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Abstract

Background: Inferring the topology of gene regulatory networks (GRNs) from microarray gene expression data has
many potential applications, such as identifying candidate drug targets and providing valuable insights into the
biological processes. It remains a challenge due to the fact that the data is noisy and high dimensional, and there

exists a large number of potential interactions.

Results: We introduce an ensemble gene regulatory network inference method PLSNET, which decomposes the
GRN inference problem with p genes into p subproblems and solves each of the subproblems by using Partial least
squares (PLS) based feature selection algorithm. Then, a statistical technique is used to refine the predictions in our
method. The proposed method was evaluated on the DREAM4 and DREAM5 benchmark datasets and achieved
higher accuracy than the winners of those competitions and other state-of-the-art GRN inference methods.

Conclusions: Superior accuracy achieved on different benchmark datasets, including both in silico and in vivo
networks, shows that PLSNET reaches state-of-the-art performance.
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Background

Deciphering the structure of the gene regulatory net-
works (GRNs) [1] is crucial for bioinformatics, as it pro-
vide insight on the development, functioning and
pathology of biological organisms. With the advent of
high-throughput technologies such as next-generation
sequencing, it has become relatively easy to measure
chromatin state and gene expression genome-wide. Gene
expression data obtained from high-throughput tech-
nologies correspond to the expression profiles of thou-
sands of genes, which reflect gene expression levels for
different replicates or experimental conditions (e.g.,
physicochemical, temporal and culture medium condi-
tions). As a consequence, many methods have been pro-
posed to solve the GRN reverse engineering problem by
using gene expression data [2-5].

However, inferring the GRN from gene expression
data remains a daunting task due to the large number of
potential interactions, the small number of available
measurements and the high dimensional, noisy data.
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Methods based on the statistical analysis of dependen-
cies have been applied to the inference of GRNSs, such as
the method proposed in [6], which uses correlation coef-
ficients to define the gene similarity metric for inferring
the GRNs. One weakness of this method is that correl-
ation coefficients fail to identify more complex statistical
dependencies (e.g., non-linear ones) between genes.
Thus, information theoretic measures have been pro-
posed to capture more complex dependencies. In par-
ticular, these methods use mutual information (MI)
between a pair of genes as a measure to infer networks
[7]. As the existence of indirect interactions in relevance
network, some refinements have been proposed to cor-
rect the predictions. For example, the CLR method [8]
eliminates indirect influences based on the empirical dis-
tribution of all mutual information scores. The ARA-
CNE method [9] was also designed to filter out indirect
interactions by using the Data Processing Inequality.
C3NET [10] and its extension BC3NET [11] correct the
predictions based on estimates of mutual information
values in conjunction with a maximization step. The
ANOVerence method [12] includes meta-information of
the microarray chips to guide the network inference
process and uses 7, score as an alternative measure to
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evaluate dependencies between genes, where 7, score is
a correlation coefficient derived using ANOVA.

The methods [13-15] based on probabilistic graphical
models (e.g., Bayesian networks) have been widely
used to infer GRNs. However, Bayesian networks do
not allow the presence of feedback loops. Dynamic
Bayesian networks [16, 17] are able to overcome the
limitation while they can only handle time-series expres-
sion data. Moreover, learning the structure of a Bayesian
network is a daunting task both from a computational and
theoretical point of view [18]. Comparisons of existing
GRN inference methods and detailed reviews can be
referred in [4, 19].

Recently, some ensemble methods [18, 20-22] for-
malized the GRN inference problem as a feature se-
lection problem and show interesting performance.
The GENIE3 method [18], which is based on feature
selection with ensembles of random forests, is recog-
nized as state-of-the-art on some benchmarks [19].
As using random forests for feature selection is not
well understood theoretically, the TIGRESS method
[20] uses least angle regression (LARS) with stability
selection combined to solve the GRN inference
problem. The ENNET method [21] aggregates the fea-
tures selected by an algorithm based on Gradient
Boosting Machine. However, the ENNET method has
high computational cost when it is applied on the
high-dimensional data (i.e., the data with thousands
of features). The NIMEFI method [22] explores the
potential of several ensemble methods, such as GENIE3,
Ensemble Support Vector Regression (E-SVR) and
Ensemble Elastic Net [23] (E-EL), and combines the
predictions of these methods under a general framework.
However, NIMEFI has more adjustable parameters than
other ensemble GRN inference methods, which increases
the uncertainties of the model.

