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Abstract

Background: Expression quantitative trait loci (eQTL) mapping is often used to identify genetic loci and candidate
genes correlated with traits. Although usually a group of genes affect complex traits, genes in most eQTL mapping
methods are considered as independent. Recently, some eQTL mapping methods have accounted for correlated
genes, used biological prior knowledge and applied these in model species such as yeast or mouse. However,
biological prior knowledge might be very limited for most species.

Results: We proposed a data-driven prior knowledge guided eQTL mapping for identifying candidate genes. At first,
quantitative trait loci (QTL) analysis was used to identify single nucleotide polymorphisms (SNP) markers that are
associated with traits. Then co-expressed gene modules were generated and gene modules significantly associated
with traits were selected. Prior knowledge from QTL mapping was used for eQTL mapping on the selected modules.
We tested and compared prior knowledge guided eQTL mapping to the eQTL mapping with no prior knowledge in a
simulation study and two barley stem rust resistance case studies.
The results in simulation study and real barley case studies show that models using prior knowledge outperform
models without prior knowledge. In the first case study, three gene modules were selected and one of the gene
modules was enriched with defense response Gene Ontology (GO) terms. Also, one probe in the gene module is
mapped to Rpg1, previously identified as resistance gene to stem rust. In the second case study, four gene modules
are identified, one gene module is significantly enriched with defense response to fungus and bacterium.

Conclusions: Prior knowledge guided eQTL mapping is an effective method for identifying candidate genes. The
case studies in stem rust show that this approach is robust, and outperforms methods with no prior knowledge in
identifying candidate genes.
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Background
A quantitative trait refers to a phenotype, such as disease
resistance, that varies quantitatively and is attributable
to multiple genes. The first step for discovering candi-
date genes is to identify chromosome regions associated
with a particular quantitative trait through Quantitative
trait loci (QTL)mapping.More recently, Expression quan-
titative trait loci (eQTL) mapping has been applied to
identify regulatory regions for genes from transcriptome
and genotype data. eQTLs are genomic loci that regulate
expression in mRNAs or proteins. QTL mapping usually
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identifies a large region. Once QTLs or eQTLs have been
identified, molecular techniques are employed to narrow
down to candidate genes [1].
Traditional linkage mapping methods such as Haley-

Knott regression(HK) and composite interval map-
ping (CIM) have been widely used for QTL mapping and
recently on eQTLmapping [1]. Both HK and CIM assume
that traits (QTL mapping) or genes (eQTL mapping) are
not related. Association mapping methods based on the
independence between genes and SNPs ignore the epis-
tasis among genes and interaction between alleles. Least
absolute shrinkage and selection operator (Lasso) gener-
ate a sparse regression model for eQTL mapping with
one gene associated with a small number of SNPs. It
showed that Lasso outperformed CIM and HK for eQTL
mapping [2].
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Recently, multi-task Lasso considering multiple cor-
related genes and multiple SNPs in a linear regression
model has been used for eQTL mapping. Some meth-
ods have used prior knowledge to infer the associations
between genes and SNPs [3]. The prior knowledge was
either represented as gene pairs, SNP pairs, gene net-
works, or genetic interaction networks. Graph-guided
fused lasso (GFLasso) used the fusion penalty to group
related multi-response variables [4]. Adaptive Multi-Task
Lasso assumed that genes are correlated and also used
the prior knowledge of SNPs [5]. Chen et al. proposed
a more efficient algorithm for GFLasso [6]. Fused Multi-
task Penalised Regression (FMPR) encourages the sparsity
in weights for related tasks [7]. Two-graph guided multi-
task Lasso allows the overlapped subnetworks of genes
and SNPs, but they assume that correlation between SNPs
or genes are known to infer the correlation between SNP
and genes [8]. Graph-regularized dual Lasso represents
the genetic interaction network and protein-protein inter-
action network as two graphs on a linear regression model
[9]. Although these methods are appealing, they were only
used on yeast and human eQTL mapping which contains
rich biological knowledge.
Many eQTL mapping methods were used for identify-

ing candidate genes [10–12]. Some used linkage mapping
methods such as CIM [10, 11], and others used associa-
tion mapping methods such as simple linear regression –
Matrix eQTL [12], or GAPIT, single locus mapping
for population structure [13]. However, most these
studies using eQTL mapping for identifying candidate
genes do not consider the correlated gene structure and
genetic interactions between SNPs, and none of them
used prior knowledge in eQTL mapping. Because such
prior knowledge is usually not available or not reliable
for most species, many studies still use the methods
based on the independence assumption between gene
and SNPs.
We proposed a new eQTL mapping method guided

by prior knowledge for identifying candidate genes by
using data-driven prior knowledge from QTLs/eQTLs
in eQTL mapping. Although some advanced models [4,
5, 8, 9] are proposed and evaluated on model organ-
ism, the basic multi-task Lasso model has not been
used for identifying candidate genes. We propose to
use prior knowledge inferred from QTLs or eQTLs to
set penalty factors for SNPs in multi-task Lasso. This
method does not rely on any regulatory features of
genes or SNPs. We compared eQTL mapping guided by
prior knowledge with no prior knowledge. The results
show that eQTL mapping guided by prior knowledge
outperforms the model without knowledge. We applied
our method on two case studies to identify candidate
genes that are responsible for resistance to stem rust
in barley.

