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Abstract

Background: With rapid advances in genome sequencing and editing technologies, systematic and quantitative
analysis of animal behavior is expected to be another key to facilitating data-driven behavioral genetics. The
nematode Caenorhabditis elegans is a model organism in this field. Several video-tracking systems are available for
automatically recording behavioral data for the nematode, but computational methods for analyzing these data are

still under development.

Results: In this study, we applied the Gaussian mixture model-based binning method to time-series postural data for
322 C elegans strains. We revealed that the occurrence patterns of the postural states and the transition patterns
among these states have a relationship as expected, and such a relationship must be taken into account to identify
strains with atypical behaviors that are different from those of wild type. Based on this observation, we identified
several strains that exhibit atypical transition patterns that cannot be fully explained by their occurrence patterns of
postural states. Surprisingly, we found that two simple factors—overall acceleration of postural movement and
elimination of inactivity periods—explained the behavioral characteristics of strains with very atypical transition
patterns; therefore, computational analysis of animal behavior must be accompanied by evaluation of the effects of
these simple factors. Finally, we found that the npr-7 and npr-3 mutants have similar behavioral patterns that were not
predictable by sequence homology, proving that our data-driven approach can reveal the functions of genes that

have not yet been characterized.

Conclusion: We propose that elimination of inactivity periods and overall acceleration of postural change speed can
explain behavioral phenotypes of strains with very atypical postural transition patterns. Our methods and results
constitute guidelines for effectively finding strains that show “truly” interesting behaviors and systematically
uncovering novel gene functions by bioimage-informatic approaches.
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Background

While recent advances in DNA sequencing technology
have greatly facilitated genomic analysis, quantitative and
reproducible analysis of animal behavior is expected to
further promote data-driven behavioral genetics [1-4].
Caenorhabditis elegans is a model organism for which
various research resources are available, including a
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high-quality genome sequence, highly curated and inte-
grated databases, and a complete neuronal wiring diagram
[5-7]. Several systems that automatically track and video-
record individual worms are already available for etho-
logical studies [8—13]. Some of these systems record not
only movement trajectories but also time-series postural
images of individual worms. Although these trajectories
and postures are not independent from each other [14],
perturbations at the molecular and cellular levels influ-
ence the latter more directly than the former.
Computational methods for analyzing C. elegans time-
series postural data are still under development. A classic
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approach is to search given datasets for predefined pos-
tural patterns or behavioral parameters; however, such an
approach suffers from a lack of objectivity or the ability
to identify novel characteristics [15]. A more systematic
approach is to use unsupervised machine learning to find
frequently appearing stretches or “behavioral motif” de
novo within time-series postures. Using this approach,
Brown et al. analyzed 7708 movies of 307 mutant strains
and detected 2223 C. elegans behavioral motifs [16]. A
feature vector for each individual worm was then cal-
culated based on the detected behavioral motifs, and
clustering of the strains using these feature vectors suc-
cessfully grouped mutant strains in which the responsible
genes have related biological functions [16]. Szigeti et al.
developed another method for finding behavioral motifs
based on spline mixture models and identified motifs
corresponding to turning or passive behaviors [17].

An alternative systematic approach for analyzing time-
series postural data is to quantify transition frequencies
between “postural states” In this approach, worm pos-
tures are clustered based on similarities between postures
and the obtained clusters are defined as postural states.
Whereas the behavioral motif approach detects atypi-
cal behaviors as continuous stretches, the postural state
approach detects those that rather reflect worms’ prompt
reaction, which might reflect their decision-making
criteria, for instance. As a pioneering work, Schwarz
et al. used K-means clustering to bin worm postures, and
observed condition-specific state transition patterns [18].
However, the factors underlying atypical worm postural
movement patterns were not sufficiently dissected, partic-
ularly because postures and transition patterns between
them should not be independent from each other.

Here, we applied the Gaussian Mixture Model (GMM)-
based binning method [19] to time-series postural data
for 322 C. elegans strains to quantify their transition fre-
quencies between postural states, and revealed that the
occurrence patterns of the postural states and the tran-
sition patterns among these states have a relationship
as expected. In addition, we discovered several strains
that exhibit atypical transition patterns that cannot be
fully explained by their occurrence patterns of postural
states. We also propose that elimination of inactivity peri-
ods where the postural change speed is nearly equal to
zero, and overall acceleration of postural change speed
can explain the behavioral phenotypes of strains with very
atypical transition patterns.