In this paper, we propose a new ensemble GRN
inference method based on partial least squares
(PLS). The method casts PLS-based feature selection
algorithm into an ensemble setting by taking random
potential regulatory genes. Then, we use a statistical
technique to refine the predictions in our method by
taking into account the impact of hub regulatory
gene (i.e., a regulatory gene regulates many target
genes). Various evaluations of techniques have been
performed in the context of DREAM (Dialogue for
Reverse Engineering Assessments and Methods)
challenges [24], which aims to provide researchers
with benchmark datasets to validate their work.
Hence, we compare the performance of our method
to several state-of-the-art methods in DREAM4 (25,
26] and DREAMS5 [27] gene reconstruction chal-
lenge, and the results show our method performs
competitively.
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Methods

Problem definition

We focus on inferring the directed topology of GRNs
using gene expression data in this paper. As input data,
we consider gene expression measurements for p genes
in n experimental conditions. The same as many ensem-
ble methods (e.g, GENIE3, TIGRESS, ENNET and
NIMEFI), we use a general framework for GRNs infer-
ence problem, which does not take the information of
different experimental conditions (e.g., gene-knockouts,
perturbations and even replicates) into account. The
gene expression data D is defined as following:

D = [xl,..., ,xp] er™? (1)
where x; is a column vector of expression values of i-th
gene in n experimental conditions.

GRN inference methods aim to make a prediction of
the regulatory links between genes from gene expression
data D. Most methods provide a ranking list of the po-
tential regulatory links from the most to the less
confident. Then, a network is automatically obtained by
selecting a threshold value on this ranking. As it is bene-
ficial to the end-user to explore the network at all sorts
of threshold levels [22], we focus only the ranking task
in this paper. It should be noted that the ranking is the
standard prediction format of the DREAM challenges,
where the challenges have been widely used to evaluate
various GRN inference methods.

In order to infer the regulatory network from the ex-
pression data D, we compute a score w;; for a potential
edge directed from gene i to gene j, where the edge indi-
cates that gene i regulates gene j on expression level and
the score w;; represents the strength that gene i associ-
ates (i.e., regulates) gene j.

Network inference with feature selection methods
Motivated by the success of ensemble methods based on
feature selection (e.g, GENIE3 and TIGRESS), we
decomposed the GRN inference problem with p genes
into p subproblems, where each of these subproblems
can be viewed as a problem of feature selection in statis-
tics [18, 28]. More specifically, for each target gene, we
wish to determine the subset of genes which directly in-
fluence the target gene from the expression level. Let D
is the gene expression data defined in (1), the i-th gene
is the target gene, and we define candidate regulators
containing expression values in n experimental condi-
tions as:

X = [xl,...,xi_l,xiﬂ,...,xp] (2)

and the feature selection problem can be defined as:
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x = f(x7) + evie{l,2,..,p} (3)

where f is a regression function exploits the expression
in ™ of genes that are directly connected to gene i, and
€ is some noise. Usually, f can be defined as:

f&) = Zw, Vie{l,...,i-1,i + 1,..,p} (4)

where wj; >0 represents the strength that gene i associ-
ates (i.e., regulates) gene j. The rankings of the regula-
tory links of gene i is obtained by computing the w;;. By
aggregating the p individual gene rankings, we can get a
global ranking of all regulatory links.

GRN inference with PLS-based ensemble methods
Recently, as PLS (Partial Least Squares) has been
exploited by several authors to address the problem of
feature selection for classification and showed interesting
performance, such as TotalPLS [29] and KernelPLS [30],
in this paper, we also use the PLS based method to solve
the problem defined in (3). One difficulties of GRN in-
ference problem is that we do not know how many can-
didate regulatory genes are sufficient to provide a good
model for a target gene. For the purpose, we use PLS-
based ensemble method. The basic idea is that the w;
for gene i is computed by running PLS-based feature se-
lection method many times, resampling the samples and
selecting random K candidate regulatory genes at each
run. We discuss and explore the effect of K values on
the method performance in the Results Section.

