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Abstract

Background: A large share of agriculturally and horticulturally important plant species are polyploid. Linkage maps
are used to locate associations between genes and traits by breeders and geneticists. Linkage map creation for
polyploid species is not supported by standard tools. We want to overcome this limitation and validate our results
with simulation studies.

Results: We developed PERGOLA, a deterministic and heuristic method that addresses this problem. We show that it
creates correct linkage groups, marker orders and distances for simulated and real datasets. We compare it to existing
tools and demonstrate that it overcomes limitations in ploidy and outperforms them in computational time and
mapping accuracy. We represent linkage maps as dendrograms and show that this has advantages in the comparison
of different maps.

Conclusions: PERGOLA can be used successfully to calculate linkage maps for diploid and polyploid species and
outperforms existing tools.
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Background
Polyploidy describes the condition of having more than
two chromosome sets and is common in flowering
plants. A large share of agriculturally and horticultur-
ally important plant species are polyploid. Among them
are wheat and sugar cane, which are the most planted
(∼ 219, 046, 706 ha, 2013) and most fecund (∼ 709, 350
Hg/ha, 2013) crops, respectively [1]. In contrast to their
importance, the research and tool-set for genetics in poly-
ploids is underdeveloped. Many bioinformatics tools have
been developed for diploids, but cannot be applied to
polyploids (e.g. genotype calling).
Linkage mapping describes the process of calculating

the genetic relation between markers. The general con-
cept is used for decades and established in the fields
of plant and animal breeding. During meiosis recom-
binations occur along the chromosomes. Investigating
these provides information about the genetic distances of
markers (e.g. SNPs). Comparing recombinations between
multiple offspring in a mapping population (e.g. F2 or
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backcross) allows to calculate similarities between mark-
ers. The more similarly two markers co-segregate the
higher the linkage is between them and the more likely
it is that they are located closely together [2]. Groups
of linked markers can be clustered into so called linkage
groups, which ideally represent the individual chromo-
somes. Available linkage mapping tools for polyploids
are limited to simplex and duplex markers [3–5]. Con-
sequently, they cannot be applied to state-of-art datasets
(i.e. genotyping microarray or genotyping by sequenc-
ing (GBS) data). A linkage map can be used to detect
quantitative trait loci (QTL).
We developed PERGOLA, a linkage mapping tool

for polyploids implemented as R package (https://cran.
r-project.org/package=pergola) [6]. We demonstrate its
application to simulated and real data sets of varying
ploidy types and levels. The results for simulated data are
deterministic and produce the correct linkage map. We
further validate this with systematic simulations. Appli-
cation to real data sets and comparison to three existing
tools shows the advantages of our method. The transfor-
mation of linkage maps into dendrograms allowed us to
compare the results visually and computationally.
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PERGOLA is much faster than existing mapping tools
and therefore also provides an alternative for linkage map-
ping in diploids.

Methods
Data
We applied PERGOLA to simulated and real datasets of
varying ploidy levels. We simulated a hexaploid F2 popu-
lation with 100 offspring with PedigreeSim [7]. The input
linkage map was designed similar to the chromosomal
characteristics of rose, a polyploid species for which a
linkage map is available. This map consists of seven link-
age groups with lengths of 75, 110, 85, 100, 110, 95 and
80cM [8]. We simulated the dataset with randomly dis-
tributed markers. We randomized the order of markers
and alleles for each sample-marker pair to remove any
prior knowledge that is not available for a real dataset. We
systematically changed 0, 0.1, 0.2 and 0.3 of the genotypes
to both missing and wrong genotypes (e.g. AAATTT →
AAAATT). Each of the 16 configurations was repeated
100 times.
The allotetraploid data set was obtained from a peanut

experiment with 89 offspring [9]. The population’s parents
are doubled haploid, thus the offspring behave similar to
diploids. The dataset consists of 459 markers organized
in ten linkage groups. 3,101 of the 40,851 genotypes are
missing. The autotetraploid data set consists of 156 sam-
ples of theMSL603 potato population [10]. For our linkage
map we used a subset of markers where both parents were
heterozygous (AABB).