Methods

Dataset preparation

The original dataset was obtained from the C. elegans
behavioral database [20] and consisted of data from 9975
hermaphroditic individual worms of 338 strains freely
crawling on agar plate surfaces with food. The 338 strains
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comprised 21 wild-type (including N2) and 317 N2-
derived mutant strains. To concisely represent their pos-
tures, we adopted four-dimensional eigenworm vectors
[20, 21] that were pre-calculated in the original dataset.
In brief, an eigenworm vector was calculated from each
image frame of a video-recorded individual worm as fol-
lows. First, the midline of the worm body was obtained by
image processing, and 48 angles were measured at regular
intervals along the midline (Fig. 1). Second, the 48 angles
were normalized to obtain a mean value of zero to ignore
the general orientation of the body. Third, the normalized
48 values were projected onto four dimensions that were
defined by four eigenvectors explaining 92% of the overall
variability of worm postures [16, 21]. Such an eigenvec-
tor representation of animal shapes is widely accepted for
analyzing animal behavior [17, 22].

To ensure that the data were consistent, we excluded
data from any individual worm whose video length was
not between 890 and 910 seconds or whose eigenworm
vectors were missing in more than 40% of the entire
frames (typically because of video-tracking failure). Miss-
ing eigenworm vectors in the remaining dataset were
linearly interpolated using values from the two immedi-
ately flanking frames (see Additional file 1: Figure S1A
for the proportions of such “gap” frames). Because various
frame rates were used in the original dataset (Additional
file 1: Figure S1B), we downsampled all data to five frames
per second. Finally, by excluding data for any strain for
which less than five different individuals were available,
we obtained time-series eigenworm vector data for 8769
individual worms from 322 strains (20 wild-type and 302
mutant strains).

Measurement of 48 angles

v

Normalization

v

Projection onto 4D eigenworm space

X
z

y
w

Fig. 1 Measurement and eigenworm representation of worm
postures. The left panel shows a picture of a wild-type N2 worm; its
contour and midline are highlighted. This picture was taken from the
C. elegans behavioral database [20]. In total, 48 angles were measured
at regular intervals along the midline and projected onto the
four-dimensional eigenworm space after normalization
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Probabilistic binning of C. elegans postures into postural
states

To represent any eigenworm vector by discrete postural
states in a probabilistic manner, we used a GMM-based
binning method [19]. This method represents each
four-dimensional eigenworm vector by a probabilistic
mixture of multiple Gaussian distributions. First, because
the total number of image frames in the entire dataset
was too large, we randomly sampled 1% of the frames
(i.e., 385,790 frames) for parameter estimation. Second,
we plotted the eigenworm vectors of all frames and fit
the four-dimensional GMM to the pooled distribution
consisting of 385,790 data points. The GMM parame-
ters were estimated by the factorized asymptotic Bayes
(FAB) algorithm [23]. The FAB algorithm is similar to
the conventional expectation-maximization algorithm
for fitting GMM [19] but allows automatic estimation of
the numbers of mixture components based on factorized
information criterion (FIC) [23]. Unlike conventional
information criteria such as Akaike information cri-
terion and Bayesian information criterion, FIC can be
applied to the inference of mixture models with the-
oretical justification. The FAB algorithm eliminates
components if their mixture ratios are smaller than a
given threshold € after the E-step that is modified from
that of the conventional expectation-maximization algo-
rithm. The source codes of FAB-GMM algorithm are
available at https://github.com/fukunagatsu/FAB-GMM.
We set € = 0.01,0.005, or 0.001 using initial parameter
sets estimated by the K-means++ algorithm [24] with
K = 100,200, or 1000, respectively (These K values are
the maximum numbers of states for each ¢). Third, after
the convergence of the FAB algorithm, each Gaussian
distribution component was regarded as a postural state.
We obtained 44, 95, and 459 postural states when €
was 0.01, 0.005, and 0.001, respectively. Finally, for each
frame (including the remaining 99%), the responsibility
of each Gaussian distribution component for explaining
its eigenworm vector was calculated using the estimated
parameters. As a result, a posture of any individual i
at any frame f was represented by a K-dimensional
nonnegative vector r;jy = (rl'fyl,rif,z,...,rif,]<)T,
where K is the number of postural states, each ele-
ment represents the responsibility of each state, and
Y Tifk = L.