Feature selection with PLS-based method

Let X =[xy, ...,%,] € R" ¥ be a matrix that has been nor-
malized to have a mean of zero and Y = [y, ...,y,]” € R"*
! be a column vector that has been normalized to have a
mean of zero. PLS aims to find a pair of projection di-
rections w and u such that the projections P=Xv (ie,
PLS components) and Q = Yu can carry as much infor-
mation on variation as possible in X and Y [31]. The
projections P and Q can be obtained by solving the cri-
terion function as:

2
- (VTZXyl/l)
max J(v, u) = Ty (5)
st. viv=uTu=1.

where Zyy=cov*(X,Y) is the covariance matrix for the
vectors of X and Y.

The common solutions to PLS-based model include
Non-linear Iterative PLS (NIPALS) [32] and Statistically
Inspired Modification of PLS (SIMPLS) [33]. As SIMPLS
is slightly superior to NIPALS and is computationally ef-
ficient, our analysis and calculation is based on SIMPLS
in this paper. PLS components P are constructed to
maximize the objective function based on the sample
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covariance between Y and P = Xv. Let m be the number
of components, SIMPLS is able to calculate vy, vs, ..., v,
by solving the objective function as follow:

max](v) = cov*(Xv;, Y)
st vill = 1
vi(XTX)y; = 0; ©)
jo= 1, - L

The component P;=Xv, which extracts from the
SIMPLS calculation, represents as much variation infor-
mation of X as possible. To explain the information of Y,
the component should be associated with Y as much as
possible. In order to analyze the explanation of variation
of X to Y, the variable importance in projection (VIP)
[34] is introduced to quantitatively denote the impact of
i-th feature to Y.

Definition VIP: Let r(-,-) be the correlation coefficient
between two variables. The VIP is defined as:

m 2
(Yt

VIP(x;) = )
i=1 ”

(7)

where y(Y;t;) = (Y, P,) is the explanation of variation of
component P; to ¥, p is the number of features and v is
the weight of the j-th feature for the i-th component.
The larger value of VIP(x;) is, the more explanatory
power of x; to Y.

The pseudo code of PLS-based feature selection is pre-
sented in Method 1.

Method 1. PLS-based Feature Selection (PLSFS)
Input: X € R™? Y € R™ m
Output: feature weight VIP
Obtain the ¥(¥; t;) and v} from the result of the
function SIMPLS (X, Y, m)
Fork =1topdo
Calculate each feature weight VIP(k) in terms of Eq.(7)
End

Return VIP

Refining the inferred regulatory network

In our method, we use a statistical technique to refine
the inferred regulatory network in our method. The final
result is improved under the assumption that if a regula-
tory gene regulates many target genes (e.g., the regula-
tory gene is hub node), it is an important regulatory
gene. Once the solution of the gene regulatory network
inference is calculated, we can obtain an adjacency
matrix W, where Wj; represents the strength that gene i
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associates (i.e., regulates) gene j. Regulatory genes are
scored based on their impacts on multiple target genes.
An updated adjacency matrix W is given as:

W(i,:) = W(,:) *d?,Vie{l,2,...,p} (8)
where W(, ) is the i-th row of W, and o7 is a variance in
the i-th row of W. It should be noted that each row of
W is calculated in a subproblem of our method. Each
row of W contains relative scores with respect to a dif-
ferent target gene. Therefore, if a regulatory gene regu-
lates many target genes, the variance in a row of W
corresponding to that regulatory gene is elevated.

The pseudo code of PLS-based ensemble method
(PLSNET) is presented in Method 2.

Method 2. PLSNET
Input: X € R™? m, K, T
Output: adjacency matrix W € R?*?
Fork =1t Tdo
Resampling the samples and chose random K genes from X to
generate ResX € R™¥
Fori=1top do
V(:,i) = PLSFS(ResX ™%, ResX;,m) // V(:,1) is the i-th column
of V
End
W =W +V //Ensemble the results
End
Forj = 1topdo
Calculate the variance a]: of W(j,:) // W(j,:) is the j-th row of
w
W(,:)=W(,:)* o}
End
Return W

