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Abstract

Background: Next-generation sequencing of matched tumor and normal biopsy pairs has become a technology of
paramount importance for precision cancer treatment. Sequencing costs have dropped tremendously, allowing the
sequencing of the whole exome of tumors for just a fraction of the total treatment costs. However, clinicians and
scientists cannot take full advantage of the generated data because the accuracy of analysis pipelines is limited. This
particularly concerns the reliable identification of subclonal mutations in a cancer tissue sample with very low
frequencies, which may be clinically relevant.

Results: Using simulations based on kidney tumor data, we compared the performance of nine state-of-the-art
variant callers, namely deepSNV, GATK HaplotypeCaller, GATK UnifiedGenotyper, JointSNVMix2, MuTect, SAMtools,
SiNVICT, SomaticSniper, and VarScan2. The comparison was done as a function of variant allele frequencies and
coverage. Our analysis revealed that deepSNV and JointSNVMix2 perform very well, especially in the low-frequency
range. We attributed false positive and false negative calls of the nine tools to specific error sources and assigned
them to processing steps of the pipeline. All of these errors can be expected to occur in real data sets. We found that
modifying certain steps of the pipeline or parameters of the tools can lead to substantial improvements in
performance. Furthermore, a novel integration strategy that combines the ranks of the variants yielded the best
performance. More precisely, the rank-combination of deepSNV, JointSNVMix2, MuTect, SiNVICT and VarScan2
reached a sensitivity of 78% when fixing the precision at 90%, and outperformed all individual tools, where the
maximum sensitivity was 71% with the same precision.

Conclusions: The choice of well-performing tools for alignment and variant calling is crucial for the correct
interpretation of exome sequencing data obtained from mixed samples, and common pipelines are suboptimal. We
were able to relate observed substantial differences in performance to the underlying statistical models of the tools,
and to pinpoint the error sources of false positive and false negative calls. These findings might inspire new software
developments that improve exome sequencing pipelines and further the field of precision cancer treatment.
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Background
The detection of genomic variation via sequencing of tu-
mor DNA from cancer patients has become a corner-
stone of cancer research.More recently, sequencing-based
patient stratification also entered clinical procedures in
order to select the best treatment for a cancer patient,
e.g. in melanoma [1], colorectal cancer [2], lung can-
cer [3] and ovarian cancer [4]. Particularly in cases
where drug administration depends on the presence or
absence of specific genomic variants, it is essential to have
robust and sensitive bioinformatics pipelines for variant
detection.
However, the computational analysis of sequencing data

is challenging. Germline mutations have been inherited
from the parents and therefore occur at a frequency of
50% or 100% in virtually every cell. Therefore, with suf-
ficient coverage, germline mutations are relatively easy
to detect. In contrast, tumors consist of several geneti-
cally distinct subclones, a phenomenon called intra-tumor
heterogeneity [5]. Therefore, somatic mutations acquired
during cancer progression occur at variable frequencies.
Unfortunately, even very low-frequency variants may be
critical for treatment outcome, because (i) it may be suf-
ficient if a small portion of the cells promotes tumor
growth, e.g. by producing a growth factor and (ii) drug
resistance mutations may already be present in small sub-
clones that expand upon treatment. For instance, it has
been shown that subclones can harbor driver mutations
which are markers of poor prognosis [6], and that some
subclones are able to resist chemotherapy [7]. Therefore,
detecting even rare mutations is crucial for improving
therapy.
To increase the power to detect low-frequency muta-

tions in protein-coding genes, theWhole Exome Sequenc-
ing (WES) protocol was introduced [8]. The general idea
is to enrich for DNA fragments that hybridize to probes
that cover a large set of known exons of protein-coding
genes. In order to determine which genomic variants in
protein-coding genes have been accumulated during can-
cer progression, a large number of studies adopt WES
to sequence pairs of cancer and normal tissue, i.e., tis-
sue from the tumor and from surrounding non-cancerous
tissue from the same organ.
Here, we compare a large range of bioinformatics tools

for genomic variant detection for paired tumor-normal
WES data. We carefully designed an evaluation frame-
work based on simulated exome sequencing data derived
from real data. While simulated data can never model all
properties of real data, many sources of errors arise from
the data processing steps prior to the variant calling, such
as mapping and filtering, and can therefore be accurately
modeled with simulated data.
The importance of improvements in the data pro-

cessing pipelines has been highlighted in several studies

and reviewed in [9]. Li [10] and Roberts et al. [11]
called variants on a pair of biological and technical repli-
cates, respectively. Li could attribute all variants detected
between these replicates, which are by definition false
positives, to mapping artifacts. Roberts et al. noted that
many false positives found in this experiment had high
scores. Therefore, mapping artifacts may severely con-
taminate any WES analysis even when stringent filters
are applied [11]. Simulated data allows us to investigate
mapping and alignment post-processing artifacts in detail
with the goal to improve the development ofWES analysis
pipelines.

