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Background: Competitive gene set analysis is a standard exploratory tool for gene expression data.
Permutation-based competitive gene set analysis methods are preferable to parametric ones because the latter make
strong statistical assumptions which are not always met. For permutation-based methods, we permute samples, as
opposed to genes, as doing so preserves the inter-gene correlation structure. Unfortunately, up until now, sample
permutation-based methods have required a minimum of six replicates per sample group.

Results: We propose a new permutation-based competitive gene set analysis method for multi-group gene
expression data with as few as three replicates per group. The method is based on advanced sample permutation
technique that utilizes all groups within a data set for pairwise comparisons. We present a comprehensive evaluation
of different permutation techniques, using multiple data sets and contrast the performance of our method, mGSZm,
with other state of the art methods. We show that mGSZm is robust, and that, despite only using less than six
replicates, we are able to consistently identify a high proportion of the top ranked gene sets from the analysis of a
substantially larger data set. Further, we highlight other methods where performance is highly variable and appears

dependent on the underlying data set being analyzed.

Conclusions: Our results demonstrate that robust gene set analysis of multi-group gene expression data is
permissible with as few as three replicates. In doing so, we have extended the applicability of such approaches to
resource constrained experiments where additional data generation is prohibitively difficult or expensive. An R
package implementing the proposed method and supplementary materials are available from the website
http://ekhidna.biocenter.helsinki.fi/downloads/pashupati/mGSZm.html.
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Background

Gene set analysis is an increasingly popular methodologi-
cal approach for the analysis of molecular profiles such as
gene expression [1, 2], metabolomics [3, 4] and genome-
wide association data [5, 6]. In gene set analysis, statis-
tical tests are performed on groups of genes that share
characteristics defined by prior biological knowledge, for
example, biological function [7] or regulatory pathway
involvement [8]. A typical gene set analysis method starts
by comparing genes between treatment groups. For each
gene, a score for differential expression is calculated (for
example, fold change and t-score). A gene set score is
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a function of scores from member genes. The gene set
scores are then assigned P-values with either parametric
or non-parametric methods.

Gene set analysis methods fall into two major cate-
gories: competitive and self-contained [9]. Competitive
methods, the focus of this article, test the null hypothesis
that a gene set is not more associated with the pheno-
type of interest than a random sample from its comple-
ment set of genes. Self-contained methods, however, test
whether or not a gene set is associated with the phe-
notype considering only genes from the tested gene set.
Under the null hypothesis, competitive methods assumes
that genes are independent which is violated by gene-
gene correlation observed in gene expression data. Studies
have suggested the use of sample permutation to gen-
erate the null distribution for P-value estimation as it
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preserves the gene-gene correlation [10, 11]. The most
popular competitive methods are based on sample permu-
tation and competitive statistics (implicit gene sampling)
for gene set scores [10, 12]. Several parametric methods
have also been developed which, although faster, make
strong statistical assumptions that are not always met
[13-15]. While sample permutation-based approaches do
not make such strong assumptions, large number of per-
mutations are necessary for accurate P-value estimation.
Indeed, it has recently been shown by Mishra et al. that
the popular choice of 1000 permutations is inadequate
and results in a loss of precision particularly visible in
the tail-end of the gene set score distribution [16]. This
loss of precision is important because it can result in the
same P-value being assigned to multiple gene sets whose
true significance varies. In addition to being inaccurate,
the relative ranking of gene sets with the same P-value is
arbitrary.

We recently proposed a sample permutation-based
competitive gene set analysis method, mGSZ [16],
that combines features from both parametric and
permutation-based approaches. In mGSZ, P-values are
estimated from empirical null distribution of gene set
scores smoothed with a continuous distribution. We
showed that the semi-parametric approach requires
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far fewer permutations (as low as 200) compared to
other sample permutation-based methods and produces
biologically plausible results. Despite the significant
improvement in efficiency, mGSZ still requires at least
six biological replicates per sample group to give accurate
results. Multi-group gene expression data with fewer than
six replicates, however, are common and naive application
of sample permutation in this context is, as we have stated,
potentially unreliable.

This article proposes mGSZm, a new competitive gene
set analysis method for multi-group gene expression data
with as few as three biological replicates per sample
group. The method is based on advanced sample permu-
tation technique that utilizes all sample groups to gener-
ate an appropriate number of permutations for pairwise
comparisons.