//Refined the inferred network

Parameter settings

The main parameters of PLSNET are the number of
components m and the number of candidate regulatory
genes K. Parameter selection (i.e., the selection of the m
variable) for the PLS model is a difficult task due to the
fact that if m is too large, there will be over-fitting in the
model and if m is too small, there will be under-fitting
in the model. There are two widely used methods for
PLS parameter tuning, specification and cross validation
(CV). The drawback to CV is that it significantly in-
creases the computation cost and the problem to a cer-
tain extent becomes even more difficult to handle. The
specification method usually fixes the value of m, typic-
ally, the value is not larger than 5. Since we do not know
how many candidate regulatory genes are sufficient to
provide a good model for a target gene, the choice of K
may not be trivial.
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In this paper, we evaluated our method PLSNET on
two popular benchmarks: DREAM4 multifactorial data-
sets and DREAMS5 datasets. For DREAM4 multifactorial
datasets, we use CV to set two main parameters of
PLSNET, where m is chosen from {1,2,--,5} and K is
chosen from {5, 10, ---, 100}. And we choose the param-
eter setting (m =5, K=30) as default values. As the size
of DREAMS5 datasets is much larger than that of
DREAM4 multifactorial datasets, it is difficult to utilize
CV to choose the parameters due to the fact that it
would significantly increase the computation cost. In-
stead, we utilize the specification method to set m =5.
And following the suggestion of GENIE3 [18], we set K
= /p as default value for DREAMS5 datasets.

Computational complexity

As shown in Method 2, there are two main parts in
PLSNET, including calculating the score of each edge
and refining the inferred network. Consider N x
P matrix X and Nx1 matrix Y, SIMPLS is O(mNP)
complex. Here, m is the number of components, N is
number of samples and P is the number of genes. An-
other part of PLSFS (i.e., VIP) is also O(mNP) complex.
Hence, the computational complexity of PLSES is
O(mNP) and we calculate the score of each edge in an
O(mTKNP) time, where K is the number of candidate
regulatory genes and T is the number of iterations.
PLSNET’s complex is thus on the order of O(mTKNP +
P?). In practice, the dominating part of the sum is
mTKNP and the value of m is not larger than 5, we
therefore report a final computational complexity of
PLSNET as O(TKNP). We compare our method with
other inference methods in Table 1. It should be noted
that the calculation of the mutual information matrix is
not included for information-theoretic methods (ie.,
CLR and ARACNE).

Results
In recent years, the problem of evaluating performance
of the inference methods on adequate benchmarks has

Table 1 The computational complexity of different GRN
inference methods

Method Complexity

GENIE3 O(TKPN logN), T = 1000, K = +/P.

TIGRESS O(TKPN), T= 1000, K= number of regulatory genes.
CLR 0[(:9)

ARACNE oP?)

NIMEF| O(TKPN logN), T = 1000, K = /P

PLSNET O(TKPN), T = 1000, K = +/P.

The computational complexity of PLSNET and other GRN inference methods
with respect to the number of genes P, the number of iterations T and the
number of samples N
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been widely investigated [24, 35]. The most popular
benchmarks, such as S. cerevisiae [36], E. coli [37] and
artificially simulated in silico networks [24, 38—40], are
derived from well-studied in vivo networks of model or-
ganisms. One weakness of in vivo benchmark networks
is that no matter how well the model organism is stud-
ied, experimentally confirmed pathways can never be as-
sumed complete [21]. As such networks are assembled
from known transcriptional interactions with strong ex-
perimental support, the gold standard networks are ex-
pected to have few false positives. Given a gene
expression data matrix, a GRN inference method out-
puts a ranked list of putative regulatory interactions.
Taking the top L predictions in this list, we can compare
them to known regulations (i.e., the gold standard net-
works) to evaluate the performance of the GRN infer-
ence method.