Linkage mapping
Similarity of genotypes was used to predict recombination
frequencies and linkage between markers. This informa-
tion was then used to estimate linkage maps. Linkage
mapping was divided into the steps grouping, ordering,
and spacing. The former two are visualized in Fig. 1.

Recombination
Genetic recombination describes the exchange of DNA
between two chromosomes during meiosis. The recom-
bination frequency θ of two markers (e.g. SNPs) is the
frequency of one crossover between them. The concept
of linkage mapping differs for polyploids because the cal-
culation of recombination frequencies is more complex
than for diploids [11]. In the past there have been multi-
ple approaches to this problem [12–14]. All calculate the
recombination frequency exactly, but to our knowledge
none of them has resulted in a tool. We, on the contrary,
estimate the pairwise recombination frequency θ between
two markersm and n of ploidy p with

θ̂m,n = min(Am,n,Bm,n)

Am,n + Bm,n
(1)

Fig. 1 (See legend on next page.)
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(See figure on previous page.)
Fig. 1 Ordering of recombination matrix. The three stages of ordering
(a, b, c) visualized with the pairwise recombination frequency matrix.
Each row and column represents one marker. Dark and light shades of
grey indicate low and high recombination frequencies, respectively.
a) The markers are in random order. The diagonal is dark because the
recombination frequency of a matrix with itself is zero. b) The markers
are ordered according to their linkage groups. Seven separated
rectangles are formed and easy to distinguish. c) The markers are
ordered within each linkage group. Most of the low values moved to
the diagonal

where A and B are sums of recombination events for
the two possible allelic configurations defined as Am,n =∑

i |mi − ni| and Bm,n = ∑
i |mi − p + ni|. mi and ni are

the allele counts for individual i for each pair of mark-
ers m and n. For instance the allele counts at tetraploid
loci AAAA, AABB and ABBB would be 4,2 and 1, respec-
tively. The two different allelic configurations account for
the unknown parental origin of the alleles. Two markers
m = AAAA (4) and n = AAAT (3) indicate Am,n = 1 and
Bm,n = 3 recombination events and θ̂ = 1

4 in this example.
Consequently, θ̂ never exceeds 0.5, which is a requirement
for recombination frequencies in linkage mapping [15].
Our heuristic approach is fast and ignores some bio-

logical details (e.g. double reduction) [16]. PERGOLA can
make use of large numbers of both markers and sam-
ples, provided in modern high throughput datasets. High
marker density results in long chains of markers in link-
age disequilibrium. Consequently multiple recombination
events between two neighboring markers in our map-
ping populations become very rare and can be ignored.
The large number of samples provides a high resolution
of recombinations. Accordingly we can even distinguish
between markers with very high linkage. Table 1 shows
the minimal number of recombinations between pairs of
markers.
The heuristic calculation of recombination frequen-

cies overestimates linkage because it always assumes the
lowest possible number of recombinations. This is not
necessarily the actual number of recombination events.

Table 1 Observable numbers of recombination events between
two biallelic tetraploid markers

AAAA AAAB AABB ABBB BBBB

AAAA 0 1 2 3 4

AAAB 1 0 1 2 3

AABB 2 1 0 1 2

ABBB 3 2 1 0 1

BBBB 4 3 2 1 0

A and B are the major and minor alleles, respectively. Higher numbers of
recombination are possible due to double crossovers (i.e. AAAA /AAAA could be 2
or 4), but ignored by the heuristic

For instance AABB/AABB can have 0, 2, 4 or even more
recombinations due to double crossovers, but we always
approximate 0 in that case. If two markers are closely
linked we assume no recombination and the approxima-
tion is correct. For distant markers the genotypes are dif-
ferent for a large proportion of the population by chance
and their θ̂ will be larger although we assume no recom-
bination for some individuals. The increased number of
genotypes in polyploids compared to diploids provide a
higher resolution of recombinations and improves the
heuristic approach.