Methods

Permutation methods

Permutation-based gene set analysis methods estimate
the null distribution by recalculating gene set scores for
many permutations of the data (Fig. 1). The tested gene
set scores are then compared to the null distribution for
the estimation of P-values. A large number of permu-
tations is required to obtain the null distribution and
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its quality is dependent on the permutation method. An
ideal null distribution would include all the important
noise signals (like variations within a group and gene-
gene correlations) and lack true biological signals (differ-
ences between groups). Improper permutation methods
can generate permutations that are almost identical to
the correct sample labels, causing true biological signal
to “leak” into the null distribution (Fig. 2). This corrup-
tion of the null distribution can also occur when some
groups in multi-group gene expression data are highly
correlated.

We propose that, in a multi-group gene expression
dataset, groups other than those being compared can
be used for the estimation of null distribution. Other
than the phenomena being investigated, we assume
that the same inherent structure, including gene-gene
correlations, occur similarly across all groups, differ-
ential gene expression score represents gene regula-
tion and co-regulation of member genes of a gene
set represents regulation of the associated biological
process.

We evaluated six different permutation methods for
multi-group gene expression data, referred to as Perm1-
6. Perm1 is the widely used naive permutation method of
only permuting the labels of the groups being compared
[10, 12, 16]. The rest of the permutation methods are
new approaches proposed by us that aim to prevent signal
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leakage by ensuring that permuted groups do not contain
many samples from a single original group. Sampling is
least constrained (most random) in Perm2 and most con-
strained (least random) in Perm6. By constraining what
permutations are generated we aim to ensure that per-
muted groups do not correlate with the original groups.
Perm3-6 showed similar performance in our evaluations
(see Additional file 1, Figure 12) and therefore, for clar-
ity, we only describe Perm 4 in detail in this article. For
details on Perm3, Perm5 and Perm6 see Additional file 1,
Sections 1-4.

We use the following notation to describe each permu-
tation method:

n: Number of replicates in a group. For
simplicity, we let n be constant for all
groups.

Total number of groups in multi-group
gene expression data.

y: Total number of samples in all the groups.
z: Total number of samples in the groups
being analyzed.

Total number of permutations from
permutation method x.

N|Permx| :

Perm1 This is the most basic permutation method where
only samples from the groups being compared have their
sample labels permuted (Fig. 3). This approach is not
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Fig. 2 Examples of bad and good permutations. Examples of bad and good permutations. Cancer2* and Healthy1* represent permuted Cancer2
and Healthy1 groups. Under bad permutation examples, Cancer2* fails to include samples from healthy groups and Healthy1* fails to include
samples from cancer groups causing strong leakage of biological signal into null distribution. Under good permutation examples, Cancer2* and
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Let, 1) B and D be the groups that we are interested to compare.
2) B* and D* be the permutations of B and D.
3) n (=5) be the number of replicates in a group.
4) m (=6) be the number of groups in the multi-group gene expression data.
5) X be the number of permutations.

Note: Random selection is without replacement in all the cases.
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Fig. 3 Permutation methods. Schematic diagram representing the three permutation methods (Perm1, Perm2 and Perm4). The steps shown in each
of the permutation methods are repeated for X times, where X is the number of permutations. See Additional file 1, Sections 1-5 for details

suitable for data sets with few replicates because of the The factor 1/2 is to exclude permutations that are mir-
limited number of unique permutations, given by: ror images of one another and give identical results, for
example, (1,1,0,0) and (0,0,1,1). For example, in multi-

1 zZ! group gene expression dataset with m = 6 and n = 5, the

N|Perml| = 2 (z — n)! 1) total number of obtainable permutations is 126.
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Perm2 We permute the sample group labels for all sam-
ples in the data set, not just those being analysed. Suppose
we are analysing two sample groups B and D, a single
permutation is defined as the current samples with those
labels (Fig. 3). This method allows for the situation where
permutations may not contain a single sample from the
groups currently being analysed. Furthermore, there is a
risk of incorporating biological signal into the null dis-
tribution because permutations can include many or all
samples from their respective original groups (Fig. 2). The
total number of unique permutations from this method is
given by:
1 y!
N|Perm2| = - ————— (2)
2 n'n!(y — 2n)!
The total number of unique permutations that can be
obtained with our example dataset withm = 6andn =5
is 3.8e + 9.