Methods
Our method has three steps. First, we perform QTL map-
ping to identify a relatively large chromosomal region
associated with traits. Second, gene modules significantly
associated with traits are selected. Then, the prior knowl-
edge guided eQTL mapping method is performed on
selected gene modules. In the second step, weighted cor-
relation network analysis (WGCNA) is used for finding
clusters (modules) of highly correlated genes [14]. Gene
modules significantly associated with traits are selected.
For multiple correlated genes in selected gene modules,

we used the multiple-response linear regression model
LassoM [15] for eQTL mapping. Throughout this arti-
cle, we use the letter “M” following the original model to
represent multi-response model.
Consider K genes Y = [Y1, . . . ,YS]T ∈ RS×K for S sam-

ples, a linear regression model for the functional mapping
fromM SNPs to K gene is given as

Y = β0 + Xβ (1)

Where β0 is a vector, β ∈ RM×K is a coefficient matrix,
and X ∈ RS×M. The objective function of LassoM:

min(β0,β∈RM×K )

1
2N

N∑

i=1
‖yi − β0 − xiβ‖2F + λ

m∑

j=1
‖βj‖2

(2)

LassoM is the linear regression model which gives the
minimum mean cross-validated error.
We applied LassoMP by using prior knowledge on the

basic model LassoM to identify candidate genes. We use
letter “P” to represent prior knowledge. LassoMP uses
prior knowledge in the multi-response linear regression
model. From previous QTL or eQTL mapping, we learn
some SNPs are strong regulators for a trait. Each SNP
has a penalty factor in LassoM. Let pj ∈ [0, 1] be the
penalty factor for jth SNP. For a particular SNP found from
experimental results or QTLs identified from multiple
experiments, their evidence is considered strong and thus
pj = 0 (no penalty). Otherwise, we can set pj = 0.5 if the
evidence is derived from computational result only. Also,
the elastic-net penalty α is used to get a linear combina-
tion of ‖βj‖1 and ‖βj‖22. The objective function becomes:

min(β0,β∈Rm×K)
1
2N

N∑

i=1
‖yi − β0 − xiβ‖2F

+ λ

m∑

j=1
pj

[
(1 − α)‖βj‖22 + α‖βj‖1

]
(3)

From this model, we can derive three models: LassoM,
multi-response ridge (RidgeM) and multi-response elas-
tic net(elasticM), and they differ in elastic-net penalty α:
Lasso (α = 1) , ridge (α = 0) and elastic net (α = 0.5).
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They can be combined with prior knowledge pj to gen-
erate their prior knowledge on multi-response models:
LassoMP, RidgeMP and elasticMP.

Results
Simulation study
We performed the simulation study to compare LassoM
and LassoMP with two other multi-task Lasso methods
GFLasso [6] and FMPR [7]. GFLasso and FMPR are imple-
mented in the R package FMPR. To demonstrate the effect
of using prior knowledge, we also compared LassoM and
LassoMPwith RidgeM, RidgeMP, elasticM, and elasticMP.
They are implemented in the R package glmnet [16]. In
RidgeMP, LassoMP and elasticMP, the penalty factor is set
as pj = 0.

Simulation data
The performance of these eight models are compared in
four setups. We set the number of samples N = 50,
vary the number of predictors X as 100 and 500, and
the number of response variables Y as 10 and 20. We
generated 30 datasets for each setups and compared the
average performance of these models on the generated
data. The simulation data is generated using the same
method in [8]. The correlation between genetic markers
and between genes are simulated. We compared the per-
formance of these models using the root-mean-squared
errors (RMSE), areas under the precision and recall curve
(AUC), and degree of freedom (DF). RMSE and AUC
were used to compare the performance of regressionmod-
els in [8, 9]. We also used the DF since it indicates the
number of predictors in the regression model. In eQTL
mapping, usually a small number of genetic markers are
associated with genes, so lower DF means less number
of genetic markers in the model. The model with lower
RMSE, higher AUC, and a lower DF are preferred. For
each of the 30 datasets in four setups, cross-validation is
performed on eight models and the optimal parameters
are chosen, the models based on the optimal parameters
are used to calculate RMSE, AUC and DF using the R
package ROCR [17].

Simulation results
The results of simulation study are shown in Fig. 1. Among
eight models, LassoMP outperforms others in RMSE and
DF, while elasticMP reaches the best performance in AUC.
Specifically, LassoMP and LassoM outperform GFLasso
and FMPR in RMSE and DF, and LassoMP performs bet-
ter than FMPR but worse than GFLasso in AUC, but
LassoMperforms worse thanGFLasso and FMPR in AUC.
Interestingly, the DFs of GFLasso, RidgeM and RidgeMP

are always equal to the number of predictors, which
means they used all predictors in the regression models.
For eQTL mapping, if all genetic markers are included in

a linear regression model, it might explain a large propor-
tion of response and performs better in terms of AUC,
but it violates the assumption that genes are regulated by
a small number of genetic markers. Also, the number of
predictors used in GFLasso, RidgeM, RidgeMP, elasticM
and elasticMP are far more than the number of sam-
ples, which means these models are over-fitting. In all
four setups, the number of predictors in LassoMP, Las-
soM and FMPR are always less than the number samples,
and LassoMP achieved the lowest DF. LassoM and Las-
soMP are sparse models and thus need less numbers,
yet most significant predictors as compared to other six
models.
Comparing each pair of LassoMP vs. LassoM, RidgeMP

vs. RidgeM, and elasticMP vs. elasticM, prior knowl-
edge models reached better performance in AUC, RMSE
and DF. It indicates that prior knowledge reduced cross-
validation errors, predict accurately the associations
between predictors and response variables using less
number of predictors.
LassoMP achieved the lowest average RMSE and lowest