Related work Several recent surveys and reviews on
variant calling pipelines have sought to evaluate the
increasing number of variant callers, mostly address-
ing the problem of germline mutation calling [12–15].
Only few studies consider the specific challenges of
paired tumor-normal variant calling in cancer, where
mixed samples are analyzed. Among those, some com-
parisons use real data and either solely analyze con-
cordance between tools [16] or evaluate predictions on
relatively small sets of validated mutations [13, 17–19].
Kim and colleagues [20] benchmark four anonymous
callers on cancer exome sequencing data in order to pro-
vide guidelines on how to compare variant callers. The
authors analyze discrepancies and concordances between
the callers. They assess different ways of validating the
mutations, for example by re-sequencing a subset of the
variant calls at higher depth. The authors conclude that
it might be misleading to base the performance on a
small set of validated mutations, since the number of
false negatives could be underestimated, and the selec-
tion of which mutations were validated could be biased
towards one caller. They suggest ranking the mutations
according to the callers confidence scores in order to
allow for a more comprehensive comparison with differ-
ent precision cutoffs. Finally, the authors mention that
combining several variant callers is another interesting
challenge which needs to be addressed. Spencer et al.
[21] assess the performance of variant callers to detect
low-frequency mutations by creating a mixture of DNA
from well-characterized cell lines. However, it is diffi-
cult to attribute discordances between tools [11, 22] to
the specific sources of errors. Alioto et al. [23] com-
pared the performance of different analysis pipelines for
whole-genome cancer sequencing data. The set of ground
truth mutations was generated using variants detected
in the same matched tumor and normal sample, but at
a higher coverage of approximately 300×. They report
precision and recall of different analysis pipelines, how-
ever it is also difficult to determine the sources of false
positive and false negative calls. The authors recom-
mend optimizing the aligner/variant caller combination,
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and to combine several variant callers. Furthermore, they
propose additional comparison studies to also assess,
for example, the effect of normal contamination and
subclonality.
To address the aformentioned challenges, here we iden-

tify error sources in variant calling arising from the bioin-
formatics pipeline for read alignment and processing. We
carefully designed a simulation study based on one diploid
normal and eight diploid cancer genomes, where we intro-
duced variants found in a real tumor-normal sample pair
(clear cell renal cell carcinoma). This setup allows us to
observe a large range of errors introduced during the var-
ious processing steps, and to evaluate the performance at
different variant allele frequencies, coverages and contam-
ination levels.We classified errors into different categories
and could, in some instances, relate the appearance of cer-
tain types of errors to the statistical model of a variant
caller. We also developed a new combination strategy to
combine several mutation callers.

Results
We compared the nine somatic variant calling programs
deepSNV [24], Genome Analysis Toolkit (GATK) Haplo-
typeCaller (HP) [25–27], GATK UnifiedGenotyper (UG)
[25–27], JointSNVMix2 [28], MuTect [29], SAMtools [10],
SiNVICT [30], SomaticSniper [31], and VarScan2 [32].
Figure 1 illustrates the workflow for the comparison in
a flowchart. A heterogeneous cancer sample was simu-
lated based on a real renal cell carcinoma sample. The
different tools were evaluated and analyzed in detail. First,
the performance of all tools with default parameters was
assessed as a function of variant allele frequency, cover-
age and normal contamination. Subsequently, the most
prevalent error sources for two different alignment set-
tings were analyzed. Furthermore, the performance of the
tools was compared when applying two pipeline modi-
fications. Moreover, five tools were selected for further
analysis of the effect of changing parameters. Finally, two
combination strategies for variant callers were evaluated,

Fig. 1Workflow of the comparison of the nine variant callers. A heterogeneous cancer sample is simulated based on a real renal cell carcinoma
sample (steps 1, 2 and 3). Two different alignment settings and eight different coverage and normal contamination levels are employed (steps 4 and
5). The variant callers deepSNV, GATK HP, GATK UG, JointSNVMix2, MuTect, SAMtools, SiNVICT, somaticSniper and VarScan2 are run on all bam files
(step 6). The performance of the different tools is evaluated and analyzed in detail (step 7). The tools are also assessed when using various pipeline
or parameter modifications as described in Section “Pipeline and parameter improvements”. A more detailed description of the pipeline and the
evaluation procedure can be found in the Methods Section as well as in Additional file 1: Section B, and Additional file 1: Section C
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including our newly developed rank-combination,
which is implemented in R and available at [33]. A detailed
description of the pipeline and evaluation procedure can
be found in the Methods Section, as well as in Additional
file 1: Section B, and Section C. In the following, we
discuss general concepts of somatic variant calling. The
statistical models of the tools are described in Additional
file 1: Section D.

Statistical models for somatic variant calling
All variant callers considered here take as input DNA-
fragments (reads) aligned to a reference genome. Each
discrepancy between the reference and the aligned read
could in principle originate from a real change in the
genome or from technical artifacts, including sequencing
and alignment errors. Since the mechanisms generating
true genomic variants are complicated and vary substan-
tially between tumors and cancer types, most somatic
variant callers focus on modelling the error sources. The
more accurate the different error sources are modeled, the
easier it is to identify discrepancies that are unlikely to
originate from these error sources and are therefore likely
true genomic variants.
In cancer research, we are often interested in the

changes between tumor and matched normal samples.
The most common approach is to fit a statistical model
to the data of both samples and then compute the likeli-
hood. Most sources of errors will be shared between the
two samples and will therefore not give rise to significant
changes. Remaining artifacts are often difficult to distin-
guish from true somatic variants. To understand these
difficulties, it is insightful to have a closer look at the
different statistical models for variant calling. A detailed
introduction of the statistical models of all considered
variant callers can be found in Additional file 1: Section D.
The commands that were used to run the callers in default
mode are provided in Additional file 1: Section E.

Sequencing data pipelines The outline of a typical WES
data processing pipeline is as follows. Sequencing plat-
forms provide a so-called base quality for each position
of a read, which quantifies the confidence that the called
nucleotide at this position is correct. After the optional
step of quality trimming, where positions of reads with
low base quality are removed, reads are aligned to the
genome with genomic aligners like bowtie2 [34] or bwa
[35]. Afterwards, fragments that align to multiple loca-
tions (multi-mappers) need to be resolved. The two most
common strategies are: (i) deciding for the mapping with
highest score (“best”) or (ii) removing all mappings for a
fragment as soon as there is more than one (“unique”).
Choosing the “best” alignment is often arbitrary if the
number of mismatches is identical. If we have decided to
select one out of several alignments, the information of

whether there were additional alignments and how close
their score was to the best alignment should be reflected in
the mapping quality score of the selected alignment. The
more conservative strategy of selecting “unique” align-
ments is identical to “best” with a stringent cutoff on the
mapping quality.
After running one or more variant callers on the pair

of tumor and normal aligned reads, confidence cutoffs
have to be defined depending on the requirements of the
downstream analysis.