Perm4 Similar to Perm2, Perm4 produces the null dis-
tribution using all sample groups in the data set. When
m > n, permutations are generated in two stages: group
selection followed by sample selection from those groups
(Fig. 3). Groups are selected by starting with the two
groups being analyzed followed by sampling n — 2 addi-
tional groups without replacement. Samples are selected
randomly, one from each of the previously selected sam-
ple groups. This procedure must be repeated to obtain the
second half of the permutation, with the exception that
samples found in the first half are explicitly filtered out.
The mean estimate, therefore, is not strongly influenced
by any individual groups. For simplicity, we will consider
the lower bound of the number of unique permutations,
which is given by:

1, ; (m —2)! 2
N|Perm4| =—n"n—1)"\ ——— | , m>n
2 (n—2)!'(m—n)!
3)
The total number of obtainable permutations from
Perm4 for an example case with m = 6 and n = 5 is

2.6e+7

Gene Set Z-score

We implemented all permutation methods together with
Gene Set Z-score (GSZ) [17] for evaluation. GSZ is a gene
set scoring method based on a hypergeometric enrich-
ment score weighted with the differential expression test
scores [16, 17] and has been successfully used in several
projects [18-20]. As the scoring function is a constant,
any differences in the results can be attributed to differ-
ences in the permutation methods. Based on the results
of the evaluation, we implemented Perm4 in mGSZ.
We refer to the modified version of mGSZ as mGSZm
(Table 1).
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Compared gene set analysis methods

We evaluated mGSZm together with several gene set
analysis methods from the literature: GAGE (Generally
Applicable Gene-set Enrichment) [21], CAMERA (Corre-
lation Adjusted MEan RAnk gene set test) [13], QuSAGE
(Quantitative Set Analysis of Gene Expression) [22]) and
Allez [14] (Table 1). GAGE is based on parametric gene
randomization and thus neglects gene-gene correlation.
Another major difference between GAGE and the other
methods is that GAGE is based on log fold change as gene
statistics, whereas the others are based on Moderated
t-test [23]. CAMERA is also based on parametric gene
randomization, however it corrects the errors introduced
by gene-gene correlation in a gene set by incorporating
a Variance Inflation Factor (VIF) estimated directly from
the data. QuSAGE is similar to CAMERA, except that
it associates a complete probability density function to a
gene set score instead of a P-value and does not require
the assumption of equal variance of gene level signals in
a gene set for the estimation of VIF. In Allez, the gene set
scoring function calculates the mean value of the differen-
tial expression test scores for all the genes in the analyzed
gene set followed by normalization. We also included the
two most popular sample permutation-based competitive
gene set analysis methods, mGSA and wKS. mGSA is a
sample permutation-based competitive gene set analysis
method that is similar to GSA (Gene Set Analysis) [10].
mGSA is based on Gene Set Z-score instead of max-mean
statistics. Unlike the original GSA, mGSA is applicable for
one-on-one comparison of selected groups in multi-group
gene expression data. Note that we have shown improved
performance of mGSA compared to GSA in our previous
article [16]. wKS (weighted Kolmogorov Smirnov) is our
version of gene set analysis method, GSEA [12]. In addi-
tion, we included romer [24, 25] (Rotation testing using
mean ranks), a competitive gene set analysis method
based on a linear model. The number of permutations
in permutation based methods was set to 1000 and all
the rest of the parameters in all the methods were set to
default.

Evaluation

Evaluation of gene set analysis methods is a challenge
due to a lack of ground truth and the fact that any
ranking of methods will vary between different datasets
and evaluation criteria. While the use of simulated data
is common, reliability is often questionable as it can
oversimplify complex biological phenomena. Another
approach is to evaluate gene set rankings based on biolog-
ical relevance. This approach avoids the negative aspects
of simulated data, but requires extensive literature review
and assessing the relevance of gene sets is difficult. We
address these challenges with three complementary eval-
uation approaches based on: i) data splitting, ii) detection
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Table 1 Compared competitive gene set analysis methods
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Compared methods Permutation type

Descriptions

mGSZm sample
mGSA sample
Allez parametric
wKS sample
GAGE parametric
CAMERA parametric
QuSAGE parametric
romer sample

mGSZ from R package mGSZ updated with Perm4

Gene Set Z-score based gene set analysis method similar to GSA [17]
Allez from R package allez [14]

wKS from R package mGSZ [16]

Generally applicable gene set enrichment from R package gage [21]
Correlation adjusted mean rank gene set test from R package limma [13]
Quantitative set analysis of gene expression from R package qusage [22]

Rotation testing using mean ranks from R package limma [24, 25]

of tissue specific gene sets and iii) generation of type
1 error.