DF among eight models in four setups. LassoMP reaches
lower RMSE and comparable AUC with much less num-
ber of predictors than other models. From the simulation
study, we conclude that LassoMP is a better model than
others.
We also compared the computational time of eight

models used in the simulation study. The average compu-
tational time of these models in five-fold cross validation
of four experimental set ups are calculated (Table 1). Las-
soM, LassoMP, RidgeM, RidgeMP, elasticM, elasticMP
are very efficient in all conditions. FMPR and GFLasso
are more computationally expensive, and the runtime of
GFLasso increases dramatically with the increase of num-
ber of response variables and predictors.

Stem rust case study 1
In this study, we aim to perform prior knowledge guided
eQTL mapping on a barley data set to identify candidate
genes underlying resistance to the Puccinia gramins f.sp.
tritici in barley. Rpg1 has been identified as the stem rust
resistance gene in barley for many stem rust pathogen
races [18].

Dataset
Our study used genotyptic and phenotypic data, and
a genetic map of two barley populations “Steptoe” and
“Morex” generated from [10]. The barley stem rust data
sets were downloaded from Gene Network [19]. Barley
phenotypic data were generated from a population of 150
F1-derived doubled haploid (DH) lines derived from the
cross of Steptoe X Morex (St/Mx). Stem rust infection
type was measured using numeric infection type scores
[10]. The gene expression experiments were performed
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Fig. 1 The performance of eight multi-response models in simulation study

on a set of 139 lines of embryo-derived tissues in these
150 lines of barley [19]. The gene expression data set was
derived from the Affymetrix Barley1 GeneChip, which
contains 22841 probe sets. The barley genotype data set
had 842 SNPs in each of 150 St/Mx DH lines. We imputed
the missing data points in genotype data using PHASE
[20]. After removing co-segregated SNPs, we collected
413 SNP markers from the genotype data. We removed
12 samples from genotype data and one sample from the
gene expression data because of too many missing val-
ues in either genotype or gene expression data. The gene

expression data set contains 22841 probe sets and 138
samples. More details of the original barley data can be
found in [10].

QTLmapping
To identify candidate genes for resistance to stem rust,
we used our three-step method: QTL mapping, gene
module selection, and prior knowledge guided eQTL
mapping.
QTL mapping is performed using the R/qtl R package

[21]. All QTLs with LOD (logarithm (base 10) of odds)
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Table 1 The average computational time of eight models in four
simulation set ups

Model K=10 J=100 K=20 J=100 K=10 J=500 K=20 J=500
(seconds) (seconds) (seconds) (seconds)

FMPR 22.34 61.98 72.96 232.90

GFLasso 113.38 496.00 947.28 3776.94

RidgeM 0.44 0.82 0.79 1.67

RidgeMP 0.48 0.87 0.95 1.70

elasticM 0.47 0.89 0.62 1.67

elasticMP 0.48 0.95 0.61 1.70

LassoM 0.48 0.98 0.56 1.42

LassoMP 0.50 1.00 0.56 1.51

score at p-value < 0.05 level in 1000 permutation tests are
identified as QTLs from linkage mapping (Table 2). The
only QTL revealed for stem rust infection type 0, 1, and
3 is located on chromosome 7H 0cM, which is co-located
with Rpg1 SNP marker. One QTL on chromosome 2 at
49.3cM, co-located with ABC01899-1-1-301 SNP marker,
is identified to be associated with stem rust infection type
2. The Rpg1 locus identified using linkage mapping in
this data set coincides with the major stem rust resistance
locus [18].

Genemodule selection
Seventy-eight gene co-expression modules were gener-
ated using WGCNA. To summarize the gene expression
profiles of the highly correlated genes inside a module,
module eigengene (ME) is calculated based on the eigen-
vector of the first principle component of all genes in
the module. Then, the correlation between each of stem
rust infection type 0, 1, 2, 3 and each ME is calculated. If
we consider stem rust infection type 0,1,2,3 as indepen-
dent tests, which is a strict requirement, any module with
p-value < 1.6×10−4

(
0.05
78×4

)
is considered as significantly

correlated with traits. Three modules Plum1, Skyblue and
Saddlebrown (Table 3) are significantly associated with
stem rust infection type 0, 1, and 3.