For comparison, we also adopted the K-means cluster-
ing, which not probabilistically but deterministically bins
any eigenworm vector to a single state. First, the same
set of 1% frames were selected and their eigenworm vec-
tors were plotted to the four-dimensional space in the
same manner. Second, K-means clustering was applied
to the pooled distribution. The model parameters were
estimated by the Lloyd algorithm [25] with initial param-
eters estimated by K-means++ algorithm [24], where K
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was set to 90 (a parameter used in a previous study [18])
or 44, 95, or 459 (parameters estimated by the GMM-
based method earlier). Third, after the convergence of the
Lloyd algorithm, a centroid of each cluster was regarded
as a postural state. Finally, for each frame (including the
remaining 99%), its eigenworm vector was binned to the
closest postural state. Note that, any worm posture was
represented by a vector r;s as in the case of the GMM-
based method, but it was an integer vector (i.e., only one
of its elements was 1 and the others were 0).

Evaluation of binning methods

In this work, we assumed that the postures of individual
worms belonging to the same strain should be statisti-
cally more similar than the postures of worms belonging
to different strains. Thus, if worm postures are repre-
sented more properly by the postural states, the rela-
tive state occurrence frequencies of an individual i, r; =
1% Z};l r;r, where F is the number of frames, are expected
to be more similar between individuals of the same strain
than those of different strains. The GMM-based method
and K-means clustering with three and four different
parameters, respectively, were compared based on this
rationale.

Let S; be a set of individuals that belong to the same
strain as i except i, and S; be a set of randomly selected
individuals such that S; N'S; = @,i ¢ S;, and |S;| = |S;|,
where |S| represents the number of individuals belonging
to S. For every individual i, we calculated the mean diver-
gences of the relative state occurrence frequencies against
S; and S; as follows:

1
Aintrali = m Z d(r;, I'j)
" jes;

Ainterti = ; Zd(ri; I‘]‘)
S

where d is the Jensen-Shannon divergence, which is a
measure of divergence between two probability distribu-
tions [26]. Note that r; is a normalized vector and can
be regarded as a probability distribution. Then, for each
strain, we tested the hypothesis that Ajnr,r; of all individ-
uals that belong to that strain are statistically smaller than
Aintert; of them by a one-sided Wilcoxon-Mann-Whitney
test. The test was repeated against all strains, and the
Benjamini-Hochberg approach was used to control the
false-discovery rates of multiple testing (¢ < 0.05) [27].

Discovery of strains showing wild-type N2-like postures
but atypical transition patterns

For each individual i, the relative transition frequencies
between postural states were represented by a K x K
matrix T; whose element representing the transition from
a state k to [ is
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F-1

Tigi = -1 Z Tif kVif+1,
f=1
For each strain S, the relative state occurrence frequency
r; and relative state transition frequency T; were averaged
for its individuals to obtain rg and T, respectively. With
the exception of the wild-type N2 strain, we calculated the
divergences of each strain from wild-type N2 as follows:

Anars = d(rs, rN2)
AN2Ts = d(Ts, Tnz)

where d is the Jensen-Shannon divergence. Note that T;
can also be regarded as a probability distribution. For
example, a large Any7Ts indicates that strain S has a
state transition pattern that is very different from that of
wild-type N2.

Next, we conducted linear regression to investigate rela-
tionships between a dependent variable An2Ts and an
explanatory variable Anars. Then, we detected strains
showing atypical transition patterns using standardized
residuals (Z-values) from the estimated linear model. To
control the false-discovery rates of multiple testing, we
used the Benjamini-Hochberg approach (g < 0.05).