Evaluation based on data splitting

Our data splitting method partitions a data set into test
and reference subsets (Fig. 4), similar to the cross valida-
tion approach used by Toronen et al. [17]. This approach
requires a data set with more than two sample groups
and a large number of replicates per group. After split-
ting, the test and reference partitions comprise 25% and
75% of the data (arrays), respectively. We generated ref-
erence gene sets by taking the union of the » most signif-
icant gene sets reported by each method (mGSZ, wkKs§,
GAGE, CAMERA, QuSAGE, romer and improved ver-
sions of GSA and Allez [16]) for the reference data. We
aimed to minimize any bias that the choice of # had
on results by repeating the above procedure for multi-
ple values of n (we used » = 3,5 and 7). In the actual
evaluation, we used the test subset to obtain a new rank-
ing of significant gene sets for each method. For the
top 50 gene sets, we kept a cumulative count of those
also found in the reference gene set. At each rank, the
average cumulative count across all values of n was cal-
culated. The entire process was repeated 100 times for
different data splits (20 in the evaluation of permuta-
tion methods). The graphs presented are averages over all
experiments.

Evaluation based on detection of tissue specific gene sets

We generated a single gene set per tissue type based
on tissue specific genes identified and verified by Song
et al. [26]. Next for each of the six gene sets (for six
tissue types), we randomly selected x% of genes where
x € (0,10, 20, 30,40, 50, 60, 70, 80, 90) and replaced them
with randomly selected genes from the remaining com-
plementary mouse genes. This way we generated 10 tissue
specific gene sets for each tissue type based on 10 differ-
ent values for x. For example, while a gene set with 0%
random genes would contain only tissue specific genes, a
gene set with 90% random genes would contain only 10%

tissue specific genes. So, in total we had 60 gene sets that
we consider “relevant gene sets” The relevant gene sets
were then mixed with randomized gene sets. The idea was
then to see which methods rank the relevant gene sets
higher than the random gene sets. Note that for each pair-
wise comparison of two tissue types, there are 20 relevant
gene sets (10 tissue specific gene sets for each tissue type).
All the possible 15 pairwise comparisons of six tissue sam-
ples were done. Methods were evaluated based on average
number of relevant gene sets reported in the top rank of
the gene set list in all the 15 pairwise comparisons. We
also evaluated the methods based on precision-recall area
under curve.

Type 1 error test

Perm4 is a modified and more controlled version of the
naive permutation method. It is important to test whether
the modification generates false positive results (type 1
error). Null gene expression data was generated by ran-
domizing the sample labels of breast cancer gene expres-
sion data. mGSZm and all other methods except Allez
were applied to the null gene expression data and the
distribution of estimated P-values was compared. Allez
was not included in this evaluation because it does not
report P-values. P-values for QUSASE were calculated
using pdf.pVal function in QuSAGE’s Bioconductor pack-
age. In principle, P-values estimated by mGSZm or similar
methods based on null gene expression data with no
true differential gene expression should follow a uniform
distribution.

Asymptotic validation of Perm4

In addition to the evaluation tests described above,
we tested the validity of Perm4 by comparing the null
distributions of gene set scores with 10000 permuta-
tions generated with Perm1 and Perm4 using the breast
cancer dataset. The groups with 33 and 23 biologi-
cal replicates were compared. Given sufficient number
of replicates, Perm1 is the most optimal permutation
method. The idea is to test if Perm4 generates results
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similar to that of Perml with an ideal dataset. We fit-
ted an Extreme Value distribution to the null distribu-
tions of each of the gene sets generated by Perml and
Perm4. The Extreme Value distribution was shown to be
suitable for modeling GSZ scores under the null hypoth-
esis (Mishra et al., 2014). The similarity between the
two permutation methods was measured with correla-
tion and mean relative error (abs(x;-x;)/abs(x;), where
#; and «x; are the parameters of the ith gene set from
Perm4 and Perml respectively) between the estimated

parameters (scale and location) across all the analyzed
gene sets.

Data sets

Gene expression data Evaluation of the methods was
based on three different multi-group gene expression
data sets; 1) Human primary cell data, 2) Breast cancer
data, and 3) Mouse tissue gene expression data (see
Additional file 1, Section 7 for details). Human primary
cell and breast cancer data were used for evaluation based
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on data splitting. Only those sample groups that have
at least 15 biological replicates, are well clustered and
have no outliers were considered. Mouse tissue data was
used for evaluation based on detection of tissue specific
gene sets.

Gene set data C2 curated gene sets from the Molecular
Signatures Database were used throughout [12, 27].