Table 2 QTLs for stem rust infection types

Trait SNP Chromosome Centimorgan LOD score

Stem Rust
Type 0

Rpg1 7 0 46.14

Stem Rust
Type 1

Rpg1 7 0 59.57

Stem Rust
Type 2

ABC01899-1-1-301 2 49.3 3.29

Stem Rust
Type 3

Rpg1 7 0 106.32

Table 3 Gene modules significantly associated with stem rust
infection types

Trait Gene modules Correlation coefficient (p-value)

Infection Type 0 Plum1 0.72 (2e-23)

Saddlebrown 0.4 (9e-7)

Skyblue -0.7 (1e-21)

Infection Type 1 Plum1 0.79 (3e-30)

Saddlebrown 0.45 (3e-8)

Skyblue -0,72 (1e-23)

Infection Type 2 None

Infection Type 3 Plum1 -0.81 (1e-32)

Saddlebrown -0.45 (2e-8)

Skyblue 0.76 (3e-27)

Prior knowledge guided eQTLmapping
At first, eQTL mapping between genes in selected gene
modules and all SNP markers was performed using the
basic model LassoM. Most genes in Plum1 and Skyblue
genemodules both showed strong correlations withmark-
ers Rpg1 (7H@0cm) and Sft (7H@0.7cM), but genes in the
Saddlebrown module had correlations with markers on
7H 28cM. The SNP markers for genes in the Plum1 and
Skyblue modules overlap with the QTL identified in QTL
mapping.
To evaluate LassoM and LassoMP, we compared them

in terms of model selection measures: mean-squared
error (MSE), and proportion of variance explained, and
biological meaning measure: proportion of cis eQTL.
The low mean-squared error or high proportion of vari-
ance explained indicates a better linear regression model.
eQTLs that map to the approximate location of their gene-
of-origin are referred to as cis eQTLs. In contrast, those
that map far from the location of their gene-of-origin
gene, often on different chromosomes, are referred to as
trans eQTLs. The higher proportion of cis eQTL means
the model identifies more eQTLs with SNPs located near
associated genes. Usually the proportion of cis eQTL
is used for measuring the biological meaning of eQTL
mapping algorithms [2, 9].
LassoM and LassoMP were compared on the same

three selected gene modules: Plum1, Skyblue and Sad-
dlebrown. The prior knowledge used in LassoMP on
selected gene modules could be markers close to QTLs
or eQTLs. Since Rpg1 is the QTL marker and also one of
eQTL markers identified in Plum1 and Skyblue, we use
Rpg1 as the prior knowledge for these two gene modules.
For Saddlebrown, we used iEst5, 452-498, and 2124-984
SNP markers as the prior knowledge to guide the Las-
soMP process. The comparison between LassoM and Las-
soMP is performed in MSE by running 30 times five-fold
cross validation (Fig. 2). The results show that LassoMP
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Fig. 2 Comparison of LassoM and LassoMP on Plum1 (a), Skyblue (b), and Saddlebrown (c) gene modules

significantly outperforms LassoM on these three selected
gene modules.
Next, we compare LassoM with LassoMP in terms of

Mean-Squared Error and number of predictors (degree
of freedom) in the linear regression models (Table 4).
LassoM has lower mean-sqaured error. In all three gene
modules, LassoMP only includes less then ten genetic
markers in the model. It indicates that LassoMP achieves
lower MSE with a much lower number of predictors
in the model compared to LassoM. LassoMP has lower
proportion of variance explained than that of LassoM
because it uses less number of predictors. LassoMP
are a better model than LassoM in terms of model
selection.
LassoMP are compared to LassoM in terms of the bio-

logical meaning (Table 4). The proportion of cis eQTLs
identified from these four methods is used to measure the
biological meaning. Less than 40% of probe sets in the
Barley1 Affy platform are mapped to physical positions.
We use 15 cM as the threshold for cis eQTL. The propor-
tion of cis eQTLs from eQTL mapping of Plum1, Skyblue,
Saddlebrown modules are shown in Table 4. LassoMP has
a higher proportion of cis eQTLs than LassoM.
LassoMP is a better model than LassoM in terms

of model selection and biological meaning. The cis

eQTLs identified from LassoMP on Plum1, Skyblue and
Saddlebrown gene modules are presented in Table 5.
Probes with cis eQTLs and high correlation coef-
ficients are potential candidate genes for resistance
to stem rust, such as Contig3140_at, Contig6347_at,
Contig2657_at, HVSMEn0014H06r2_s_at in Plum1, and
Contig12634_at, Contig6348_at, Contig18035_at, Con-
tig3141_at in Skyblue, and Contig40_x_at, Contig3269_at,
Contig5614_s_at, Contig2957_at, and Contig4028_x_at in
Saddlebrown.

Validation
Weused the alignment between the Affymetrix GeneChip
Barley Genome Array and high confidence barley ensem-
ble gene IDs provided by Ensemble Plants [22]. Based
on these ensemble gene IDs, the GO annotations are
retrieved from Biomart [23]. In each gene module,
the GO enrichment analysis is performed using hyper-
GTest function in GOstats [24]. Enriched GO terms in
Plum1 (Table 6) and in Skyblue modules (Additional
file 1) reveals defense related functions. Plum1 includes
three defense response probe sets: AF509747.1_at, HVS-
MEl0003E22r2_at and HS16G07u_at. AF509747.1_at rep-
resents the Rpg1 gene [10], which is a gene specific to stem
rust in barley. HVSMEl0003E22r2_at and HS16G07u_at

Table 4 The comparison of four methods on three gene modules

Gene modules Method Mean # of Proportion # of # of eQTLs Proportion
Squared predictors of variance eQTLs with known of cis eQTLs
Error explained(%) gene locations (%)