Groupingmarkers
A linkage group is a subset of co-segregating markers.
Ideally each linkage group represents one chromosome,
but that cannot always be achieved [17]. Markers with
a recombination frequency θ̂ below a certain threshold
are grouped. The threshold depends on the dataset and
should be adjustedmanually. PERGOLA groups themark-
ers based on hierarchical clustering with single linkage
distance [18]. Single linkage ensures that markers with
the lowest recombination frequency end up in the same
group and are not affected by markers on the other end of
the chromosome, which would be the case for complete
or average linkage. The approximated recombination fre-
quencies are used as distances. The default values might
not be suitable for all species or data sets. Thus, the result
of the clustering should be manually inspected. Datasets
with a low number of samples can result in an overes-
timated count of linkage groups. Some of these might
contain a very low amount of markers and should be fil-
tered out. In our implementation of PERGOLA the default
filter threshold is 0.05. Hence, each linkage group should
contain at least 5 percent of the markers. It needs to be
decreased if the chromosome number is larger than 10
or if the markers are not distributed evenly. We recom-
mend to visualize the data in form of a dendrogram as well
as a heatmap. Dendrograms provide information about
the distances between the linkage groups. Large differ-
ences in height indicate a good resolution. If branches of
high height have a single leaf they should be filtered out.
The heatmap visualization supports the comparison of the
linkage groups’ sizes. Each linkage group is represented by
a rectangle. The sharper the edges of the rectangle and the
less recombination is indicated outside of them the better
is the grouping (compare Fig. 1).

Marker ordering
PERGOLA applies the optimal leaf ordering (OLO) algo-
rithm to determine the marker order within each linkage
group [19]. First, one dendrogram is calculated for each
group, based on the estimated recombination frequencies
θ̂ by using a single-linkage hierarchical clustering. Mark-
ers are organized as leafs of the dendrogram and branches
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represent the relationships between them. Second, OLO
optimizes the ordering of the dendrogram’s leafs without
changing the hierarchical clustering by recursively calcu-
lating the optimal subtree orientation of the n− 1 internal
nodes. The decision whether a node is flipped or not is
based on the best global ordering. Each tree has 2n−1 pos-
sible orderings where n is the number of leafs. OLO finds
an order that minimizes the sum of adjacent recombina-
tion frequencies (SARF) with a worst-case complexity of
O(n4) [19]. Assuming that SNPs have the ordering s =
(1, 2, 3, ..., n), the SARF criterion is defined as

SARF =
n−1∑

i=1
θ̂aiai+1 (2)

where θ̂aiai+1 is the estimated recombination frequency
between a SNP ai and its adjacent SNP ai+1 [20]. The
subscripts i and i + 1 identify the SNPs in order s. OLO
includes an early termination step, which avoids unneces-
sary calculations, if the result cannot be improved. That
usually reduces the runtime, but the worst case remains
unchanged.
Given high marker density datasets the marker order

according to the SARF criterion is not always unique.Mul-
tiple close markers or single distant markers can result in
varying linkage maps with the same SARF value. Subse-
quently the same input leads to different results, which
is the definition of a non-deterministic algorithm. In
these cases we stepwise extend the SARF criterion to
neighboring markers until the ordering is resolved unam-
biguously. For real-world datasets our extension leads to
unique results, but theoretically it is possible to construct
worse-case scenarios, where only ambiguous orders can
be found. This size of the neighborhood l is indicated as
subscripted number:

SARFl =
l∑

k=1

n−l∑

i=1
θ̂aiai+k (3)

where θ̂aiai+k is the estimated recombination frequency as
described for Eq. 2. We identified two cases where the
extension of the SARF criterion is required to obtain a
deterministic solution.

• Two markers have equal distances to their neighbors,
but a smaller distance between each other. These can
be swapped without changing the SARF value
(Markers C and D in Table 2).

• A marker can be placed at both ends of a linkage
group. Its similarity is high enough to be in the
cluster, but it is an outlier within the linkage group.
Therefore, it is placed at one of the edges.