WES data simulation
A tumor sample is composed of several genetically distinct
subclones [5]. In order to generate a realistic scenario for
somatic variant calling of tumor samples with intra-tumor
heterogeneity, we explicitly generated eight diploid sim-
ulated cancer genomes (clones) and one diploid normal
genome. Variants detected in a WES tumor-normal sam-
ple pair of human clear cell renal cell carcinoma (ccRCC)
were placed into these genomes using the software library
SeqAn [36]. Variants detected only in the normal sam-
ple were placed into the normal genome, equally likely
as homozygous or heterozygous mutations. All cancer
genomes inherit the normal variants. The cancer clones
are related by a clonal ancestry tree, shown in Additional
file 1: Figure A. Variants detected only in the real tumor
sample are randomly assigned to one of the nodes of the
tree. All children of this node inherit the variant. A total of
217,507 somatic and 456,680 germline mutations found in
the real ccRCC and its matched normal sample were put
in the phylogenetic tree.
Finally, reads are generated from the normal genome

and the clones using the software library SeqAn [36] and
Wessim [37]. The tumor sample was generated by mix-
ing the reads from the clones and varying proportions
of reads from the normal sample. The weighting of the
clones was determined by drawing a Dirichlet-distributed
random vector.
It is important to note that the simulation includes

SNVs and indels, but no copy number variants (CNVs)
or aneuploidies. CNVs and aneuploidy also play impor-
tant roles in tumor evolution. This study focuses on tools
for somatic SNV detection. The loss or gain of a part or
even a whole chromosome in a subclone, would influ-
ence the variant allele frequency of a mutation. Here,
the whole spectrum of variant allele frequencies in the
interval (0, 1] was analyzed, which is why CNVs and
aneuploidies do not change the conclusions made. To
demonstrate that this is the case, the effect on the per-
formance of the tools in the presence of CNVs and ane-
uploidies was examined on a subset of the data, and
the results are described in Additional file 1: Section
F. The results are in line with those from the original
simulation.



Hofmann et al. BMC Bioinformatics  (2017) 18:8 Page 5 of 15

In the following, we analyze the performance of the vari-
ant callers with default parameters for different parameter
settings of the alignment. We evaluated the performance
of all callers against the simulated ground truth. All cut-
offs we apply on the precision of the tools are with respect
to the ground truth. We take the tools’ score or confi-
dence values only into account to rank the predictions.
Also, the variant allele frequencies are always computed
with respect to the the ground truth.
Figure 1 summarizes the worklow for the simulation and

evaluation procedure. Different alignment settings and
coverage levels are assessed. The various coverage levels
are all with 20% normal contamination. The different
contamination levels are all at 50% coverage, which cor-
responds to a median coverage of the targeted regions of
106×. Unless stated otherwise, the performance measures
reported here refer to the 50% coverage and 20% nor-
mal contamination bam files generated with the sensitive
alignment described in Section “Variant calling pipeline”.

Performance with default parameters
First, we analyze the sensitivity of the callers as a func-
tion of the frequency of the variants (Fig. 2a). To make the

different predictions comparable, we selected the maxi-
mal number of variants from the top of the list for each
caller, such that the false discovery rate is smaller than
a fixed threshold. GATK HP, GATK UG, SAMtools as
well as SiNVICT are tools, which report germline and
somatic variants. Both types may get a high variant qual-
ity score depending on the confidence of the call. Since
we are only interested in comparing the performance of
somatic variant detection, we filtered out all variants from
these four tools that are germline. To this end, we ran
the callers separately on the tumor and the normal bam
file, and removed all mutations that were found in the
normal sample. The resulting filtered variant calls for
the tumor sample should contain only somatic mutations.
The details on how the sensitivities in Fig. 2a are displayed
can be found in Additional file 1: Section G.
We find substantial differences between the perfor-

mance of the variant callers, in particular for the sen-
sitivity of low-frequency variants, where deepSNV and
JointSNVMix2 clearly show a better performance. For a
fixed precision of 90% and for variants with frequencies in
the interval (0, 0.05), JointSNVMix2 already reaches a sen-
sitivity of 30%, whereas all other tools but deepSNV, with

Fig. 2 Performance comparison of variant callers with default parameters. a Sensitivity of variant callers as a function of the variant allele frequency.
To make the predictions comparable we selected the largest set of variants from the top of the list of each caller such that the false discovery rate is
still below α. We show plots for α equal to 0.05 (solid lines), and 0.1 (dashed lines). If the tool has a very good precision, the two curves for the two α

cutoffs are identical, as it is the case for MuTect and VarScan2. The details on how the sensitivities are displayed can be found in Additional file 1:
Section G. b Area under precision recall curve as a function of the coverage. Again the two cutoffs for the false discovery rate α = 0.05, and α = 0.1
are chosen (see Additional file 1: Section C). The coverages correspond to the five different levels (12, 25, 50, 75, and 100%) displayed in Fig. 1 in step 5
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7%, are close to 0%. For the next highest interval of vari-
ant frequencies [ 0.05, 0.1), deepSNV and JointSNVMix2
reach a sensitivity of 38% and 61%, respectively, while the
other tools are all still below 9%.
As expected, the more stringent false discovery cutoff of