Plum1 LassoM 1750411 23 56.01 621 69 17.39

LassoMP 1639614 9 52.13 243 27 29.63

Skyblue LassoM 2918151 47 52.65 1269 47 9.57

LassoMP 2801753 2 36.68 54 4 50.00

Saddlebrown LassoM 2919870 14 46.73 378 28 21.43

LassoMP 2675651 3 47.23 81 21 100.00
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Table 5 cis eQTLs identified in in Plum1, Skyblue and
Saddlebrown modules

Modules Probe sets Chr cM SNP Chr cM

Plum1 AF509747.1_at 7 0.9 Rpg1 7 0.0

Contig11996_s_at 7 12.7 Rpg1 7 0.0

Contig9996_at 7 0.4 Rpg1 7 0.0

Skyblue Contig14185_at 7 0.6 Rpg1 7 0.0

Contig26418_at 7 0.2 Rpg1 7 0.0

Saddlowbrown Contig10289_at 7 24.5 2124-984 7 29.2

Contig11481_at 7 22.9 2124-984 7 29.2

Contig11570_at 7 25.9 2124-984 7 29.2

Contig13623_at 7 27.6 2124-984 7 29.2

Contig18611_at 7 29.8 2124-984 7 29.2

Contig5613_at 7 22.7 2124-984 7 29.2

Contig6931_at 7 24.2 2124-984 7 29.2

Contig10289_at 7 24.5 452-498 7 28.5

Contig11481_at 7 22.9 452-498 7 28.5

Contig11570_at 7 25.9 452-498 7 28.5

Contig13623_at 7 27.6 452-498 7 28.5

Contig18611_at 7 29.8 452-498 7 28.5

Contig5613_at 7 22.7 452-498 7 28.5

Contig6931_at 7 24.2 452-498 7 28.5

Contig10289_at 7 24.5 iEst5 7 16.8

Contig11481_at 7 22.9 iEst5 7 16.8

Contig11570_at 7 25.9 iEst5 7 16.8

Contig13623_at 7 27.6 iEst5 7 16.8

Contig18611_at 7 29.8 iEst5 7 16.8

Contig5613_at 7 22.7 iEst5 7 16.8

Contig6931_at 7 24.2 iEst5 7 16.8

both link to the disease resistance related function–ADP
binding. The Plum1 gene module is enriched with defense
response, ADP binding, and cell wall related fructosyl-
transferase activity.
The Skyblue and Plum1 modules are associated to the

same genetic marker Rpg1, but they show distinct func-
tional annotations. Two probe sets Contig8651_at and
Contig8651_s_at link to ADP-sugar diphosphatase activ-
ity, ADP-ribose pyrophosphohydrolase activity, ADP-
glucose pyrophosphohydrolase activity, and one probe set
Contig2598_s_at shows response to sucrose, glucose, and
fructose. Skyblue is also enriched with transmembrane
transport.

Stem rust case study 2
Dataset
The second case study on stem rust resistance investigated
the resistance to stem rust pathogen Ug99 in progeny of

Table 6 Enriched GO terms of matched ensemble genes from
probe sets in Plum1 module

GO GOID Pvalue Term

MF GO:0047207 0.001 1,2-beta-fructan
1F-fructosyltransferase
activity

MF GO:0050738 0.002 fructosyltransferase
activity

MF GO:0043531 0.002 ADP binding

MF GO:0090599 0.007 alpha-glucosidase
activity

MF GO:0004564 0.007 beta-fructofuranosidase activity

MF GO:0004575 0.007 sucrose alpha-glucosidase
activity

MF GO:0015926 0.009 glucosidase activity

MF GO:0005516 0.029 calmodulin binding

MF GO:0070001 0.039 aspartic-type peptidase activity

MF GO:0004190 0.039 aspartic-type endopeptidase
activity

BP GO:0070417 0.002 cellular response to cold

BP GO:0034605 0.004 cellular response to heat

BP GO:0046685 0.004 response to arsenic-containing
substance

BP GO:0006986 0.013 response to unfolded protein

BP GO:0035967 0.013 cellular response to topologically
incorrect protein

BP GO:0034620 0.013 cellular response to unfolded
protein

BP GO:0006952 0.020 defense response

BP GO:0006950 0.022 response to stress

CC GO:0009506 0.024 plasmodesma

CC GO:0030054 0.024 cell junction

CC GO:0055044 0.024 symplast

CC GO:0005911 0.024 cell-cell junction

CC GO:0005783 0.038 endoplasmic reticulum

Q21861 and SM89010 [11]. Previous studies identified
a major QTL Rpg-TTKSK on 5H in seedlings samples
and other loci in adult plants [25]. The experiment was
designed to examine the qualitative and quantitative resis-
tance in seedlings and adult plants in response to Pgt
race TTKSK. Crossing Q21861 and SM89010 generated
75 double haploid lines and each line has one sample
treated with Pgt race TTKSK-inoculation (TTKS) and
another sample treated with mock-inoculation (MOCK).
The trait data includes infection types and infection
severity in seedlings and adult plants. The gene expres-
sion data contains 22841 probesets from four biological
replicates for each parental line, and 75 TTKS sam-
ples and 75 MOCK samples in QSM lines. Genotypic
data uses the QSM genetic map from transcript-derived
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markers (TDMs), which include 378 markers. The
gene expression data was downloaded from GEO [26],
and phenotype and genotype data were downloaded
from [11].
QTLmapping
In the second case study, we use the same three-step prior
knowledge guided eQTL mapping method as above to
identify candidate genes. Phenotype data used for QTL
mapping was split into four categories: infection fre-
quency (IF), principal component (PC), severity (SEV),
and lesion size (LES), and infection coefficient (IC). IF and
PC traits are phenotype data for seedling, and other two
for adult plants. PC1, 2, 3, and 4 are derived from IF0, 1,
2, 3 for infection types 0, 1, 2, 3, and infection coefficient
are derived from severity and lesion size. The genotypic
data has 378 markers on 75 DH lines. R/qtl [21] was used
for linkage mapping between phenotype and genotype
(Table 7). From seedling samples, 5H@147cm is a major
QTL, and some other QTLs are identified from 3H. From
adult plants, 5H@141cm is the main QTL for SEV, LES
and IC, a few QTLs on 7H and 2H are also identified.