An example is provided in Table 2. The orders
s1 = (A,B,C,D,E, F), s2 = (A,B,D,C,E, F) and

Table 2 Pairwise distance between the six markers A-F

A B C D E

B 2

C 4 4

D 6 4 2

E 8 7 4 4

F 12 10 7 5 3

The bold values indicate equal distances to neighboring markers and thus,
ambiguous marker orders. The underlined values are taken into account in the
ordering step of PERGOLA to obtain a deterministic result

s3 = (B,A,C,D,E, F) have the same SARF1 value of 15.
Extending the neighborhood n to 2 leads to SARF2(s1) =
32 , SARF2(s2) = 36 and SARF2(s3) = 34. Thus, s1 is the
best order and s2 and s3 can be discarded.
The determinism nature of ourmethod refers to the out-

come of the marker ordering step. The general process of
linkage mapping is still a stochastic approximation of the
real linkage based on an SNP markers.
Marker spacing
For spacing we applied the Haldane mapping function
[21] to the recombination frequencies. Our implementa-
tion includes the Kosambi and Carter-Falconer mapping
functions as alternatives.

Comparison
We compare PERGOLAwith three other linkage mapping
tools:

• JoinMap® 4.1 by Kyazma® B.V., Wageningen,
Netherlands [22] is one of the most popular linkage
mapping tools [18].

• MapMaker Macintosh version 2.0 [23] was used by
the authors of the peanut dataset [9].

• R/qtl version 1.33-7 is an R package that supports
linkage mapping [24].

Further we recalculate the maps of hexaploid simu-
lated data and autotetraploid potato data. In addition to
visual comparison we applied two computational corre-
lation measurements. Our first method to compare two
dendrograms is the Goodman-Kruskal-gamma index [25].
It calculates the tree similarity by rank comparison of all
n2 pairs of markers. The second method is cophenetic
correlation [26]. It measures the similarity of pairwise dis-
tances between all markers. Both correlation measures
lie between -1 and 1, indicating negative and positive
correlation, respectively.

Results and discussion
Linkage maps of simulated data
We applied PERGOLA to simulated hexaploid datasets.
First, the datasets were randomized to remove any prior
information (e.g. haplotypes) that is not available for a real
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dataset. Second, we calculated the pairwise recombina-
tion frequencies for all markers. An example is visualized
in Fig. 1. The randomized order of the markers is replaced
by a hierarchical clustering order based on the recombi-
nation frequencies. The rectangles in the heatmap have
sharp edges and suggest seven linkage groups. This is
consistent with the seven chromosomes in the linkage
map that we used to simulated the data. In the next step,
PERGOLA orders the markers within the seven linkage
group unambiguously. We calculate the spacing between
markers based on the recombination frequencies and thus
obtain our final linkage map. This map and the initial
input map of PedigreeSim are transformed into den-
drograms to make them comparable. Next, we calculate
the Goodman-Kruskal index and cophenetic correlation
values. This is repeated 100 times for each simulation
parameter combination. The Goodman-Kruskal correla-
tion values are shown in Fig. 2. For error free input data
the linkage maps are equal independent of missing val-
ues. The higher the error rate, the more impact has the
proportion of missing values. In general, the values are
close to one indicating good linkage maps. The cophe-
netic correlation results are shown in the Additional file
1. Again the values strongly correlate with the propor-
tions of missing and erroneous data. The values are not
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Fig. 2 Goodman-Kruskal correlations. Goodman-Kruskal correlation
values of simulated hexaploid data sets and corresponding linkage
maps generated by PERGOLA. The x-axis shows four groups with
different error values, indicating the amount of errors introduced to
the data. The y-axis shows the mean Goodman-Kruskal correlation
value for 100 simulations per parameter combination. The standard
errors are represented by bars. Each group consists of four differently
colored bars, indicating different rates of missing values

as high as the Goodman-Kruskal correlations because the
cophenetic correlation is more sensitive.
The results should be interpreted with caution because