5% reduces the sensitivity for detection, and especially the
low-frequency variants. The two curves for the two false
discovery cutoffs of 5 and 10% fall together for VarScan2,
because it has a high precision, where the entire set of
variants has a precision of 98.7%. MuTect does not pro-
vide a continuous quality score, but it reports “PASS”
or “REJECT” for each variant. Among the ones with the
“PASS” label, the precision is very high: it ranges between
99.7 − 100%, depending on the coverage. However, it
misses many variants, which is reflected in the low sensi-
tivity. The output of SiNVICT does not contain a confi-
dence score for ranking either. However, it does separate
the predicted variants into six different lists, which corre-
spond to filters with different stringency levels. Hence, the
predicted variants can be ranked according to which of the
six lists they occur in. In this case, we had variants which
were in the first four lists. Variants in the fourth list not
only passed the p-value cutoff, but also passed the mini-
mum read depth filter, the strand-bias filter, as well as a fil-
ter checking the average position on the reads. Level four
had a very high precision of 99.3%. The entire precision-
recall curves for all tools can be found in Additional
file 1: Figure B. The same performance estimates as dis-
played in Fig. 2a were generated when restricting the
ground truth variant set to locations with a coverage of at
least 25×, which is displayed in Additional file 1: Figure C.
Next, we assessed how the performance of the variant

callers depends on the coverage and the contamination
of tumor samples with normal tissue. To this end, we
generated eight different bam files with various coverage
and contamination levels, as illustrated in Fig. 1 step 5.
As performance measurement, we use the area under the
precision-recall curve of the top predictions which satisfy
a precision of at least 90% or 95%, respectively (auPRC90
and auPRC95, see Additional file 1: Section C). For most
tools, the performance rises substantially when increasing
the median coverage from 25× to 106× (Fig. 2b). How-
ever, with a coverage of above 106× the performance of
most tools saturates, or even decreases.
Increasing the contamination with DNA fragments

from the non-cancer cells does lead to a decrease in per-
formance, which can be explained by the expected loss of
power (Additional file 1: Figure D). However, the decrease
is relatively mild. Variants that are present at higher fre-
quencies are still detectable even with a high rate of
normal contamination.
In order to obtain a measure of the variability of the

results, 50% subsampling from step 5 in Fig. 1 was
repeated ten times, with subsequent variant calling and

evaluation. Additional file 1: Figure E displays the area
under precision recall curve (auPRC) when restricting
to a precision of at least 95 and 90%. The performance
estimates of the tools are very stable.

Analysis of error sources
We categorized high-confidence false positive predic-
tions, defined as false positives that are in the variant
set when restricting it to a precision of at least 95%
(Fig. 3a, 3b) and high-frequency false negatives (frequency
≥ 25%; Fig. 3c, 3d) into groups of likely error sources.
These sets of false positive and false negative predictions
are especially interesting to examine. The false positives
that are high-confidence, i.e. highly ranked by the tool, are
the ones that would likely remain after filtering accord-
ing to the quality score or p-value. Concerning the false
negatives, it is clear that low-frequency variants are much
more difficult to distinguish from sequencing and align-
ment artifacts. However, one would expect to detect the
variants at higher frequencies. The analysis of these sets
of false variant calls sheds light on how the pipeline could
be improved.
We define the following error categories: If the coverage

at the variant loci was less than 25× reads in the can-
cer sample, the category low coverage applies. The error
source low quality signifies that the maximal mapping
quality of a read supporting the variant was below 31. The
category variable region denotes that at least one indel
or more than 4 SNVs were within 10 bp distance of the
variant. The class low support represents loci with suffi-
cient coverage, but the reads that support the variant were
not aligned. If there was a sequencing error in the normal
sample, which gave the impression that the mutation is
germline, the error source seq error in normal applies. The
category low quality in normal signifies that, although the
total coverage would be high enough, there were ambigu-
ous alignments with low mapping quality in the normal
sample resulting in a lack of power for variant calling. In
the case where the coverage was less than 25× in the nor-
mal sample, the class low coverage in normal applies. The
category in normal represents the case where the variant
was introduced in the normal genome and is therefore a
germline mutation. The error source alignment location
denotes the variant was not reported as soon as the deci-
sion for multi-mappers was taken for the correct loca-
tion instead of the “best”. If the correct location was not
among the alignments the read was discarded. In the case
that the coverage in the cancer sample was more than
200×, the variant is labelled high coverage. The category
other applies for all variants which cannot be attributed to
any of the above-mentioned error classes.
For each error source and each tool, the percentage of

variants that fall into the respective error source is dis-
played in Fig. 3. The total number of false positives or false
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Fig. 3 Categories of variant calling errors depending on the quality of the alignment. The top panel (a and b) shows the error categories for the high
confidence false positives (prediction sets with at least 95% precision). The bottom panel (c and d) shows the error categories for the
high-frequency false negatives (ground truth allele frequency ≥ 25%). The left panel (a and c) displays the error sources when running default
bowtie2 alignments, and the right panel (b and d) displays the error sources when runningmore sensitive alignments, which were performed
with parameters --very-sensitive -k 20, and then choosing the primary alignment for each read with several alignments (samtools
view -F 256), i.e. the “best” option. The definition of the categories can be found in Section “Analysis of error sources”

negatives is stated next to the name of the tool. Since vari-
ants can fall into several categories, the precentages of the
different error sources do not sum up to 100%. The cate-
gory other however, is exclusive, since it contains all vari-
ants that did not fit into any of the specified error sources.
Also, the categories low support, as well as low quality
in normal imply that there was sufficient coverage in the
tumor or normal sample, respectively. Therefore, variants
in these categories cannot be classified at the same time