Table 7 QTLs for stem rust infection in QSM population

Trait Chromosome Centimorgan LOD score

IF for Infection Type 0 3H 0 4.06

IF for Infection Type 0 5H 147 19.36

IF for Infection Type 1 5H 147 16.5

IF for Infection Type 2 5H 145 3.28

IF for Infection Type 3 3H 6.8 4.49

IF for Infection Type 3 5H 146.8 21.97

PC1 3H 6.8 4.79

5H 146.8 31.39

PC2 NULL

PC3 NULL

PC4 NULL

SEV 7-Oct-08 5H 141.4 5.73

7H 76.8 3.49

SEV 17-Oct-08 2H 41.5 2.97

5H 141.4 6.31

SEV 10-Nov-08 5H 141 4.18

LSE 7-Oct-08 5H 141 7.3

LSE 17-Oct-08 3H 2.72 3.30

5H 145.42 5.72

LSE 10-Nov-08 5H 72.2 4.71

IC 7-Oct-08 5H 141 6.54

IC 17-Oct-08 5H 141 6.88

IC 10-Nov-08 5H 141 4.2

Genemodule selection
Since this dataset used TTKS andMOCK samples in pair-
wise experimental design, we first identified differentially
expressed genes (DEG) from all samples. At first, we iden-
tified 362 DEGs fromQ21861 and 4 DEGs from SM89010,
merged them into 366 DEGs in parental lines with
p-value < 0.05. Clearly, Q21861 contributes much more
DEGs than SM89010. Also, we identified 8460 DEGs from
progeny among 75 paired samples with p-value < 0.05.
In total, 8487 DEGs were identified from parental lines
and progeny.
WGCNA was used to generate gene modules from the

8487 DEGs which include 154 samples. These 154 sam-
ples include four samples from parental lines and 150
samples from 75 progeny lines in TTKS and MOCK
conditions. Through the hierarchical clustering, 78 mod-
ules were generated from the DEGs. The gene mod-
ules that are significantly associated with a trait were
selected. At first, gene expression values were transformed
(TTKS gene expression values minusMOCK gene expres-
sion values) in 75 TTKS samples, and gene modules
significantly associated with each trait were identified
respectively.
The correlation coefficient between a gene module

and a phenotype is considered significant with p-value
< 0.05. Four gene modules: Saddlebrown, Darkgrey,
Darkmagenta, and Blue are significantly associated with
infections in seeding and five gene modules Royalblue,
Lightyellow, Yellow, Sienna3, and Darkgreen significantly
associated with infections in adult plants (Table 8).
The Darkgrey and Saddlebrown modules are signifi-

cantly associated with IF and PC. Darkgrey corresponds
to PC1 and Saddlebrown associates with PC2. This indi-
cates these two gene modules capture the main infection
factors. Darkgrey is negatively associated with IF0 and IF3,
and Saddlebrown is negatively associated with IF2. Since
IF2 and IF3 represent high infection severity, the Darkma-
genta and Blue modules correspond to PC3 and PC4, and
it indicates that they capture minor factors for infection.
Four genemodules are positively associated with SEV, LSE
and IC, but only the Darkgreen is negatively associated
with LSE.

Prior knowledge guided eQTLmapping
We identified eQTLs in two gene modules, Saddlebrown
and Darkgreen, using LassoM. Saddlowbrown is nega-
tively associated with IF2 and Darkgreen with LSE. eQTL
mapping is performed onDarkgrey, Saddlowbrown, Dark-
green and Yellow using LassoM and LassoMP. Subse-
quently, we compared LassoM and LassoMP on four
gene modules: Darkgrey, Saddlebrown, Darkgreen, and
Yellow using 5-fold cross validation (Fig. 3). Prior knowl-
edge for each gene module using LassoMP is selected
from candidate markers identified using LassoM, and the
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Table 8 Gene modules significantly associated with infection
types in seedlings and adult plants

Trait Gene modules Correlation coefficient
(p-value)

IF IF0, IF3 Darkgrey -0.23(0.0)

IF2 Saddlebrown -0.22(0.06)

PC PC1 Darkgrey -0.24(0.04)

PC2 Saddlebrown 0.31(0.007)

PC3 Darkmagenta 0.22(0.006)

PC4 Darkmagenta 0.23(0.05)

Blue 0.24(0.007)

SEV SEV20081007 Royalblue 0.25(0.03)

Lightyellow 0.27(0.02)

SEV20081110 Royalblue 0.25(0.03)