Analysis of factors underlying atypical state transition
patterns

To reveal factors underlying the atypical transition pat-
terns, we created artificial N2 strains iz silico by modifying
the eigenworm data for the wild-type N2 strain and deter-
mined if these artificial N2 strains reproduced the atypical
state transition frequencies of strains that showed atyp-
ical transition patterns. Specifically, we focused on the
effects of eliminating inactivity periods and accelerating
the average postural change speed. To remove inactiv-
ity periods from wild-type N2, we excluded any frame
for which the Euclidean distance of the eigenworm vec-
tors between that and the previous frame was smaller
than a threshold «. To change the postural change speed
as a whole, we removed frames at regular intervals to
simulate movement of B-times accelerated wild-type N2.
When 8 = 1.5, for every three consecutive frames, the
eigenworm vectors of the second and third frames were
replaced with the averaged vector. When g = 2, every sec-
ond frame was removed. Because all strains that showed
atypical transition patterns were faster than wild-type N2
on average, only acceleration was considered here (i.e.,
deceleration was not considered here). For each strain S,
the parameters o and 8 were selected to minimize

Deigenworm speed = / |[Fan2(x) — Fs(x)|dx
x

where F,np and Fg are the cumulative distributions of the
instantaneous postural change speed (Euclidean distance
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between eigenworm vectors of adjacent frames) of the
artificial N2 strain and S, respectively.

Then, we calculated ron2 and Tyn2, which are the rel-
ative state occurrence frequency and relative state tran-
sition frequency, respectively, of the artificial N2 strain.
To determine whether the artificial N2 strain reproduced
the behavioral characteristics of the strain S, A,nors and
Aana Ts. In addition, we calculated the standardized resid-
uals of Aanors and AanaT's based on the previously pre-
dicted linear model. We called this standardized residual
Zg.

Results

Evaluation of binning methods and parameters

The postures of each of the 8769 individual worms belong-
ing to 322 strains were represented by time-series four-
dimensional eigenworm vectors. Every eigenworm vector
was binned to postural states by the GMM-based method
and K-means clustering with three and four parame-
ters, respectively. Then, we determined if the relative
state occurrence frequencies were more similar between
worms of the same strain than between worms of different
strains. The number of strains for which the null hypoth-
esis of no difference with Benjamini-Hochberg’s g < 0.05
was rejected is shown in Table 1. Overall, the GMM-based
method detected greater numbers of such strains than K-
means clustering, indicating that less postural information
was lost during binning in the former than in the latter.
Although the parameter selection did not have a strong
impact on the results, K = 95 and ¢ = 0.005 were the best
parameters for the K-means clustering and GMM-based
methods, respectively. Among the 213 strains that exhib-
ited significance by K-means-clustering with K = 95,
only ten were missed by the GMM-based method with
€ = 0.005 (Additional file 1: Figure S2). Therefore, the
GMM-based method with ¢ = 0.005 was adopted for
postural state binning in the following analyses.

Table 1 Evaluation of binning methods and parameters

Binning method Parameter Number of strains
K-means K =44 207

K =90 203

K =95 213

K =459 205
GMM € =001 238

€ = 0.005 242

€ = 0.001 229

Shown are the numbers of strains whose relative state occurrence frequencies were
significantly more similar between those of the same strain than those of different
strains (one-sided Wilcoxon-Mann-Whitney test with the Benjamini-Hochberg
procedure (g < 0.05)). The bold values are the highest scores
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Strong relationships between postural state occurrences
and transitions
After the binning of eigenworm vectors to the postural
states, the relative state occurrence frequency rs and rel-
ative state transition frequency Ts of each strain S were
calculated. Figure 2 shows their divergences from those
of the wild-type N2 strain, where large Anors and Ana Ts
indicate that strain S displays postures and transition pat-
terns that are very different from those of wild-type N2.
We clearly observed a general trend of a positive lin-
ear correlation between the two divergence values (The
adjusted R-squared value was 0.96). This likely reflected
the fact that the use of different postures naturally leads to
the use of different transition patterns. Note that Any T's —
AnNars > 0 (the proof is provided in the Additional file 1).
For example, three mutant strains, wunc-103, unc-
1(e1598), and unc-77(e625), exhibited the largest diver-
gences of both values from wild-type N2 (Fig. 2). The
unc-103 gene encodes an ether-a-go-go-related K+ chan-
nel homolog, and the strain in which this gene has a
gain-of-function mutation has been reported to show
extremely lethargic behavior [28]. The unc-1(e1598) strain
is a mutant of a stomatin-like-protein gene and has also
been reported to show very slow behavior [29]. The large
deviations of the postural state occurrence and transi-
tion frequencies of these two mutant strains likely reflect
their exceptionally inactive phenotypes. The unc-77(e625)
strain features a gain-of-function mutation of a subunit
gene of a voltage-insensitive cation leak channel and
exhibits coiled postures [29]. To reveal what postures
are specific in this strain, we calculated the fold change
between ry,.—77e625)x and rygi for each postural state