Results

Overview of the results

Table 2 summarizes the results obtained from evaluation
of the permutation methods and mGSZm. Advanced per-
mutation methods showed clearly better results compared
to the naive method, Perm1, with both datasets. mGSZm,
gene set analysis method based on advanced permutation
method, Perm4 showed the best overall result as com-
pared to other gene set analysis methods across the three
different evaluations with three different real biological
datasets.

Evaluation of permutation methods

Evaluation of the permutation methods was based on
data splitting approach with two different datasets. Perm1,
the naive permutation method was the worst perform-
ing method with both datasets (Fig. 5). Perm4 reported~
8 (average over 20 different data splits) more relevant
gene sets at rank positions 27 to 33 in breast cancer data
and 46 to 50 in primary cell data. Perm2 showed simi-
lar results, however, we prefer Perm4 to Perm2 because
Perm? is the least constrained permutation method and

Table 2 Overview of the results
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it cannot prevent biological signal leakage into the null
distribution.

Evaluation of mMGSZm

Detection of reference gene sets

mGSZm reported the maximum number of reference
gene sets in both datasets (Fig. 6). Note the inconsisten-
cies in the performance of CAMERA, QuSAGE, GAGE
and Allez in the evaluations using the two datasets. While
CAMERA is the closest competitor to mGSZm in breast
cancer data with mGSZm leading only by about one gene
set (average over 100 different data splits) at rank posi-
tions 37 to 50, it reports about two gene sets less at rank
positions 33 to 50 in primary cell data. Similarly, GAGE
and Allez reported about one gene set more than mGSZm
at rank positions 4 to 15 in primary cell data. However,
the performance of the methods dropped clearly at rest
of the rank positions in the same dataset and all the rank
positions in breast cancer dataset. While QuSAGE is the
closest competitor to mGSZm in primary cell data, it is
one of the worst performing method in case of breast can-
cer data. Overall best performance of mGSZm is clearer in
the plot of average cumulative counts of the two datasets
where mGSZm leads the second best method CAMERA
by about 2 gene sets over the rank positions 38 to 50

(Fig. 7).

Detection of tissue specific gene sets
mGSZm showed the best overall performance (Fig. 8).
Note that CAMERA, which was a close competitor to
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Perm1 showed bad
performance as compared
to the rest of the
permutation methods in
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mGSZm ranked the
maximum number of
reference gene sets in the
list of top 50 gene sets
from test data in both
datasets.

mGSZm ranked the
maximum number of
tissue specific gene sets in
the list of top 50 gene sets.

mGSZm showed slightly
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distribution. Similar results
were obtained with other
methods.
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mGSZm in other evaluations is one of the worst per-
former in this evaluation identifying about five gene sets
less than mGSZm at rank positions 20 to 27. Further, Allez
and QuSAGE, which are close competitors to mGSZm
in this evaluation performed weakly in other evaluations
(Fig. 7). For the results from individual pairwise compar-
isons, see Additional file 1, Section 8. We also evaluated
the compared methods based on precision-recall area
under curve (precision-recall AUC) for 13 of the 15 pair-
wise comparisons. The exclusion of two of the pairwise
comparisons was due to ties in p-values obtained from
mGSZm because of high biological signal. Also, romer
was not included in the precision-recall AUC based eval-
uation because the romer function in R package reports
p-values with multiple ties. Ties in p-values are com-
mon also in p-values obtained from wKS. However, we
use wKS gene set scores (instead of p-values) and include
wKS in the evaluation. Based on the evaluation, mGSZm,

mGSA, Allez, wKS and QuSAGE showed similarly supe-
rior performance over CAMERA and GAGE in 12 of the
13 pairwise comparisons (see Additional file 1, Section 8).

Generation of type 1 error

mGSZm produces a slightly left skewed, but approxi-
mately uniform distribution of P-values, showing mGSZm
to be fairly conservative in generation of type 1 error
(Fig. 9). P-value distributions for most other meth-
ods showed similiar distributions, with the exception of
QuSAGE and romer. QuSAGE is heavily left skewed and
romer is slightly right skewed.

Asymptotic validity of Perm4

Our results show that, across all the analyzed gene sets
the correlations of the estimated parameters, scale and
location were 0.99 and 0.98, respectively, and the mean
relative errors between the parameters were 0.04 and 0.07,
respectively.