Lightyellow 0.27(0.02)

SEV20081110 Royalblue 0.25(0.03)

LSE LSE20081007 None

LSE20081017 Yellow 0.27(0.02)

LSE20081110 Sienna3 0.24(0.04)

Darkgreen -0.31(0.006)

IC IC20081007 Royalblue 0.25(0.03)

Lightyellow 0.29(0.01)

IC20081017 Royalblue 0.22(0.05)

Lightyellow 0.28(0.02)

IC20081110 None

marker with lowest MSE are selected as the prior knowl-
edge. In the Darkgrey module, 5H@144cm reached the
lowest MSE, and overlaps with the QTL (5H Rpg-TTKSK
QTL region) identified from QTL mapping (Table 7). The
Darkgrey module corresponds to PC1 of infection types,
which captures the main factor of infection in seedlings.
In the Yellow module, LassoMP with genetic marker at
2H@153.5cm has a lowerMSE. In other two genemodules
Saddlowbrown and Darkgreen, LassoMP reaches lower
MSE comparing to LassoM.
We used LassoMP as the mapping method on these four

gene modules. Top 10 eQTLs identified from Darkgrey,
Saddlowbrown, Darkgreen and Yellow gene modules are
listed in Table 9.

Validation
The enriched GO terms in Saddlebrown (Table 10), Dark-
grey, Darkgreen gene modules (Additional file 2) are pre-
sented. Five probe sets (Contig2209_at, Contig2210_at,
Contig2214_s_at, Contig2211_at, Contig2212_s_at) in
the Saddlebrown gene module are mapped to the
same UniProt gene Pathogenesis-related protein PRB1-2.
Mapped ensemble genes are enriched with defense
response to fungus and immune response.

Fig. 3 The comparison of LassoM and LasooMP on Darkgrey (a),
Saddlebrown (b), Darkgreen (c), and Yellow (d) gene modules

eQTLs for Darkgrey gene modules overlaps with the
major Ug99 QTL Rpg-TTKSK locus at 5H. The Darkgrey
gene module is enriched with defense related oxidore-
ductase activity. The Darkgreen module is the only gene
module which contains disease resistance genes in adult
plants. The major genetic marker for the Darkgreen gene
module locates at 7H@83.5cm, which is the major hotspot
of differentially expressed genes. The Darkgreen mod-
ule is enriched with transporter activity, water channel
activity, and oxygen binding.

Discussion
Our prior knowledge guided eQTL mapping method is
different from other eQTL mapping methods in three
aspects: 1) using data-driven prior knowledge, 2) select-
ing gene modules for eQTL mapping, 3) identifying major
markers for the selected gene modules.
We use the data-driven prior knowledge to identify

candidate genes, which is applicable to a wide range
of species. Knowledge driven methods, such as Lirnet,
are heavily dependent on rich biological knowledge in
model organisms. In our method, modules are generated
in WGCNA using hierarchical clustering, which is an
unsupervised method. Also, QTL and eQTL mapping are
performed purely on genotypic, transcript profiling and
phenotypic data. Any biological knowledge of these
genetic markers and genes are not used in the map-
ping process. A few studies used biological knowledge
in eQTL mapping [5, 8, 9]. Their methods are applica-
ble for resource rich organisms such as yeast, human,
mouse and Arabidopsis. For other species, gene functional
annotations are very limited.
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Table 9 Top 10 eQTLs identified using LassoMPs on Darkgrey, Saddlowbrown, Darkgreen and Yellow gene modules