the data is simulated. PedigreeSim simulates the geno-
types based on one model, which has been intensively
discussed in the community [7, 27, 28]. Alternative sim-
ulation models (e.g. Rehmsmeier, 2013 [12]) might lead
to differing results. The models differ in two main
aspects: First, PedigreeSim uses a descriptive model,
which explains the probability distribution of gamete
modes as observables (e.g. recombination / no recombina-
tion). In contrast, other models are analytical and explain
the distribution with meiotic mechanisms. Second,
PedigreeSim calculates recombination rates and double
reduction independently, while alternative models treat
them as reliant [12]. The differences are limited to the sim-
ulation of autopolyploids because they only occur during
quadrivalent meiosis. Further, they exchange single alleles
after crossing-over events in case of double reduction, but
the other alleles remain the same.

Application to real allotetraploid data
We applied PERGOLA to allotetraploid genotypes of a
peanut crossing population [9]. The dataset originates
from doubled haploid (DH) pedigrees and behaves sim-
ilar to diploids. Application of PERGOLA resulted in a
linkage map consisting of ten linkage groups (see left side
of Fig. 3). That matches the expected number of chro-
mosomes for peanut known from literature [29]. Further
validations are difficult because the real linkage map is
unknown.
However, the diploid nature of the peanut dataset

allowed us to compare the results and performance of
PERGOLA to linkage mapping tools, which do not sup-
port polyploids. We selected MapMaker, JoinMap® and
R/qtl. MapMaker was used by the authors of the peanut
dataset [9] and the results are publicly available. Run-
times are not provided by the authors and would not be
informative as the computational setup is not comparable.
JoinMap® is one of themost popular linkagemapping tools
[18]. However, it is neither open-source, nor open-access
and only works on Windows systems. R/qtl is publicly
available as R-package and allows reproduction of our
comparison. More linkage mapping tools are available,
but software comparison is not the main subject of this
publication.
Comparing linkage mapping tools is difficult because

depending on the parameter settings each tool can output
different maps. We used the default parameters of each
tool and the Haldane function to calculate the spacing
between the markers. The results gave a general impres-
sion of the performance and should not be overinter-
preted. All tools could be applied in multiple ways and
lead to different maps. The motivation of the comparison
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Fig. 3 Global linkage map comparison - PERGOLA and JoinMap®. Comparison of the linkage map created by PERGOLA and JoinMap®. Both are split
into ten linkage groups, highlighted by different shades of gray. The linkage groups consist of the same markers. White spaces indicate differences
in the marker ordering

was to find out if PERGOLA performs worse than the
other tools for a diploid-like data set. For polyploid data
sets the other tools can not be applied and PERGOLA is
the method of choice.
The runtime of MapMaker is unknown because the

authors of the peanut dataset did not provide compu-
tation times. Data preparation is unique for every tool
and depends on the format of the given data. Thus, we
excluded that step from the time measurement. Link-
age grouping was at most a matter of seconds for all
methods and has been ignored. The computational time
comparison focuses on marker ordering because it is the
most expensive and distinctive step. In R/qtl, JoinMap®
and PERGOLA these are the commands orderMarkers(),
Calculate map and sortLeafs(), respectively. R/qtl is the
slowest one and took 16min and 47 s. JoinMap® had a sim-
ilar runtime of 14 min and 47 s. PERGOLA was the fastest
method and took 0.011 s. The better performance results
from the use of the OLO algorithm compared to the
sliding window approach in R/qtl and the large overhead

in JoinMap®. Runtime performance is important because
linkage maps have many parameters (e.g. filter criteria)
that influence the result. Faster methods allow for system-
atic optimization of linkage maps. For instance, usually
the number of chromosomes is known. If a parameter
setting results in a number of linkage maps that dif-
fers from the expected chromosome number, the setting
should be changed. The runtime of PERGOLA allows for
computationally expensive resampling methods (e.g. jack-
knifing or bootstrapping) to be used. That can improve
the interpretability of linkage maps and related QTL
detections.
In PERGOLA and JoinMap® we manually selected ten