In this paper, we used several popular benchmark
GRNs to evaluate the accuracy of our proposed
method and compare it with the other inference
methods. The datasets we used in our experiments
are from DREAM challenges and the details of the
datasets are summarized in Table 2. The first three
networks come from the DREAMS5 challenge. Net-
work 1 (in-silico) is a simulated network with simu-
lated expression data, while the other two expression
datasets are real expression data collected for E. coli
(Network 3) and S. cerevisiae (Network 4). It should
be noted that we do not use Network 2 of DREAMS5
in our experiments for the reason that there is no
verified interaction provided for this dataset. In
order to assess the ability of our method to predict
directionality, we used the five DREAM4 size 100
Multifactorial Networks in our experiments, where

Table 2 Datasets

Network # # Regulatory #Samples # Verified
Genes genes interactions

DREAMS5 Network 1 1643 195 805 4012

(in-silico)

DREAMS5 Network 3 4511 334 805 2066

(E. coli)

DREAMS Network 4 5950 333 536 3940

(S. cerevisiae)

DREAM4 Multifactorial 100 100 100 176

Network 1

DREAM4 Multifactorial - 100 100 100 249

Network 2

DREAM4 Multifactorial - 100 100 100 195

Network 3

DREAM4 Multifactorial 100 100 100 211

Network 4

DREAM4 Multifactorial 100 100 100 193

Network 5
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the regulatory genes are not known in advance for
these networks.

In fact, DREAM4 and DREAMS5 datasets have been
widely used for several GRNs inference methods to
evaluate the performance recently. For example, the au-
thors of TIGRESS [20] compared the performance of
some GRNs inference methods on DREAM4 Multifac-
torial Networks and DREAM 5 Networks in 2012. In the
same year, the authors of ANOVerence [12] presented
the results of several GRNs inference methods per-
formed on DREAMS5 Networks. In 2014, the perform-
ance comparisons of many GRNs inference methods on
DREAM4 Multifactorial Networks and DREAM 5 Net-
works were shown in NIMEFI [22].

We evaluated the accuracy of the methods using the
Overall Score metric proposed by the authors of
DREAM challenges [24], as shown in the following:

Overall Score = - %loglo(PAupR Pauroc) 9)
where P_AUPR and P_AUROC are respectively the geo-
metric means of p-values taken over the networks from
DREAM challenges, relating to an area under the
precision-recall curve (AUPR) and an area under the re-
ceiver operating characteristic curve (AUROC). The
probability densities of DREAM Network data which are
used to calculate the p-values and the respective gold
standard networks are provided on DREAM web site.

Performance evaluation

We compare the performance of our method PLSNET
with five of the most prominent GRN inference
methods, GENIE3 [18], TIGRESS [20], CLR [8], ARA-
CNE [9] and NIMEFI [22], that are widely used in the
literature. Moreover, the top three performers in each of
DREAM challenges as listed on the DREAM web site
are also selected for comparison. We use the Matlab
implementations of GENIE3 and TIGRESS, while ARA-
CNE and CLR are run in the minet R package [41].
NIMEFI is implemented using the R package available
for download at http://bioinformatics.intec.ugent.be/.
The Matlab code of PLSNET is included in Additional
file 1. We keep default parameter values for each of
these methods and set the number of iterations 7' = 1000
for ensemble methods (i.e., GENIE3, TIGRESS, NIMEFI
and PLSNET).

Performance on the DREAM4 multifactorial datasets

The goal of the In Silico Size 100 Multifactorial chal-
lenge of DREAM4 was to infer five networks from
Multifactorial perturbation data, where each of them
contained 100 genes and 100 samples. Multifactorial
perturbation data are defined as gene expression profiles
resulting from slight perturbations of all genes
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Table 3 Performance comparisons of different GRN inference methods on the DREAM4 networks, challenge size 100 Multifactorial

Method Network 1 Network2 Network 3 Network 4 Network 5 Overall
AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC Score

GENIE3 0.161 0.750 0154 0734 0234 0776 0211 0.800 0.200 0.795 38033
TIGRESS 0.158 0.747 0.161 0703 0233 0.761 0225 0774 0233 0.754 36590
CLR 0.143 0.701 0117 0695 0174 0.744 0.181 0753 0175 0723 29112
ARACNE 0122 0605 0.102 0603 0201 0691 0159 0713 0.167 0661 23478
NIMEF| 0.157 0.758 0157 0731 0.248 0776 0225 0.806 0.241 0.801 40762
PLSNET 0118 0713 0.290 0.828 0202 0.794 0.228 0.819 0206 0786 46.046
Winner of the Challenge

GENIE3 0.154 0.745 0.155 0733 0231 0.775 0.208 0.791 0.197 0.798 37428
2nd 0.108 0.739 0147 0694 0.185 0.748 0.161 0736 0111 0.745 28.165
3rd 0.140 0658 0098 0626 0215 0717 0.201 0693 0.194 0719 27.053

The best results for each column are in bold. Numbers in the “Winner of competition” part of the table correspond to the best methods participating in the

challenge as listed on the DREAM web site

simultaneously. The topology of these benchmark net-
works were derived from the transcriptional regulatory
system of S. cerevisiae and E. coli.