as low coverage or low coverage in normal, respectively. As
mentioned in the flowchart in Fig. 1 step 4, two differ-
ent alignment settings were chosen: the default alignment
and a more sensitive alignment, in which more runtime is
invested into accurate alignments.
We observe that a substantial source of false positives

and especially false negatives is low coverage and low
coverage in normal. As described above, a variant is clas-
sified to reside in a variable region if there is an indel or
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more than 4 SNVs within 10 bp distance. These multiple
mismatches or gaps in a small region cause uncertainty
in the alignment of reads resulting in false positive and
false negative SNV calls (Fig. 3 light green). We assess
the effect of local realignment around indels in the next
section.
In light of the fact that low coverage was a major error

source, the coverage profile of the sample was computed
in order to ensure that the overall coverage is of good qual-
ity. As shown in Additional file 1: Figure F, the coverage
is very good. For instance, 98.8% of the targeted regions is
covered with 25× reads ormore, and 95.7% of the targeted
regions is covered with 51× reads or more.
Pertaining to the false positive calls, for most tools,

many can be attributed to the category in normal. These
are variants that are actually germline, and have been erro-
neously classified as somatic. An additional germline filter
for the variants might improve the performance, which is
assessed in the next section.
The direct comparison of the default and the more sen-

sitive alignment reveals some effects that the alignment
has on the false positives and negatives. Overall, the sen-
sitivity to detect variants increases slightly with the more
sensitive alignment. For most tools, the number of true
positives is increased, which in turn leads to a higher abso-
lute number of false positives with the same precision cut-
off of 95%. The error source alignment location is reduced
for GATK HP, GATK UG, JointSNVMix2, SAMtools,
SomaticSniper and VarScan2 when using the more sensi-
tive alignment. The proportion of variants falling into low
quality rises for most tools for the more sensitive align-
ment, but it always remains below 3% (Fig. 3b, d, dark blue
and red). The total number of high-frequency false nega-
tives is reduced for deepSNV, GATK UG, JointSNVMix2,
SAMtools, SiNVICT, and VarScan2.
When comparing the error profiles of false negative

calls of the tools, it is evident that they are highly corre-
lated. Additional file 1: Figure G displays the correlations
of error profiles between the tools. More precisely, the
minimum correlation between the error profiles of the
false negative calls is 0.79, between JointSNVMix2 and
SAMtools, and the maximum correlation is 1.00, between
GATK UG and somaticSniper. Concerning the false posi-
tive calls, the error profiles of the tools are more diverse.
JointSNVMix2 and MuTect even show a slightly negative
correlation. Overall, deepSNV and JointSNVMix2 seem to
be the least correlated in their false positive error profile
with any of the other tools.

Pipeline and parameter improvements
In this section, we demonstrate the effect on the perfor-
mance when applying changes to the pipeline or param-
eters of the tools. Moreover, we assess two combination
strategies for variant callers.

Adressing error sources through pipelinemodifications
The analysis of error sources revealed that many SNVs
can be attributed to variable region, which indicates that
the SNV was in a region with indels or a cluster of
SNVs. The development team of GATK recommends to
use the tool GATK-IndelRealigner as an alignment post-
processing step before the variant calling [27]. According
to the instructions [38] the tool minimizes the number
of mismatches across all reads in regions around inser-
tions and deletions (indels). Here, we assessed whether the
GATK-IndelRealigner impacts the performance of variant
callers. We note that all predictions are almost identical
in sensitivity and precision, except for SAMtools, which
benefits greatly (Fig. 4a, dotted lines).
Another prominent source of false positives is the cat-

egory in normal, which indicates that the variant was
actually germline and erroneously classified as somatic.
Here, we assess the effect of a post-variant-calling filter
that refines the variant calls by filtering out mutations
that could likely be germline mutations. More precisely,
for each variant loci, the number of reads supporting the
variant in the normal sample, as well as the total coverage
in the normal sample are taken into account. Assum-
ing a sequencing error rate of at most 0.5%, one can
employ a binomial test to assess whether the observed
number of variant reads is higher than expected for a
sequencing error. If the p-value is below 0.05, the vari-
ant could likely be a germline mutation and is filtered
out. Figure 4a (dashed lines) depicts the performance of
the tools after this post-variant-calling filter. It reduces
the sensitivity for all tools but deepSNV and MuTect.
For deepSNV, the performance for low-frequency vari-
ants is greatly improved, whereas it becomes less sensitive
for higher frequencies. With the binomial test, deepSNV
reaches a sensitivity of 64% for variants with ground
truth frequencies in [ 0.05, 0.1), instead of a sensitivity
of 38% without this filter. For Mutect, the sensitivity
for variants with ground truth frequencies in [ 0.15, 0.2)
was 71% instead of 1% without this post-variant-calling
filter.