linkage groups because they were suggested in the group-
ing step. R/qtl created these linkage groups automatically.
We used the Haldane mapping function in all tools. R/qtl
applies a sliding window approach where all possible
permutations of markers are calculated and compared.
That approach leads to locally optimized solutions, but
can fail to find the best marker order within the linkage
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group. The default window size is seven, but performs bet-
ter if the window size is increased. However, this would
lead to even slower computation times and was not tested.
JoinMap® performs similar to R/qtl, but uses a more
sophisticated approach. It calculates and compares differ-
ent solutions internally and outputs the best solution to
the user.
To compare the general linkage maps we transformed

all maps into dendrograms. We aligned the chromosome
orders and orientation between the maps. Dendrograms
maintain the grouping, ordering and spacing of the maps
and allow manual (visually) and computational compar-
isons. The root line connects the multiple linkage groups
at the same height. In our implementation of PERGOLA
its height is 0.2 times higher than the highest connec-
tion within the linkage groups. It does not reflect their
similarity, but supports the readability of the map. The
marker order and spacing in the map equal the leaf order
and branch height in the dendrogram. We created tangle-
grams from the dendrograms for a pairwise comparison
of all maps [30]. They allow us to observe differences
in the grouping, i.e. whether the same set of markers
is in the same linkage groups. The branching height in
the dendrogram provides information about the spac-
ing. Traditionally linkage maps are represented as bars
or lines. Each bar represents one linkage group from one
map. Lines between the bars indicate the rearrangements
between two maps. The linkage groups are distributed so
that collisions are minimized. However, for large num-
bers of linkage groups and high marker density maps,
that representation is difficult to interpret. The trans-
formation into a tanglegram is possible without a loss
of information, but with a gain in clarity. The spacing
information moves into the horizontal dimension and can
be explored separately. Markers which are not included
in both maps are not shown because they do not con-
tribute to comparison. However, their number should be
provided along with the tanglegram. An example tangle-
gram is shown in Fig. 3 and others are provided in the
Additional file 1.
The pairwise tanglegrams show that the maps are gen-

erally similar. All maps consist of ten linkage groups,
mainly containing the same markers. The maps by R/qtl
and MapMaker contain five and six markers more than
PERGOLA and JoinMap®, respectively. This information
is not illustrated in the tanglegrams. The markers have
been filtered out and could not be integrated into the
ten linkage groups. The total number of markers in the
dataset is 459. It is unknown how many have been fil-
tered out for the MapMaker map because they have not
be provided together with the map. However, the marker
density is not significantly reduced by the filtering. The
quality of the map is more important, than a small num-
ber of additional markers. Thus, noisy markers should be

filtered out rather than creating large gaps in a linkage
group.
In our experiment, the Goodman-Kruskal-gamma

index for all pairs of maps is almost 1, indicating perfect
correlation. This contradicts the observations we made in
the tanglegrams where we observe differences between
the linkage maps. Marker grouping has a much larger
effect on the Goodman-Kruskal-gamma index than order-
ing or spacing and if many markers are grouped similarly,
differences in the latter steps are not represented by it. We
conclude that the Goodman-Kruskal-gamma index is too
insensitive for the allotetraploid data set. This is also sup-
ported by our simulation study. In contrast the cophenetic
correlation coefficient provides reasonable measurements
between the maps, as shown in Table 3.
The results show that PERGOLA calculates linkage

maps in a fraction of the time of the other methods.
That makes it not just a useful method for polyploid
crops, but also as an alternative for diploid datasets. The
heuristic approach of the recombination calculation leads
to minor rearrangements in the grouping. They can be
neglected given the overall map similarity and perfor-
mance advantages of PERGOLA . The tanglegrams sug-
gest a higher similarity between R/qtl , JoinMap® and
MapMaker because the grouping is identical. On the con-
trary, the cophenetic correlation indicates that the map
by JoinMap® is more similar to the PERGOLA map. That
supports our aforementioned hypothesis, that there is not
one correct linkage map and we can only estimate the bio-
logical situation from different directions. Depending on
the input data, filtering parameters, linkage mapping tools
and validation criteria, multiple maps are valid. Currently,
it is impossible to discard one map or choose one over the
other.
We conducted a simulation study to validate the results

of PERGOLA and R/qtl for diploids where the real map is
known. JoinMap® was excluded because it is limited to a
graphical interface and could not be automatically applied
to the hundreds of simulated datasets. We used two dif-
ferent numbers of markers (10 and 20 per chromosome)
and three population sizes (50, 100, 200), which resulted
in 6 different combinations per tool. Each combination
was repeated 100 times. The input linkage maps consisted