Each DREAM4 Multifactorial Network data is a
100 x 100 matrix, where each column represents a
gene and each row represents a different experimental
condition (i.e., perturbation). The values in the matrix
are the expression values of the genes on the respect-
ively experimental conditions. In our experiments, all
compared GRNs inference methods used these matri-
ces as the input data and the results are shown in
Table 3.

Table 3 lists the results of PLSNET with default param-
eter setting (m =5, K =30) compared with those of other
GRN inference methods on the DREAM4 multifactorial
datasets. Without further optimization of the parameters
on these networks, PLSNET achieves the best Overall
Score. And PLSNET shows particularly strong perform-
ance on Network2 and Network4, improving over other
GRN inference methods in terms of AUPR and AUROC.

Influence of parameters
In this section, we provide more details about the influ-
ence of the parameters of compared methods on

DREAM4 Multifactorial Networks
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performance, taking five DREAM4 Multifactorial Net-
works as benchmark datasets.

Figure 1 summarizes the Overall Score of three com-
pared methods (PLSNET, GENIE3 and NIMEFI) for dif-
ferent number of candidate regulatory genes K on the

DREAM4 multifactorial datasets. As seen in Fig. 1,
the range of K values leading to the best performance
is narrow with our proposed method, and therefore it
is difficult to find an appropriate value of K as default
value in advance.
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Figure 2 shows the Overall Score of our method for
different number of components m with K=30 on
the DREAM4 multifactorial datasets. We observe in
Fig. 2 that the Overall Score is not very sensitive to
the choice of the number of components, and there-
fore one may practically more easily tune it for opti-
mal performance.

Figure 3 shows the influence of two main parameters
(¢ and L) of TIGRESS on the Overall Score using
DREAM4 Multifactorial datasets, where a €[0,1] con-
trols the random re-weighting in each stability selection
run and L is the number of LARS (Least Angle Regres-
sion) steps. The Overall Score of ARACNE for different
kernel widths on DREAM4 Multifactorial Networks is
shown in Fig. 4.

Performance on the DREAM5 datasets
The three DREAMS5 datasets were structured with re-
spect to different model organisms, and were different
in size. The expression data of the only one network
(Networkl) were simulated in silico, while two other
sets of expression data were measured in real experi-
ments in vivo. As in all DREAM challenges, in silico
expression data were simulated using an open-source
GeneNetWeaver simulator [25]. The gold standard
networks of DREAM5 were mainly obtained from two
sources: Gene Ontology (GO) annotations [42] and
RegulonDB database [36].

Each DREAMS5 Network data contain three files: net-
work chip features, network transcription factors and

network expression data. The file of network chip fea-
tures records the details of each experimental condition
in network expression data, which contain time series,
perturbations and even replicates. However, as men-
tioned in Section 2.1, we do not use the information for
inferring GRNs. And the methods compared in our ex-
periments do not use the information as well. The file of
network transcription factors records the genes that
have been verified to be regulatory genes. Typically,
the number of regulatory genes is used as a param-
eter for GRNs inference methods to construct the

Table 4 Performance comparisons of different GRN inference
methods on the DREAM5 networks

Method Network 1 Network 3 Network 4 Overall
AUPR AUROC AUPR AUROC AUPR AUROC ~O'
GENIE3 0291 0814 0094 0618 0021 0517 40313
TIGRESS 0.302 0783 0070 059 0020 0517 31112
CLR 0254 0.771 0.075 0.591 0020 0516 19.387
ARACNE 0.187 0763 0069 0572 0018 0504 924
NIMEFI 0298 0817 0101 0625 0022 0518 46.015
PLSNET 0270 0.862 0065 0577 0.023 0.519 48.269
Winner of the Challenge
GENIE3 0291 0815 0093 0617 0021 0518 40279
ANOVerence 0245 0780 0.119 0.671 0022 0.519 34023
TIGRESS 0301 0782 0069 0595 0020 0517  31.099

The best results for each column are in bold. Numbers in the “Winner of
competition” part of the table correspond to the best methods participating in
the challenge as listed on the DREAM web site
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model. The file of network expression data contains
a 7 x p matrix, where n represents the number of ex-
perimental conditions and p is the number of genes,
and the values in the matrix are the expression
values of the genes on the respectively experimental
conditions. In our experiments, all compared
methods used these matrices as the input data and
the results are given in Table 4.

