the benefits of using more than one attributes. We se-
lected five basic statistics and let DC use two of them in
each run: (1) s7M _ the corrected #-statistic [10, 47]; (2)
s71oeSAM _ the corrected t-statistic with logarithmic trans-
formation; (3) s*5* — the corrected ranksum statistic
(10, 47); (4) s™"" — the moderated t-statistic produced
by voom; and (5) s _ the moderated t-statistic pro-
duced by limma. The original data values were multiplied
by 1000 and then rounded to the nearest integer if an at-
tribute extraction package only accepts integer inputs.
The NB-based basic attributes (e.g., the Wald statistic for
the NB-based differential expression test by DESeq2)
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were not used because the distributions of DNA methy-
lation features in this dataset are quite different from
the NB distribution.

The results at FDR < 0.01 (Table 5) show that combin-
ing two basic attributes is significantly advantageous
over utilizing single ones. For example, DCTmma+T-voom
detected 63 DEFs, which is much higher than the 35 and
40 DEFs detected by DCT#"" and DCT**”", respect-
ively. This result is interesting because both s”***”" and
stlimma are moderated f-statistics and voom utilizes
limma to calculate its test statistics after applying a log-
count per million transformation to the original data.
Nevertheless, the integration of s”*°°" and s™/"""* by
DC can achieve significantly higher detection power
than using one of them. The main reason underlying
this observation is visualized in Fig. 12: The joint distri-
bution of s™#""4 and s”***" are quite asymmetric and
non-Gaussian. It is more advantageous to use s”"**” and
sTlimma o detect DEFs in the up- and down-regulated
regions, respectively. Their advantages can be integrated
by DC that rigorously explores the structures in the joint
distribution of s”**"" and s to achieve better DEF
detection results.

Discussions

Conventional methods for differential expression ana-
lysis often use individual basic attributes (e.g., fold-
change, ranksum statistics, or other statistics based on
simple distributional assumptions), which may signifi-
cantly underestimate the complexity observed in reality.
This is partially because the datasets, which were avail-
able when those analysis methods were developed, usu-
ally contained only a few replicates. It can also be due to
underestimation of the underlying biological variations. We
have shown in this paper that insufficient characterization
of differential expression information could lead to low
detection power and/or higher-than-expected FDRs. It
is expected that future studies will produce sufficiently
large number of replicates because the collaboration
scales are quickly growing larger and the rapid

Table 5 Compares the performances of DC using different pairs
of basic attributes on GSE34099

Basic Attribute # STSAM SflogvSAM SR’.SA/\A STvoom ST.//'mma
Basic Attribute #1

sT-AM 27 43 44 61 37
slleg-sAM 43 25 39 43 46
s 44 39 35 56 46
svoom 61 43 56 40 63

sl imma 37 46 46 63 35

The first column and row indicate the basic attributes used by DC. The diagonal
cells list the numbers of DEFs detected by DC using single attributes. The rest of
cells list the numbers of DEFs detected by DC using different combinations of
two basic attributes
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advances of high-throughput technologies will bring
down the experimental cost dramatically. Therefore, it
is important to develop novel DEF detection methods
with better capability of dealing with complex differential
expression patterns. To this end, we proposed to utilize
multiple basic attributes to better capture differential ex-
pression information and formulate the problem of
detecting DEFs as optimizing discriminant boundary
constrained by a user-defined FDR cutoff in a multi-
dimensional space. We have developed the Discriminant-
Cut (DC) algorithm for dealing with a special family of
discriminant functions (i.e., linear boundaries). The com-
parison of DC with several existing DEF detection
methods using simulated datasets and the SEQC/MAQC-
III RNA-seq dataset confirms the advantages of DC in
handling complex differential expression patterns. In
addition, we also show an application of DC to analyze
microarray datasets, and expect that DC can be used
(maybe with slight extensions) to analyze many different
types of high-throughput datasets. In the future, we will
explore our approach for meta-analysis [48] that integrate
multiple datasets.

Using linear discriminant functions is an effective step
forward, but it may not be powerful enough to fully
utilize large-scale datasets. More powerful methods can
be developed in the future by exploring more sophisticated
discriminant function families and learning techniques.
Discriminant analysis by integrating heterogeneous attri-
butes is popular in many machine-learning research and
its applications (e.g, computer vision, natural language
processing, speech recognition, etc.). It is mostly done in
supervised way that can rely on labelled information to
perform calibration. Our approach is unsupervised and
uses the estimated FDR for self-calibration. This kind of
machine learning problem has not been widely researched,
and hence can be of great interest to future research.

Our approach greatly benefits from the attributes de-
signed by previous research on differential analysis (such
as, SAM, DESeq2, voom, vst/limma, and so on). We be-
lieve that we are far from fully exploring the potentials
of those attributes. On the other hand, it is possible that
some attributes may be redundant (i.e., can be replaced
by combinations of other attributes) or their information
cannot be effectively utilized by the chosen discriminant
function family. Which attributes are effective depends
on the characteristics of the dataset under analysis. DC
already has certain attribute selection capability because
it applies the L; regularization. However, we believe at-
tribute selection remains an open problem and can be
domain specific. We will investigate this problem in the
context of detecting DEFs in the future. As far as we
know, our work is the first one that formerly introduces
unsupervised multi-dimension discriminant analysis to
DEF detection, which can be a new direction to
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significantly advance the DEF detection research as sup-
ported by our experimental results.

Conclusion

This paper presents a novel machine learning method-
ology for robust differential expression analysis, which
can be a new avenue to significantly advance research
on large-scale differential expression analysis. The corre-
sponding mathematical model was formulated as a con-
strained optimization problem aiming to maximize
discoveries satisfying a user-defined FDR constraint. An
effective algorithm, Discriminant-Cut, was developed to
solve an instantiation of this problem. Extensive compar-
isons of Discriminant-Cut with a couple of cutting edge
methods were carried out to demonstrate its robustness
and effectiveness.
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