Table 3 Pairwise correlations between the four maps. The
bottom and top triangles show cophenetic and Goodman-Kruskal
correlations, respectively

PERGOLA R/qtl JoinMap® MapMaker

PERGOLA - 0.999 0.999 0.999

R/qtl 0.930 - 0.999 0.999

JoinMap® 0.938 0.922 - 0.999

MapMaker 0.961 0.928 0.915 -
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of two chromosomes and randomly spaced markers. We
compared the reference maps with the calculated ones
using cophenetic and Goodman-Kruskal correlation. The
mean values and standard errors of the cophenetic corre-
lation are shown in Fig. 4. PERGOLA and R/qtl perform
similarly for 10 marker maps independently of the popu-
lation size. For setups with 20 markers per chromosome
the sliding window approach of R/qtl reaches its limits and
the linkage maps differ significantly. Taken together, PER-
GOLA performs better not only computationally , but also
produces better linkage maps for diploids.

Application to real autotetraploid data
We did another map comparison with the second real
data set, a population of 190 offspring from an autote-
traploid potato cross [31]. The authors created a link-
age map by combining JoinMap® and customized scripts
for the calculation of recombination frequencies. Their
procedure includes multiple runs of JoinMap® there-
fore the performance is even worse than by using Join-
Map® itself. Comparison of our map to the published
one results in 0.962 and 0.949 for the cophenetic cor-
relation and Goodman-Kruskal index, respectively. We
performed a permutation test to validate the statisti-
cal significance of the Goodman-Kruskal-gamma index
for the given dendrogram. Our null-hypothesis was that
the two dendrograms are stochastically independent.
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Fig. 4 Diploid simulation study result. We simulated six setups of
diploid populations with two chromosomes and repeated each 100
times. We used population sizes of 50, 100 or 200 and 10 or 20
markers per chromosome. We applied PERGOLA and R/qtl to
calculate linkage maps which were compared with the reference
map. The bars show the mean correlation value of 100 repetitions
and the error bars indicate the standard error

After 100 random permutations all values were close
to zero and lower than our value of 0.949 (Additional
file 1). We rejected the null-hypothesis and concluded
that the two dendrograms are dependent and show some
similarity. The Goodman-Kruskal-gamma index was
more sensitive for the autotetraploid dataset because it
consists of less markers than the allotetraploid dataset
and differences in the marker ordering were not cov-
ered by similar marker grouping. Similarly, we performed
a Mantel permutation test to assess the significance of
the cophenetic correlation. 99 permutations resulted a
Monte-Carlo p-value of 0.01 and similar results as the
previous permutation test (Additional file 1). Again, we
reject the null-hypothesis and conclude dependence of the
dendrograms.

Conclusions
PERGOLA allows the creation of linkage maps for poly-
ploid crops. The application to simulated data showed that
it leads to reasonable linkage maps. Further, we demon-
strated that it can be successfully applied to real datasets
with different polyploidy types. PERGOLA outperformed
existing programs for diploids in terms of computation
time and mapping accuracy. The transformation of link-
age groups into a two dimensional dendrogram has been
shown to be a valuable alternative to the currently dom-
inating bar scheme. It is more structured and allows to
evaluate the three steps of grouping, ordering and spacing
separately. The Goodman-Kruskal index is too insensitive
to compare linkage maps and the cophenetic correlation
index should be used instead. Taken together, PERGOLA
is a valuable extension not only to the polyploid genetic
toolbox, but for geneticists in general.

Additional file

Additional file 1: Supplementary image. PDF including the additional
tanglegrams and results of the simulation study. (PDF 355 kb)
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