unc-103
= unc-1(e1598) 3
< unc-77(e625) o
«
o
o
-]
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3 o :
=z © egl-30 »
4 , [ED3017 ® o2
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o |eat-16 °. ¥
o lon-2
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=
= L T T ’ -
0.0 01 0.2 0.3 0.4
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Fig. 2 Divergences of postural state occurrence and transition
frequencies of 321 non wild-type N2 strains. The x- and y-axis

represent Anars and Ay Ts, respectively
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over-represented postures under-represented postures
in unc-77(e625) in unc-77(e625)
Fold change Fold change
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Fig. 3 Top five over-represented and under-represented postures in
unc-77(e625) Each posture was reconstructed from the mean value of
the corresponding postural states. Red and blue colors represent
over-represented and under-represented postures in unc-77(e625),
respectively

k and detected over-represented and under-represented
postures in unc-77(e625) (Fig. 3). These results showed
that the wunc-77(e625) strain tends to take more “C-
shaped” but less “S-shaped” postures compared to the
wild-type N2 strain.

Identification of strains exhibiting atypical transition
patterns
As shown in Fig. 2, although most strains strongly fol-
lowed the positive linear correlation trend, several strains
did not. We identified seven strains exhibiting atypical
transition patterns that were significantly deviated from
expectation (g < 0.05, left side of Fig. 2). Only these seven
strains showed Z-values larger than 3.0 (Table 2, Fig. 4).
The two strains with the largest Z-values, npr-1 and npr-
3, are mutants of neuropeptide receptor (npr) genes. As

Table 2 Strains exhibiting wild-type N2-like postures but atypical
transition patterns

Strain ANoFs AnaTs Z-value
npr-1 0.0299 0.1404 8.192
npr-3 0.0333 0.1249 6.423
egl-30 0.0376 0.1192 5436
eat-16 0.0149 0.0831 4.872
lon-2 0.0481 0.1150 3.876
ED3017 0.0514 0.1167 3632
Ju258 0.0453 0.1033 3.163
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Fig. 4 Histogram of Z-values of 321 non wild-type N2 strains

it is known that NPR-1 is expressed in ventral nerve cord
motor neuron, it is reasonable that these neuropeptide
receptor genes have roles in controlling postural move-
ment [30, 31]. However, notably, other npr mutant strains
did not show large Z-values, even though npr-1 and npr-3
are neither the closest paralogs in the npr gene family nor
highly identical in sequence (amino-acid sequence iden-
tity% = 25.5) (Additional file 1: Figure S3). Because rs and
Ts of these two strains were most similar to each other
among all strains (i.e., the differences of rs and Ts between
the two strains were the smallest among every strain pair
that contains either of the npr-1 and npr-3 strains), the
npr-1 and npr-3 genes were suggested to have closely
related functions at the behavioral level regardless of their
different evolutionary origins at the sequence level.
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The egl-30 and eat-16 genes encode components of het-
erotrimeric G-protein signaling pathways. Loss of EGL-30
function depresses the behavioral activity of C. elegans,
whereas EAT-16 negatively regulates EGL-30 [32, 33].
Because the egl-30 and eat-16 mutant strains in this study
have gain- (ep27I) and loss-of-function alleles (sa609),
respectively [33, 34], their similar, active behavioral phe-
notypes are consistent with previous reports. Indeed, rg
and Ts from the egl-30 and eat-16 strains were most
similar to each other.

lon-2 encodes a glypican-family protein of heparan sul-
fate proteoglycans, and its mutant was reported to have
a longer body than that of wild-type N2 [35]. A previous
study reported that Jon-2 was one of the worst-fit mutants
in the eigenworm representation [16]. Although it is not
clear why Anors of lon-2 is not very large, the poor fit-
ting of the eigenworm representation may have resulted in
atypical transition patterns of this strain.