Parameter optimization of variant callers We selected
five variant callers to investigate if further performance
improvements can be achieved by tuning the parame-
ters of the callers. We chose deepSNV and JointSNVMix2
for their very good overall performance. We assessed the
effect of changing the filters for base or mapping quality,
because this could have an impact on the performance.
Furthermore, we chose SAMtools to explore the effects of
certain parameters for which it would be difficult to assign
an intuitive value since their impact is unclear. These
parameters are -B for recalculation of the base qualities,
and -C for recomputing the mapping quality. Moreover,
VarScan2 was selected to assess whether a tool that did
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Fig. 4 (See legend on next page.)
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Fig. 4 (See figure on previous page.)
The effect of pipeline modifications, parameter changes, and combination strategies. We show the sensitivity for the prediction set with at least 90%
precision. a Performance when applying local realignment around indels or the binomial test as a germline filter. b Performance of deepSNV,
JointSNVMix2, SAMtools, SiNVICT and VarScan2 with different choices of parameters. Additional file 1: Figure H depicts the performance for all
parameters that were assessed. c Performance of rank-combinations and intersections of calls from several tools. From each tool, we took the
best version. In particular, deepSNV and MuTect with the binomial test as germline filter, SAMtools with option -C 200, SiNVICT with
--qscore-cutoff 60, VarScan2 with the parameter--min-var-freq 0.02, aswell as the default runs fromGATK HP, GATK UG, JointSNVMix2,
and somaticSniper. d Summary barplot displaying the performance of the three best rank-combinations as a comparison to each tool
individually. If a tool parameter or pipeline change has been used in the rank-combinations, also the performance of the tool in default mode
is shown. The y-axis measures the area under precision-recall curve when allowing a false discovery rate of up to 10% (see Additional file 1: Section C)

not perform so well can be improved by a straightfor-
ward change of a default parameter: The default threshold
for the variant allele frequency is 0.10, which explains
the poor performance in the low-frequency range. Also,
the impact of applying the strand filter was assessed.
Finally, SiNVICT allows setting a threshold for the q-score
via the parameter --qscore-cutoff <INT>, which
reflects the confidence of the variant call. The q-score is
not printed by SiNVICT to the output list of variants,
hence a ranking according to this value is not possible.
However, adjusting the q-score cutoff threshold with the
parameter --qscore-cutoff may lead to an increase
in performance.
We found the predictions of deepSNV and JointSNVMix2

to be highly robust against varying thresholds for base
and mapping qualities (Fig. 4b red and blue). The default
threshold for the minimum base quality in deepSNV is 25.
Lowering this threshold to 0, and thereby also including
more potential sequencing errors in the read counts, only
leads to a very subtle decrease in performance. Additional
file 1: Figure H displays the performance for all parameters
that were assessed.
The prediction performance of SAMtools varies sub-

stantially in both directions when choosing different
values for the parameter -C <INT> (Fig. 4b green).
According to the manual [39], the parameter -C of SAM-
tools reduces the effect of reads with an excessive number
of mismatches. Varying -C between 20 and 200 resulted in
large differences in performance ranging from auPRC90 =
0.00 for -C 20 and auPRC90 = 0.45 for -C 200.
The default minimum variant frequency for VarScan2

for heterozygous mutations is 0.10 according to the
manual [40], which hampers detection of low-frequency
variants. Setting this threshold to 0.02 yields great per-
formance improvements, especially in the low-frequency
range (Fig. 4b grey). The auPRC90 is improved from 0.39
to 0.69. Applying the strand filter leads to a decrease
in sensitivity, which could indicate that this filter is too
conservative.
Different values for the --qscore-cutoff parameter

in SiNVICT lead to an increase or decrease in perfor-
mance, as shown in Additional file 1: Figure H panel E.

The optimal value might depend on factors such as cover-
age and contamination level. The default value is 95, which
is probably best for very high coverage data. In this case,
the optimal value was found to be --qscore-cutoff
60. It improves the auPRC90 from 0.45 to 0.50.

Variant caller combination strategies It has been noted
that a combination of variant callers may be beneficial to
improve sensitivity and specificity of predictions [9, 41].
One straightforward way of combining variant callers is to
take the intersection of several tools.We assessed whether
the top predictions of the top five variant callers from the
default run according to auPRC90 (deepSNV, GATK UG,
JointSNVMix2, SiNVICT and SomaticSniper) conform.
Additional file 1: Figure I displays the Venn diagrams
for three different thresholds for the false discovery rate.
The evaluation of the set of variants which were shared
between the five tools revealed that the precision is very
high, as it ranges between 99.6 − 100%. However, many
variants are missed, e.g. the recall is only at most 42.8%,
when restricting the individual tools to a false discovery
rate of 10%. This demonstrates that taking the intersec-
tion of many tools might be a too conservative choice.
Additional file 1: Table S2 lists the number of variants
which are shared between all pairs of two variant callers
and their auPRC90.
Finally, we developed a new method to integrate pre-

dictions from multiple callers by combining the ranks of
variants across callers (see Additional file 1: Section H).
The basic idea is to combine the ranks after having stan-
dardized the correlation between the tools. We refer to
this approach as the rank-combination. From each
tool, we took the best version of the assessed pipeline or
parameter settings: That is, deepSNV and MuTect with
the binomial test as germline filter, SAMtools with -C
200, SiNVICT with option --qscore-cutoff 60,
VarScan2 with the parameter --min-var-freq 0.02,
as well as the default runs from JointSNVMix2, GATK
UG, GATK HP, and somaticSniper. Figure 4c demon-
strates that the performance of the rank-combination
is always better than the intersection of the variants of
the same callers. By intersection of tools, we refer to the
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variants which are shared between the callers. The sensi-
tivity decreases as more tools are considered for the inter-
section. Interestingly, for the rank-combination of
callers, it is better to take more tools. The overall sensitiv-
ity when combining all nine tools is 75%, where any indi-
vidual tool only reaches at most 71% with the same fixed
precision of 90%. However, the rank-combination
of deepSNV, JointSNVMix2, MuTect, SiNVICT, and
VarScan2 performs best, and is also better than the
rank-combination of all tools. More specifically, it
reaches an overall sensitivity of 78% with a fixed preci-
sion of 90%. Especially in the low-frequency range, e.g.
for variants with frequencies in the interval (0, 0.05),
the rank-combination of deepSNV, JointSNVMix2,
MuTect, SiNVICT, and VarScan2 outperforms the indi-
vidual tools by reaching a sensitivity of 46%, where
the maximum sensitivity of any of the tools individu-
ally is 36%, reached by MuTect with the binomial filter.
The rank-combination of deepSNV, JointSNVMix2,
MuTect, SAMtools and VarScan2 is almost as good as the
one with SiNVICT at a precision of 90%, and at a preci-
sion of 95% even slightly better. Figure 4d summarizes the
performances of the three best rank-combinations
and all nine individual tools with the area under precision-
recall curve when the precision is at least 90%. Additional
file 1: Table S1 displays the auPRC95 and auPRC90 values
for the ten best rank-combinations.