Probes SNP Location Correlation
coefficient

Darkgrey Contig3156_s_at HZ58F11r_at 5H@145.4cm 0.505

Contig3155_s_at HZ58F11r_at 5H@145.4cm 0.350

Contig1385_at HZ58F11r_at 5H@145.4cm 0.264

Contig3157_at HZ58F11r_at 5H@145.4cm 0.262

Contig19929_at HZ58F11r_at 5H@145.4cm 0.259

Contig3151_at HZ58F11r_at 5H@145.4cm 0.256

Contig11361_at HZ58F11r_at 5H@145.4cm 0.196

Contig8307_s_at HZ58F11r_at 5H@145.4cm 0.147

Contig6701_s_at HZ58F11r_at 5H@145.4cm 0.143

Contig5469_at HZ58F11r_at 5H@145.4cm 0.108

Saddlebrown Contig2210_at Contig13249_at 7H@47.1cm -0.642

Contig2212_s_at Contig13249_at 7H@47.1cm -0.612

Contig2209_at Contig13249_at 7H@47.1cm -0.411

Contig2214_s_at Contig13249_at 7H@47.1cm -0.376

HVSMEm0003C15r2_s_at Contig13249_at 7H@47.1cm -0.309

Contig1637_s_at Contig13249_at 7H@47.1cm -0.288

Contig1637_at Contig13249_at 7H@47.1cm -0.284

Contig2787_s_at Contig13249_at 7H@47.1cm -0.284

Contig13350_at Contig13249_at 7H@47.1cm -0.257

EBem10_SQ002_I10_s_at Contig13249_at 7H@47.1cm -0.170

Darkgreen Contig2170_at Contig4572_at 7H@83.5cm -0.807

Contig8722_at Contig4572_at 7H@83.5cm -0.199

Contig11240_at Contig4572_at 7H@83.5cm -0.149

Contig21643_at Contig4572_at 7H@83.5cm -0.149

Contig3886_at Contig4572_at 7H@83.5cm -0.144

Contig23697_at Contig4572_at 7H@83.5cm -0.128

Contig13049_at Contig4572_at 7H@83.5cm -0.106

Contig13799_at Contig4572_at 7H@83.5cm -0.098

Contig20_at Contig4572_at 7H@83.5cm -0.089

Contig1315_s_at Contig4572_at 7H@83.5cm 0.036

Yellow Contig8002_at Contig1791_x_at 2H@153.5cm 0.288

Contig20602_at Contig1791_x_at 2H@153.5cm 0.285

Contig11328_at Contig1791_x_at 2H@153.5cm 0.266

Contig14754_at Contig1791_x_at 2H@153.5cm 0.227

Contig23817_at Contig1791_x_at 2H@153.5cm 0.205

Contig8052_at Contig1791_x_at 2H@153.5cm 0.200

Contig23584_at Contig1791_x_at 2H@153.5cm 0.197

HV_CEa0006L03r2_at Contig1791_x_at 2H@153.5cm 0.190

Contig10957_at Contig1791_x_at 2H@153.5cm 0.188

HA14H02r_at Contig1791_x_at 2H@153.5cm 0.185

In our method, selection of candidate genes takes
evidence in trait-gene associations and gene-SNP asso-
ciations. For example, some gene expression values
do not have strong associations with traits, such as

AF509747.1_at, but have strong associations with SNP
markers. Our method is able to find the robust gene mod-
ules significantly associated with traits and SNP markers
simultaneously.
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Table 10 Enriched GO terms of matched ensemble genes from
probe sets in Saddleborwn module

GO GOID p–value Term

MF GO:0008422 0.001 beta-glucosidase activity

MF GO:0042973 0.001 glucan endo-1,
3-beta-D-glucosidase
activity

MF GO:0004553 0.001 hydrolase activity,
hydrolyzing O-glycosyl
compounds

MF GO:0016798 0.001 hydrolase activity, acting
on glycosyl bonds

MF GO:0015926 0.003 glucosidase activity

MF GO:0016787 0.030 hydrolase activity

BP GO:0009816 0.004 defense response
to bacterium,
incompatible interaction

BP GO:0009817 0.005 defense response to
fungus, incompatible
interaction

BP GO:0042742 0.019 defense response to
bacterium

BP GO:0050832 0.021 defense response to
fungus

BP GO:0009617 0.021 response to bacterium

BP GO:0005975 0.023 carbohydrate metabolic
process

BP GO:0009814 0.028 defense response,
incompatible interaction

BP GO:0009620 0.029 response to fungus

BP GO:0045087 0.041 innate immune response

BP GO:0006955 0.043 immune response

BP GO:0002376 0.046 immune system process

CC GO:0005576 0.002 extracellular region

One of main features of our method is to identify
major markers for the selected gene modules. In simu-
lation study, we observe that LassoM and LassoMP are
sparse models comparing withe other six models. They
used much less number of predictors in the regression
models. The major difference between LassoMP and Las-
soM is LassoMP uses the prior knowledge. The influence
of prior knowledge on the performance of eight mod-
els in the simulation study is presented in Additional
file 3. We proposed to use LassoMP further reduce the
number of predictors. LassoMPs is a sparse solution
for LassoMP, and the comparison between LassoMPs
and LassoMP is available in Additional file 4. From the
perspective of model selection, adding prior knowledge
reduces the mean-squared error and keep the same pro-
portion of phenotype variance. Moreover, these major
regulators are shown to be functionally relevant to rust
infection.

Conclusions
We proposed a new prior knowledge guided eQTL
mapping methods for identifying candidate genes. Our
method includes three steps: 1) identifying QTLs from
QTL mapping; 2) generating and selecting gene modules;
3) prior knowledge guided eQTL mapping. In simulation
study, we compared the prior knowledge guided meth-
ods LassoMP with other seven multi-task algorithms. The
prior knowledge guided eQTL mapping methods outper-
formed those without prior knowledge. Using LassoMP,
in the first barley case study, we identified three gene
modules and a few genes as candidate genes for resis-
tance to stem rust, and one of them is confirmed as
stem rust resistance gene [10]. In the second case study
for stem rust Ug99 resistance in QSM population, we
identified four gene modules significantly associated with
infection in either seedling or adult plants. One of the
gene modules is co-located with the major QTL Rpg-
TTKSK for stem rust infection. Another genemodule con-
tains four probes mapped to the same disease resistance
gene.
The proposed prior knowledge guided eQTL mapping

method is applicable for different experimental design and
a variety of species. The first case study used all genes
and the second case study used a subset of differentially
expressed genes on pairwise samples. The identified mod-
ules and candidate genes are functionally relevant to rust
resistance.

Additional files

Additional file 1: Enriched GO terms of matched ensemble genes from
probe sets in Skyblue module. (PDF 34.2 kb)

Additional file 2: Enriched GO terms of matched ensemble genes from
probe sets in Darkgrey and Darkgreen modules. (PDF 35.2 kb)

Additional file 3: Parameter analysis in the simulation study. (PDF 163 kb)

Additional file 4: The comparison between LassoMP and LassoMPs.
(PDF 47.9 kb)
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