ED3017 and JU258 are non-N2 wild-type strains. C. ele-
gans population genomics studies revealed that N2 strains
acquired gain-of-function mutations in npr-1 during labo-
ratory domestication [36, 37], and ED3017 and JU258 have
a lower activity allele in npr-1. The large Z-values of these
two strains may be caused by this low npr-1 activity.

Analysis of factors underlying atypical state transition
patterns

Figure 5a presents the distributions of the instantaneous
postural change speed of wild-type N2 and the six strains
that exhibited atypical transition patterns. Note that lon-2
was excluded here because the earlier stage of eigenworm
representation could be problematic for this strain. Over-
all, all six strains exhibited faster postural change speeds
than those of wild-type N2. Only wild-type N2 had a
mode of the postural change speed at approximately 0.1
(Fig. 5b), at which four of the other strains also had small

Instantaneous postural change speed

artificial N2 strain whose postural change speed resembles that of npr-1

Instantaneous postural change speed
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Fig. 5 Distributions of instantaneous speed of postural change. a The distributions of wild-type N2, npr-1, npr-3, egl-30, eat-16, ED3017, and JU258.
The y-axis represents density. b A histogram that magnifies around the mode of the wild-type N2 distribution. € The distributions of npr-T and the
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“shoulders” (Fig. 5a). Such a small speed value indicates
that the individuals are under inactivity periods, which
may correspond to quiescence worm behavior [38]. We
also observed several strains that retain this mode of pos-
tural change speed at approximately 0.1 but have different
distribution shapes from that of wild-type N2 (e.g., unc-43
and C52B9.11; Additional file 1: Figure S4).

On the basis of these observations, we investigated
whether artificial elimination of the inactivity periods
and overall acceleration of postural change speed from
wild-type N2 could reproduce the state transition pat-
terns of these six strains without significantly altering
the state occurrence frequencies. In time-series sequence
representations of postural states, inactivity periods are
represented by stretches of identical or similar state(s).
Because inactivity periods likely do not occur only at
specific postural states (the Jensen-Shannon divergence
of relative state occurrence frequencies between frames
whose posture change speed was less than and greater
than 0.3 was 0.0161 for wild-type N2), the elimination of
inactivity periods would change the state transition fre-
quencies while modestly preserving the state occurrence
frequencies. For the acceleration of postural change speed,
for example, two-fold acceleration of a state sequence
AABBCCAA... into ABCA... as a whole will also change
the state transition frequencies by preserving the state
occurrence frequencies.

Artificial N2 strain data were created i silico by remov-
ing inactivity periods with threshold « and accelerating
B-fold as a whole from the time-series eigenworm data for
wild-type N2. For each of the six strains, we chose the best
parameters from « = 0.3,0.4,...,1.0 and 8 = 1.5,2.0
by examining whether the postural change speed distribu-
tions of the artificial N2 strains fit those of each of the six
strains (Fig. 5¢, Additional file 1: Figure S5, and Additional
file 1: Table S1). Finally, we investigated whether the arti-
ficial N2 strains reproduced not only the distributions of
the instantaneous postural change speed but also the pos-
tural state occurrence and transition frequencies of the six
strains. All Z, values became substantially smaller than
the original Z-values, and these values decreased to the
level that was not significantly different from expectation
(Table 3). In other words, the atypical state transition fre-
quencies of these four mutant strains can be explained
almost entirely by the lack of inactivity periods and overall
acceleration of the postural change speed.