Discussion
Our study on simulated data revealed substantial dif-
ferences between the tools, and identified possibilities
to improve cancer exome sequencing pipelines. The
relatively high sensitivity for low-frequency variants of
deepSNV and JointSNVMix2 is the result of the explicit
modeling of the variant allele frequency in the statisti-
cal model of these tools. Neither method assumes cancer
variants to have undergone clonal expansion. Hence, the
statistical model of deepSNV and JointSNVMix2 seems
to be the most appropriate for the read count data
obtained from heterogeneous tumor samples. By con-
trast, other methods, such as GATK HP, GATK UG, and
SAMtools assume that the variants are clonal, i.e. either
heterozygous with a variant allele frequency of 0.5 or
homozygous with a frequency of 1.0. In cancer, however
samples are not expected to be monoclonal, but rather
a mixture of genetically distinct subclones [5]. Subclonal
variants that exist at a low frequency might be very
important.
When varying thresholds for base and mapping qual-

ities, the performance of deepSNV and JointSNVMix2
remained very stable. The model of deepSNV takes
into account overdispersion which could explain the
quite robust performance. The statistical model of
JointSNVMix2 explicitly considers base and mapping

qualities and therefore is immune to any changes in these
thresholds.
With a median coverage of above 106×, the perfor-

mance of most tools does not show a substantial improve-
ment, or even decreases slightly in the case of SAMtools
and somaticSniper. This saturation can be attributed to
error sources that cannot be resolved with higher cover-
age in these models. In contrast, especially deepSNV and
SiNVICT always perform better with increasing cover-
age. This underlines the fact that they were designed and
tested for very high coverage data.
Concerning the way of reporting the variants, MuTect

and SiNVICT do not provide a confidence score for each
variant, in contrast to the other tools. We speculate that
the performance would be better for MuTect and SiN-
VICT, if they reported the confidence score as well. This
would allow ranking the variants accordingly, and might
lead to higher sensitivities for the same precision cutoff.
Regions with coverage less than 25× in the tumor or

normal sample cause many false positives and false nega-
tives. The extent of this source of errors can be reduced by
aiming for a high coverage when planning an experiment.
However, simply increasing the coverage, e.g. by ampli-
fying more, might not solve the problem entirely, since
regions with low coverage could be due to alignment prob-
lems. If a genomic region contains an accumulation of
somatic or germline mutations, the reads might not align
anymore to the reference genome. In fact, among the false
negatives, 61% of variants that fall into variable region
are also in the category low coverage. This points towards
alignment problems in the presence of many mismatches.
Approaches that possibly lead to an improvement could
be to re-align the unmapped reads while allowing for
more mismatches or to locally assemble the haplotypes.
The GATK-IndelRealigner showed only a limited effect
on the performance of the tools. This might be explained
by the relatively small number of indels that were intro-
duced in the simulated cancer sample: Among the intro-
duced mutations, there were 0.67% indels, since this study
focuses on SNVs. An approach that extends the idea of
the GATK-IndelRealigner to any region with many vari-
ants, including SNVs, might be promising. Moreover, the
GATK-IndelRealigner decides for a single alignment solu-
tion, instead of keeping track of the uncertainty. It could
help to enumerate or sample all high-scoring local align-
ment possibilities. Approaches like the one used by the
GATK HaplotypeCaller, which reassembles the reads into
haplotypes, are promising. However, reads that did not
align at all due to increased variability are not included.
Results might be improved if this step would already be
incorporated during the alignment. Then reads which
would otherwise be discarded as unmapped would be
included as well. These suggestions point towards a tight
interdependence of alignment and variant calling, which
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should be treated as a single optimization problem. This
is clearly computationally more demanding than current
variant calling pipelines, but given that problems can-
not be resolved by deeper sequencing, more sophisticated
algorithms are necessary.
The analysis of error sources also revealed that among

the main confounding factors when calling somatic vari-
ants are germline mutations, which are erroneously clas-
sified as somatic. The post-variant-calling filter, which
removes potential germline mutations, increased the per-
formance for deepSNV andMuTect. This improvement of
deepSNV is in line with the fact that the error source in
normal was the highest except for false positive calls that
could only be assigned to other error sources. For MuTect,
93% of the false positive calls could be assigned to in nor-
mal, which explains the great performance improvement
with this germline filter. The fact that these two callers
had problems with distinguishing germline and somatic
mutations could be explained by the underlying model.
The method of deepSNV calls a variant if the variant allele
frequencies differ significantly in the tumor and normal
sample, but there is no threshold on the allowed maxi-
mal variant allele frequency in the normal sample. MuTect
uses two tests when determining a variant. The first one
compares the variant model against an error model using
the observed read counts in the tumor sample. The sec-
ond one considers the read counts in the normal sample to
test the possibility of a germline mutation. Therefore, the
normal and tumor read counts are not compared directly.
Groups of variant callers that do not have strong cor-

relations in their error profiles are interesting candidates
for combination strategies. The analysis of the error
sources and the correlations of error profiles revealed
that deepSNV and JointSNVMix2 were the least corre-
lated in their false positive error profiles with any of
the other tools. MuTect, SiNVICT and VarScan2 were
the least correlated with JointSNVMix2. Together with the
rank-combination, these five tools reached the over-
all best auPRC90. Interestingly, even though SAMtools is
by itself not among the five best callers, it is part of one
of the best rank-combinations, which also suggests
that the tools complement each other in a synergistic way.
This is in line with the fact that JointSNVMix2 and SAM-
tools are the least correlated among all false negative error
profiles. And the false negative error profile of SAMtools
was overall the least correlated to the profiles of the other
tools.