Breast cancer data

Cumulative count of reference gene sets

Top 50 gene sets from test data

gene sets from test data reported by each of the compared methods

Human primary cell data
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1
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Fig. 6 mGSZm evaluation based on data splitting Reference gene sets identified by the eight compared gene set analysis methods with two different
datasets; 1) Breast cancer data, 2) Human primary cell data. Figures represent cumulative count of reference gene sets over the ranked list of top 50
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Fig. 7 mGSZm evaluation based on average of results from two
datasets. Average number of reference gene sets identified by the eight
compared gene set analysis methods with two different datasets; 1)
Breast cancer data, 2) Human primary cell data. Figures represent
average of cumulative counts of reference gene sets over the ranked
list of top 50 gene sets from test data reported by each of the
compared methods

Discussion

We presented a novel competitive gene set analysis
method based on advanced sample permutation for multi-
group gene expression data with as few as three replicates.
Our results show that the naive permutation method
commonly used in other methods should not be used
with the type of data set in question. In addition, our

[
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Fig. 8 Evaluation based on tissue specific gene sets Tissue specific
gene sets identified by the eight compared gene set analysis
methods. Figure represents average cumulative count of tissue
specific gene sets over the ranked list of top 50 gene sets reported by
each of the compared methods in 15 pairwise comparisons of six

different tissue samples
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results emphasize the importance of using a multi-faceted
evaluation approach, without which, we would be unable
to assess the relative ranking of each method.

The permutation methods considered in this work are
different from each other in the way they model the back-
ground signal of the data. Our results show that naive
sample permutation (Perml) is unreliable for the size of
data set in question and, further, that generating per-
mutations using samples drawn from the complete data
set can significantly improve results (Figs. 7, 8). Exactly
how these permutations should be generated, however,
is a deeper question than expected. Perm2, for example,
uses all sample groups, but can group highly correlated
samples and promote false negatives. Perm2 is therefore
unsuitable for gene expression data with highly corre-
lated sample groups. The proposed permutation method,
Perm4, outperforms the other methods because it can
generate sufficient number of permutations while control-
ling leakage of biological signals into the null distribution.
Perm4 can be used in any sample permutation based gene
set analysis of multi-group gene expression data irrespec-
tive of platform, i.e. microarray or RNAseq. However,
we strongly recommend at least four replicates whenever
possible.

mGSZm is based on Perm4 and Gene Set Z-score
[17]. Further, mGSZm is based on an asymptotic method
for P-value estimation instead of an empirical method
[16]. The use of asymptotic, rather than empirical,
P-values requires fewer permutations and thus speeds up
the analysis process without compromising accuracy. We
have shown in our previous article [17] that asymptotic
P-values calculated with 500 permutations are as accu-
rate as empirical P-values calculated with 100,000 per-
mutations. Thus, mGSZm has an advantage that allows
for more accurate ranking of gene sets compared to
other methods, like mGSA and wKS, that use empirical
P-values. The better performance of mGSZm compared
to the parametric methods could be because they are
based on strong statistical assumptions which are not
always met. Indeed, all the parametric methods showed
inconsistent performance across data sets and evaluation
criteria.

To understand why some methods performed inconsis-
tently between data sets, we investigated whether there
was a bias towards gene sets of a particular size or dif-
ferential gene expression signal level. We noticed that in
the breast cancer data, a large proportion (about 40%) of
reference gene sets include over 100 genes, whereas in
human primary cell data, there are fewer reference gene
sets (about 20%) with over 100 genes. The mouse tis-
sue specific gene sets contained, on average, 10 genes.
Another difference between the data sets is that separa-
tion between sample groups is weaker in breast cancer
data as compared to the other datasets. It is evident that,
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Fig. 9 Histogram of p-values. Histogram of p-values obtained from mGSZm and six other compared gene set analysis methods with null gene
expression data with no true differential gene expression

in contrast to other methods, mGSZm showed consistent
performance irrespective of these variables. With regard
to the performance of other methods, we speculate that
1) CAMERA appears to favor larger gene sets as it failed
slightly in primary data and significantly in mouse data, 2)
QuSAGE seems to prefer stronger expression signal as it
performed well with primary human cell and mouse data,
and 3) Allez performed well on the mouse data and there-
fore probably favors smaller gene sets. This highlights the
importance of using multiple data sets when comparing
different methods.

Conclusion

We present mGSZm, a method for gene set analysis of
multi-group gene expression data with as few as three
replicates. Our proposed permutation method maintains
the correlation structure of the genes and permutes sam-
ples such that leakage of biological signal into the null
distribution is prevented.

Additional file

Additional file 1: This file contains supplementary figures and detailed
descriptions of methods. (PDF 4540 Kb)
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