Discussion

In this study, we used the GMM-based method for prob-
abilistically binning worm postures into a finite number
of postural states and revealed an apparent relationship
between the postures and transition patterns of C. elegans
strains. The superior binning performance of the GMM-
based method reflects the fact that time-series postures
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Table 3 Reproduction of atypical state transition frequencies by
artificially modified N2

Strain AanoFs Ao Ts Za Original Z-value
npr-1 0.0135 0.0314 0.484 8.192
npr-3 0.0180 0.0426 0.953 6423
egl-30 0.0235 0.0494 0.921 5436
eat-16 0.0147 0.0307 0.285 4.872
ED3017 0.0351 0.0695 1.360 3.632
Ju258 0.0290 0.0577 1.021 3.163

of any individual are distributed along a single trajec-
tory in the four-dimensional eigenworm space because
the postures of continuous frames should be similar to
each other. Thus, a worm must adopt intermediate pos-
tures while changing its posture from one postural state
to another. Deterministic binning of such intermediate
postures inevitably loses information or introduces noise
to the representation of worm behavior. The case of the
lon-2 strain in this study also indicates the importance
of preserving information during the computational anal-
ysis of animal behavior, although the difficulty in this
case occurred during the eigenworm representation. The
strong relationship between the postural state occurrence
and transition frequencies offers two important sugges-
tions for worm postural movement analysis: a significant
part of postural movement variations can be evaluated
solely by examining postures without temporal informa-
tion, and the effects of using different postures must be
taken into account in postural movement analysis.
Several strains that exhibited atypical transition pat-
terns among postural states were identified. Surprisingly,
for the six strains that showed the most atypical postural
movement, merely eliminating the inactivity periods and
accelerating the postural change speed as a whole nearly
reproduced their atypical transition patterns. While quan-
tification of the transition frequencies between postural
states is a powerful approach for computationally analyz-
ing animal behavior, our results demonstrate that even
very atypical state transition patterns can result from
simple factors. Analyses of inactivity periods and pos-
tural change speeds both require consideration of time
duration; the compression of state time duration abol-
ishes their effects in the analysis [18]. To effectively detect
strains that show truly interesting behavior, e.g., strains
whose neural circuits encode special decision-making cri-
teria, computational analyses of animal behavior must be
accompanied by evaluation of the effects of more “triv-
ial” factors such as overall change in speed (of course, we
note that these trivial factors themselves would also pro-
vide many insights into worm behavior). The C. elegans
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behavioral database also contains various behavioral data
such as dorsal/ventral orientations, velocities, and tra-
jectories during worm movement. Using these addi-
tional datasets, we may dissect factors that underlie
interesting phenotypes more deeply, for example, effects
of dorsal/ventral biases in postural change patterns
and/or relationships between postural change patterns
and movement trajectories.

Our analysis also revealed that the mpr-1 and npr-3
genes have closely related functions that were unpre-
dictable by sequence homology, the most basic principle
in this genomic era. Many studies have conducted func-
tional analyses of npr-1 [31, 39-41], but few studies have
focused on npr-3 [42]. Therefore, we envision that existing
knowledge about npr-1 will substantially accelerate future
functional analyses of npr-3 based on the present result.

In this study, divergence of the state occurrence and
transition frequencies from the wild-type N2 strain was
examined. Although this would make sense for the anal-
ysis of N2-derived mutant strains, comparison among
different wild-type strains can also be done by selecting
another strain as a reference. We expect that the linear
correlation trend between the state occurrence and transi-
tion frequencies will be recovered regardless of the refer-
ence strain choice; however, for example, it would also be
of interest to select strains that have specific evolutionary
context or strains that show characteristic behavior (such
as ED3017 or JU258).

Conclusions

Although more than a decade has passed since the
genomes of many model organisms were sequenced, sig-
nificant numbers of genes remain functionally uncharac-
terized. Systematically deciphering their functions beyond
straightforward sequence homology analysis is one of the
most important goals in computational biology today,
where an advantage of bioimage informatics for func-
tional analysis is the ability of this method to directly
evaluate phenotypes [43—45]. Finally, it should be noted
that genome-editing technologies are enabling rapid con-
struction of genetically engineered animal strains [46].
Bioimage-informatic analysis of their behaviors will, for
example, contribute to the identification of novel genes
responsible for neurological disease. We emphasize that
further development of computational methods and accu-
mulation of technical knowledge will be critical to pro-
mote this emerging field.
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