Conclusions
Our experiments on simulated data revealed that, with
default parameters, deepSNV and JointSNVMix2 out-
performed the other methods, especially in detect-
ing low-frequency variants. Furthermore, deepSNV and
JointSNVMix2 were fairly robust against changes in the

default thresholds for base or mapping qualities, which
increases the confidence that these tools will perform
equally well on other data sets of unknown quality.
MuTect showed very competitive performance for low-
frequency variants after applying an additional germline
filter, which also further increased the sensitivity of deep-
SNV. VarScan2 improved substantially when changing a
default parameter.
The comparison of the default alignment to the more

sensitive alignment demonstrated that the tools in gen-
eral detect more true SNVs from higher quality align-
ments. We conclude that it is worthwhile investing more
in runtime during the alignment to obtain improved per-
formance. Furthermore, the results that we obtained from
analyzing the error sources revealed that it might be ben-
eficial to treat alignment and variant calling as a single
optimization problem.
The effect on the performance when varying the param-

eter -C for SAMtools was very heterogeneous.We suggest
that, if this parameter is used, it should not be set to
an arbitrary value without the possibility to estimate its
effect.
The combination analysis showed that the intersec-

tion of tools is in general too conservative. The sensitiv-
ity decreases when restricting the variants to be found
by more tools. Conversely, the rank-combination
approach, where the ranks of the tools are combined
after standardizing their correlation, proved to be very
promising. The rank-combinations were better than
the intersection of the same tools. And most of all,
the rank-combination of deepSNV and MuTect with
the germline-variant-filter, JointSNVMix2, SiNVICT with
--qscore-cutoff 60, and VarScan2 with the param-
eter --min-var-freq 0.02, performed the best at a
precision of 90%, and was better than any of the tools
alone.
We conclude that many errors can be avoided by

investing runtime into very sensitive alignments and
using appropriate statistical models such as deepSNV
and JointSNVMix2 or combination strategies such as the
rank-combination. However, there is still a great need
for improving variant calling and alignment in mixed
tumor samples.

Methods
Simulation
We simulated cancer and normal read data starting from
variants that had been identified in a real tumor-normal
pair of clear cell renal cell carcinoma. The samples were
obtained from the tissue biobank of the Institute of Sur-
gical Pathology at the University Hospital Zurich. DNA
was extracted from frozen sections of the tumor and
normal tissues using the Blood and Tissue Kit (Qiagen).
The exome was sequenced using the Illumina HiSeq 2000
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system. Variants that were found only in the tumor sam-
ple were randomly assigned to 8 diploid clones (randomly
deciding for each variants zygosity). The relative abun-
dance of the clones was sampled from a Dirichlet dis-
tribution with concentration parameter 1

8 for all clones.
We generated 16 DNA sequences by introducing the vari-
ants into the hg19 reference DNA sequence and then used
Wessim [37] to create artificial reads based on an Illu-
mina error model. For more details, see Additional file 1:
Section B. It is important to note that the simulationmight
influence the extent of certain error sources. However, it is
expected that all detected error sources occur in real data
sets, possibly with different frequencies, and are therefore
important to be addressed.

Variant calling pipeline
We used bowtie2 [34] for all alignments, with the param-
eters --very-sensitive and -k 20, and then chose
the primary alignment for each read with several align-
ments using samtools (samtools view -F 256), i.e.
the “best” option. We also used the default parameters of
bowtie2 as noted in Fig. 3.
We ran all variant callers with default parameters,

except for technical parameters that do not influence the
model for variant calling. When assessing the effect of
different parameters, we indicate which parameters were
changed (Fig. 4b and Additional file 1: Figure H).

Evaluation
For the evaluation, we distinguish between two types of
substitutions. In the first case, the fragment of DNA has
been replaced by a another fragment of the same size, i.e.
a multi-nucleotide variant (MNV). In the second case, the
fragment was replaced by a new fragment of different size,
i.e. it also includes an indel. Due to the different report-
ing behavior of variant callers, the evaluation of variants
is challenging. To account for these differences, we first
split MNVs into individual SNVs. However, in the sec-
ond case, the substitution cannot be uniquely split into
smaller variants, which makes it more difficult to evalu-
ate independently of the reporting behaviour of a tool. For
example, one tool may report a variant ACGG→GCGGG
at position i, while another tool reports variant A→G at
position i and GG→GGG at position i + 2.
To generate the ground truth SNVs from the true can-

cer sample, we used the tool Freebayes [42], which is not
part of the comparison. Freebayes has a strong tendency to
merge nearby variants. To make sure that predicted SNVs
that are correct, but reported differently in the ground
truth, are not penalized, we filtered out all predictions
that overlap with a ground truth substitution that con-
tains an indel. These substitutions were not counted when
computing the performance estimates. However, on aver-
age, 98.9% of predictions unambiguously match with no

or exactly one ground truth variant and are therefore
unambiguous to evaluate.

Additional file

Additional file 1: Supplemental methods and results [43–53].
(PDF 1187 kb)
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