Table 4 summarizes the results of PLSNET with default
parameter setting (m = 5, K = ,/p) compared with those
of other GRN inference methods on the DREAMS5 datasets.
As seen in Table 4, PLSNET achieves the best Overall
Score, as well as the best individual AUROC scores for Net-
work 1 and Network 4. ANOVerence achieved the best
performance on the E. coli network (Network 2), as it does
include meta-information of the microarray chips to guide
the network inference process.

Since the number of regulatory genes on DREAMS5
datasets is much larger than that of on DREAM4 data-
sets, it is more difficult to set the number of candidate
regulatory genes K. In our experiments, we set K = /p
and observed that our method perform well in this set-
ting. However, it should be noted that better results
could be obtained if K is set to other values.

Obviously, all GRN inference methods achieved better
scores for an in silico network (Network 1) than for
other two in vivo networks. One main reason for a poor
performance of the inference methods for in vivo net-
works may be that experimentally confirmed pathways,
and the gold standards derived from them, cannot be as-
sumed completely. On the other hand, in silico datasets
provide enough information to confidently reverse-
engineer their underlying structure.

CPU time

In our experiments, ARACNE, CLR and NIMEFI were
implemented using the R package, while GENIE3, TIG-
RESS and our method PLSNET were run in Matlab. As
PLSNET is an ensemble method, we focus on the run-
ning time of ensemble methods rather than other GRN
inference methods. On the other hand, ensemble
methods usually achieve better results than other GRN
inference methods.

Table 5 Comparisons of running times of different GRN
inference methods

Method CPU time (in seconds)

DREAMA4 (the average DREAMS5 DREAM4 DREAM4

of 5 networks) Network 1 Network 3 Network 4
GENIE3 47.73 351E+4 136E+5 117E+5
TIGRESS 160.41 3.06E+4 9.08E + 4 702E+4
PLSNET 136.71 422E+3 1.66E+4 2.09E+4
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Table 5 gives an overview of the running times of
some of the GRN inference methods. These measure-
ments were conducted using Matlab (R2010a edition),
an Intel Core (TM) i5-3317U, clocked at 1.70 GHz,
4.00 GB of RAM memory and a 64-bit Microsoft
Windows 7 operating system. Note that we do not in-
clude NIMEFI for comparison due to the fact that
NIMEFI is a method using multiple ensembles of
GRN inference methods, including GENIE3, Ensemble
Elastic Net and Ensemble Support Vector Regression.

As can be seen from the table, in terms of computational
efficiency, PLSNET performs best on DREAM5 networks
and performs the second best on DREAM4 networks.
GENIE3 performs best on DREAM4 networks as the size
of the datasets is small. However, GENIE3 is more time
consuming than PLSNET when it is implemented on the
big datasets.

Conclusions

In this paper, we presented PLSNET, a new ensemble
method for GRN inference. PLSNET expresses the GRN
inference problem as a feature selection problem, and
solves it with the PLS-based feature selection method
combined with a statistical technique for refining the
predictions. The influence of PLSNET parameters was
clarified in this paper, and we showed that further im-
provement may result from finer parameter tuning.

Different from other ensemble methods, such as
GENIE3 and TIGRESS, PLSNET aggregates the features
selected by PLS-based method. Moreover, considering
that if a regulatory gene regulates many target genes
(e.g., a regulatory gene is a hub node), it indicates an im-
portant regulator gene; we use a statistical technique to
refine the inferred network in our method.

We evaluated our proposed method on the DREAM4
multifactorial and DREAM5 benchmarks and achieved
higher accuracy than other state-of-the-art methods.
Furthermore, among ensemble GRN inference methods,
our method is computationally efficient.

Additional file

Additional file 1: Code of PLSNET. The Matlab code of our proposed
method (ZIP 4 kb)
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